JP2002179474A - Refractory heat-insulating material and its production process - Google Patents

Refractory heat-insulating material and its production process

Info

Publication number
JP2002179474A
JP2002179474A JP2000373296A JP2000373296A JP2002179474A JP 2002179474 A JP2002179474 A JP 2002179474A JP 2000373296 A JP2000373296 A JP 2000373296A JP 2000373296 A JP2000373296 A JP 2000373296A JP 2002179474 A JP2002179474 A JP 2002179474A
Authority
JP
Japan
Prior art keywords
inorganic
binder
insulating material
heat insulating
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000373296A
Other languages
Japanese (ja)
Inventor
Masato Osawa
正人 大沢
Yasuo Misu
安雄 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP2000373296A priority Critical patent/JP2002179474A/en
Publication of JP2002179474A publication Critical patent/JP2002179474A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refractory heat-insulating material which exhibits excellent heat-insulating properties even in a >=1,000 deg.C high temperature region and has sufficiently high strength and to provide a production process of the refractory heat-insulating material. SOLUTION: This material consists of inorganic fibers, an inorganic powder and a binder and has such as structure that the binder is mostly formed as particulate matter ion a network structure formed of the inorganic fiber and inorganic powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に工業炉の炉壁
材として使用されるのに適した、耐熱性および断熱性に
優れた耐火断熱材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory heat insulating material excellent in heat resistance and heat insulating property, which is suitable mainly for use as a furnace wall material of an industrial furnace, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、環境への低負荷や省エネルギーの
実現のため、工業材料として優れた断熱性を有する耐火
断熱材の需要が高まっている。このような背景から開発
された断熱材として、無機繊維と無機粉体と結合材から
なる成形体が知られている。このような無機繊維を含ん
だ断熱材を成形するには、一般に湿式真空成形法が用い
られる。
2. Description of the Related Art In recent years, there has been an increasing demand for fire-resistant heat insulating materials having excellent heat insulating properties as industrial materials in order to realize low environmental load and energy saving. As a heat insulating material developed from such a background, a formed body made of inorganic fibers, inorganic powder, and a binder is known. In order to form such a heat insulating material containing inorganic fibers, a wet vacuum forming method is generally used.

【0003】この湿式真空成形法は、無機繊維と無機粉
末と結合材を水に分散させて、次に凝集剤を添加して、
凝集物を生成させ、この凝集物を抄造する方法である。
[0003] In this wet vacuum forming method, an inorganic fiber, an inorganic powder and a binder are dispersed in water, and then a coagulant is added thereto.
In this method, an aggregate is formed and the aggregate is formed.

【0004】このような方法によって製造された耐火断
熱材は良く知られている。例えば、特開平5−9083
号公報には、無機繊維と酸化チタンと結合材により構成
された成形体が開示されている。ここに使用される酸化
チタンは、赤外線散乱効果を持ち、優れた断熱性を発現
するとされている。
[0004] Refractory insulation produced by such a method is well known. For example, Japanese Patent Application Laid-Open No. 5-9083
Japanese Patent Application Laid-Open Publication No. H11-157, discloses a molded body composed of inorganic fibers, titanium oxide, and a binder. It is said that the titanium oxide used here has an infrared scattering effect and exhibits excellent heat insulating properties.

【0005】[0005]

【発明が解決しようとする課題】優れた断熱性を有する
前述の特開平5−9083号公報に示された成形体は、
1000℃以下の中温域では優れた断熱性を発現する。
The molded article disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-9083, which has excellent heat insulating properties,
It exhibits excellent heat insulating properties in a medium temperature range of 1000 ° C. or lower.

【0006】しかしながら、ここに使用する酸化チタン
は、平均粒径が0.4μm以下と微細粒であり、100
0℃以上の高温域では焼結による断熱材の収縮や撓みが
顕著である。このため、この成形体は、高温域では優れ
た断熱性を発現することが困難である。
However, the titanium oxide used here is a fine particle having an average particle size of 0.4 μm or less.
In a high temperature range of 0 ° C. or more, the heat insulating material is significantly shrunk or bent by sintering. For this reason, it is difficult for this molded body to exhibit excellent heat insulating properties in a high temperature range.

【0007】また湿式真空成形法により成形する際に
は、使用する酸化チタンが微細粒であるため、濾過抵抗
が増大し、成形に長時問を要する。
[0007] Further, when forming by the wet vacuum forming method, since the titanium oxide used is fine particles, the filtration resistance increases and it takes a long time to form.

【0008】また、同じ理由により、厚い成形体を得る
ことが困難である。
For the same reason, it is difficult to obtain a thick molded body.

【0009】本発明の目的は、加熱炉の最内層として使
用できるように1000℃以上の高温域においても優れ
た断熱性を発現するとともに、十分に強度の大きい耐火
断熱材とその製造方法を提供することである。
An object of the present invention is to provide a refractory heat insulating material exhibiting excellent heat insulating properties even in a high temperature range of 1000 ° C. or higher so that it can be used as the innermost layer of a heating furnace and having sufficiently high strength and a method for producing the same. It is to be.

【0010】[0010]

【課題を解決するための手段】本発明の解決手段は、前
掲の請求項1〜2に記載の耐火断熱材、及び前掲の請求
項3〜4に記載の耐火断熱材の製造方法である。
Means for Solving the Problems The solution of the present invention is a refractory heat insulating material according to claims 1 and 2 and a method for manufacturing a refractory heat insulating material according to claims 3 and 4.

【0011】[0011]

【発明の実施の形態】本発明は、無機繊維および無機粉
体によって微細気孔を有する網目構造が形成されてい
て、その網目構造の中に結合材が粒状に集合した構造を
有する耐火断熱材と、結合材として配合した無機コロイ
ド粒子とは反対の電荷をもつ無機コロイド粒子を添加し
て凝集物を生成させる製造方法を提供するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a fire-resistant heat insulating material having a network structure having fine pores formed by inorganic fibers and inorganic powder, and having a structure in which a binder is aggregated in the network structure. Another object of the present invention is to provide a method for producing an aggregate by adding inorganic colloid particles having a charge opposite to that of the inorganic colloid particles blended as a binder.

【0012】本発明によれば、1000℃以上の高温域
で優れた断熱性を発現し、旦つ高強度を有する耐火断熱
材が得られる。
According to the present invention, a refractory heat insulating material which exhibits excellent heat insulating properties in a high temperature range of 1000 ° C. or more and has high strength every time is obtained.

【0013】本発明の耐火断熱材においては、優れた断
熱性を発現させるために、成形体中において結合材が粒
状に形成されている。とくに、結合材が粒状に集合して
いることが好ましい。結合材が面状に形成されると、結
合材が気孔を充填し、伝熱を促進する。結合材が多少面
状に形成されたとしても、その発達が、繊維と繊維、あ
るいは繊維と粉体との接点近傍のみに抑制されており、
大半の結合材が粒状に集合して形成されていて、無機繊
維および無機粉体によって形成される微細気孔を有する
網目構造を維持していることが好ましい。
In the refractory heat-insulating material of the present invention, the binder is formed in a granular shape in the molded article in order to exhibit excellent heat insulating properties. In particular, it is preferable that the binder is aggregated in a granular form. When the binder is formed in a planar shape, the binder fills the pores and promotes heat transfer. Even if the binder is formed in a somewhat planar shape, its development is suppressed only near the contact point between the fiber and the fiber or between the fiber and the powder,
It is preferable that most of the binders are formed by being aggregated in a granular form, and maintain a network structure having fine pores formed by inorganic fibers and inorganic powder.

【0014】図3は、本発明による耐火断熱材において
結合材が粒状に集合している状態の一例を示す顕微鏡写
真である。
FIG. 3 is a photomicrograph showing an example of a state in which the binder is aggregated in the refractory heat insulating material according to the present invention.

【0015】図4は、耐火断熱材において結合材が面状
に発達した成形体の比較例を示す顕微鏡写真である。
FIG. 4 is a photomicrograph showing a comparative example of a molded article in which the binder has developed into a planar shape in the refractory heat insulating material.

【0016】湿式真空成形法によって成形体を得る場
合、得られる成形体において、所望の構造を維持するた
めには、結合材として配合する無機コロイド粒子とは反
対の電荷を持つ無機コロイド粒子を添加して凝集物を生
成させることが好ましい。このような製造方法による
と、得られる成形体が、微細気孔を有する網目構造を維
持する。この理由は次のように考えられる。
When a molded article is obtained by a wet vacuum molding method, in order to maintain a desired structure in the obtained molded article, inorganic colloid particles having a charge opposite to that of the inorganic colloid particles blended as a binder are added. To form aggregates. According to such a manufacturing method, the obtained molded body maintains a network structure having fine pores. The reason is considered as follows.

【0017】従来では、例えば、結合材として、負の電
荷をもつ無機コロイドを使用した場合、その反対の電荷
をもつカチオン系高分子を添加して凝集物を生成させて
いた。この際、カチオン系高分子は大きい分子量のポリ
マーであるために、架橋凝集が起こり易く、粗大な羽毛
状の凝集物が生成する。結果として、結合材である無機
コロイドが、面状に発達して、網目構造中の気孔を充填
してしまう。
Conventionally, for example, when an inorganic colloid having a negative charge is used as a binder, a cationic polymer having the opposite charge is added to form an aggregate. At this time, since the cationic polymer is a polymer having a large molecular weight, cross-linking aggregation is likely to occur, and a coarse feather-like aggregate is generated. As a result, the inorganic colloid, which is a binder, develops in a planar shape and fills pores in the network structure.

【0018】これに対し、正の電荷をもつ無機コロイド
を添加して凝集物を生成させると、架橋凝集は起こら
ず、得られる凝集物が微細であるばかりでなく、結合材
が面状に発達するのを抑えることができる。
On the other hand, when an inorganic colloid having a positive charge is added to form aggregates, cross-linking aggregation does not occur, and not only the obtained aggregates are fine, but also the binder develops in a planar shape. Can be suppressed.

【0019】なお、得られた微細な凝集物の安定性を高
めるために、必要に応じて1重量%以下の範囲でカチオ
ン澱粉を添加することができる。カチオン澱粉の添加量
が1重量%以下であれば、前述の効果を発現させるのに
支障がない。
Incidentally, in order to enhance the stability of the obtained fine aggregates, cationic starch can be added in a range of 1% by weight or less, if necessary. When the amount of the cationic starch added is 1% by weight or less, there is no problem in exhibiting the above-mentioned effects.

【0020】本発明の耐火断熱材においては、平均繊維
径が1〜3μmの無機繊維が30重量%以上含まれるこ
とが好ましい。
In the refractory heat insulating material of the present invention, it is preferable that the inorganic fiber having an average fiber diameter of 1 to 3 μm is contained in an amount of 30% by weight or more.

【0021】無機繊維は断熱材中で微細な網目を形成す
る。この際、繊維径が小さいと、この網目の気孔が小さ
くなり、成形体中の気体の対流による伝熱および気体分
子の衝突による伝熱を抑制する。また、繊維径が小さい
と、繊維と繊維、および繊維と粉体との接触面積が小さ
くなって、固体の伝導伝熱を抑制する。さらに、繊維径
が小さいと、断熱材中の繊維数の割合が増加して、輻射
を遮蔽し、断熱性を向上させる効果をもたらす。
The inorganic fibers form a fine network in the heat insulating material. At this time, if the fiber diameter is small, the pores of the mesh become small, and heat transfer due to convection of gas in the molded body and heat transfer due to collision of gas molecules are suppressed. Further, when the fiber diameter is small, the contact area between the fiber and the fiber and between the fiber and the powder becomes small, and the conductive heat transfer of the solid is suppressed. Furthermore, when the fiber diameter is small, the ratio of the number of fibers in the heat insulating material is increased, which has the effect of shielding radiation and improving heat insulating properties.

【0022】これらの理由により、繊維径は小さい方が
好ましく、少なくとも3μm以下が好ましい。しかしな
がら、繊維径が1μmより小さくなると、湿式成形の際
に濾過抵抗が増大し、厚い成形体を得るのが困難にな
る。
For these reasons, the fiber diameter is preferably small, and is preferably at least 3 μm or less. However, when the fiber diameter is smaller than 1 μm, the filtration resistance increases during wet molding, and it becomes difficult to obtain a thick molded body.

【0023】このような無機繊維としては、例えば、ア
ルミナ繊維、アルミナシリカ繊維、ムライト繊維が好ま
しい。
As such inorganic fibers, for example, alumina fibers, alumina silica fibers, and mullite fibers are preferable.

【0024】本発明においては、必要に応じて、2〜8
重量%の有機結合材を用いることができる。使用する有
機結合材は、無機結合材として配合したコロイド粒子と
同じ電荷をもつアニオン系のものが好ましい。例えば、
使用する有機結合材は、アクリル樹脂エマルジョンやラ
テックス等を用いることができる。
In the present invention, if necessary, 2 to 8
Weight percent organic binder can be used. The organic binder used is preferably an anionic binder having the same charge as the colloid particles blended as the inorganic binder. For example,
As the organic binder to be used, an acrylic resin emulsion, latex, or the like can be used.

【0025】[0025]

【実施例】実施例1〜4 無機繊維、無機粉体および負の電荷を持つ結合材を水に
投入し、攪拌、混合した。次に、正の電荷を持つ無機コ
ロイド粒子を水に投入し、凝集させ、スラリーとした。
このスラリーを120×120mmの大きさの抄造用モ
ールドにて、厚み25mmに抄造した。その後、その抄
造体を100℃で12時間乾燥して成形体を得た。
EXAMPLES Examples 1 to 4 Inorganic fibers, inorganic powder and a binder having a negative charge were put into water, and stirred and mixed. Next, the inorganic colloid particles having a positive charge were charged into water and aggregated to form a slurry.
This slurry was formed into a thickness of 25 mm by a papermaking mold having a size of 120 × 120 mm. Thereafter, the paper was dried at 100 ° C. for 12 hours to obtain a molded body.

【0026】無機繊維、無機粉体、結合材の配合割合
(重量部)とそれらの成形体の特性を表1に示す。
Compounding ratio of inorganic fiber, inorganic powder and binder
Table 1 shows (parts by weight) and properties of the molded articles.

【0027】表1において、繊維の( )内は平均繊維
径を示し、粉体の( )内は平均粒径を示す。平均繊維
径は、光学顕微鏡により繊維径を測定して平均値を求め
る。表1の平均繊維径は、画像解析装置を付属した光学
顕微鏡により300本の繊維径を測定し、その平均値を
算出した。
In Table 1, the value in the parentheses of the fibers indicates the average fiber diameter, and the value in the parentheses of the powder indicates the average particle size. The average fiber diameter is obtained by measuring the fiber diameter with an optical microscope and obtaining an average value. The average fiber diameter in Table 1 was obtained by measuring 300 fiber diameters with an optical microscope equipped with an image analyzer and calculating the average value.

【0028】実施例1〜4は、無機結合材であるシリカ
ゾルの添加量が異なっている。
Examples 1 to 4 differ in the amount of silica sol as an inorganic binder added.

【0029】[0029]

【表1】 比較例1〜4 実施例1〜4と同様の方法により成形体を作製して、比
較例1〜4を得た。
[Table 1] Comparative Examples 1 to 4 Molded articles were produced in the same manner as in Examples 1 to 4, and Comparative Examples 1 to 4 were obtained.

【0030】これらの配合割合(重量部)および特性を
表2に示す。表2において、繊維の( )内は平均繊維
径を示し、粉体の( )内は平均粒径を示す。
Table 2 shows the proportions (parts by weight) and properties of these components. In Table 2, the value in parentheses of the fibers indicates the average fiber diameter, and the value in parentheses of the powder indicates the average particle size.

【0031】[0031]

【表2】 熱伝導率は、1200℃において非定常熱線法で測定し
た。熱伝導率が小さいほど断熱性に優れている。実施例
1〜4は、負の電荷をもつシリカゾルに対し、正の電荷
をもつアルミナゾルで微細な凝集物を生成させ、その凝
集物を抄造して抄造体をつくり、それを乾燥して得られ
る成形体である。
[Table 2] Thermal conductivity was measured at 1200 ° C. by a transient hot wire method. The smaller the thermal conductivity, the better the heat insulation. Examples 1 to 4 are obtained by forming fine aggregates with a positively charged alumina sol with respect to a silica sol having a negative charge, forming the aggregate to form a paper, and drying it. It is a molded article.

【0032】比較例1〜4は、負の電荷をもつシリカゾ
ルに対し、カチオン澱粉のみを添加して凝集物を生成さ
せ、その凝集物を抄造して抄造体をつくり、それを乾燥
して得られる成形体である。
In Comparative Examples 1 to 4, aggregates were formed by adding only cationic starch to a silica sol having a negative charge, and the aggregates were formed into a paper and dried. Molded article.

【0033】実施例1〜4および比較例1〜4につい
て、無機結合材であるシリカゾル配合量(固形分換算
値)と、成形体の1200℃での熱伝導率との関係を図
1に示す。
FIG. 1 shows the relationship between the amount of silica sol (in terms of solid content), which is an inorganic binder, and the thermal conductivity at 1200 ° C. of the molded product in Examples 1 to 4 and Comparative Examples 1 to 4. .

【0034】図1より、シリカゾルが増大すると、熱伝
導率が上昇する傾向にあることがわかる。しかし、実施
例1〜4では、熱伝導率上昇の傾きが小さく、その傾き
の大きさは、比較例1〜4の約1/2にとどまってい
る。
FIG. 1 shows that as the silica sol increases, the thermal conductivity tends to increase. However, in Examples 1 to 4, the gradient of the increase in thermal conductivity was small, and the magnitude of the gradient was only about 1 / of Comparative Examples 1 to 4.

【0035】図2は、実施例1〜4および比較例1〜4
について、無機結合材であるシリカゾル配合量(固形分
換算値)と1500℃で24時間焼成後の成形体の曲げ
強度の関係を示す。図2から、実施例1〜4の成形体
は、比較例1〜4の成形体と同等かそれ以上の強度を有
することがわかる。
FIG. 2 shows Examples 1-4 and Comparative Examples 1-4.
The relationship between the blending amount of silica sol as an inorganic binder (in terms of solid content) and the bending strength of the molded body after firing at 1500 ° C. for 24 hours is shown. From FIG. 2, it can be seen that the molded bodies of Examples 1 to 4 have strength equal to or higher than the molded bodies of Comparative Examples 1 to 4.

【0036】以上のことから、本発明の耐火断熱材は、
カチオン澱粉のみを添加して凝集物を生成させて得られ
る従来の成形体と比べると、低熱伝導および高強度であ
ることが明らかである。
From the above, the refractory heat insulating material of the present invention is:
It is evident that it has low thermal conductivity and high strength as compared with a conventional molded product obtained by adding only cationic starch to form an aggregate.

【0037】[0037]

【発明の効果】本発明によれば、高い強度を維持しなが
ら、1000℃以上の高温域でも断熱性に優れた耐火断
熱材を容易に得ることができる。
According to the present invention, it is possible to easily obtain a fire-resistant heat insulating material having excellent heat insulating properties even at a high temperature of 1000 ° C. or higher while maintaining high strength.

【0038】本発明の耐火断熱材を使用すれば、加熱炉
の放散熱量を削減することができる。さらに、断熱材の
厚みを従来のものに比較して薄くすることが可能であ
る。結果として、加熱炉が軽量化され、サイズをコンパ
クトにできる。
When the refractory heat insulating material of the present invention is used, the amount of heat dissipated in the heating furnace can be reduced. Further, it is possible to make the thickness of the heat insulating material thinner than that of the conventional heat insulating material. As a result, the heating furnace can be reduced in weight and size.

【0039】また、本発明によれば、耐火断熱材が、高
温域での耐熱性を有し、かつ優れた断熱性を発現するこ
とから、炉壁の最内層として本発明の耐火断熱材を使用
すると、その直後の境界層の温度を顕著に下げることが
可能となるため、中間層や最外層の寿命を長くできる。
Further, according to the present invention, since the refractory heat insulating material has heat resistance in a high temperature range and exhibits excellent heat insulating properties, the refractory heat insulating material of the present invention is used as the innermost layer of the furnace wall. When used, the temperature of the boundary layer immediately thereafter can be significantly reduced, so that the life of the intermediate layer and the outermost layer can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜4および比較例1〜4におけるシリ
カゾル配合量(固形分換算値)と成形体の1200℃で
の熱伝導率との関係を示す。
FIG. 1 shows the relationship between the amount of silica sol (in terms of solid content) and the thermal conductivity at 1200 ° C. of a molded article in Examples 1 to 4 and Comparative Examples 1 to 4.

【図2】実施例1〜4および比較例1〜4におけるシリ
カゾル配合量(固形分換算値)と1500℃で24時間
焼成後の成形体の曲げ強度との関係を示す。
FIG. 2 shows the relationship between the amount of silica sol (in terms of solid content) and the bending strength of a molded body after firing at 1500 ° C. for 24 hours in Examples 1 to 4 and Comparative Examples 1 to 4.

【図3】実施例4の顕微鏡写真を示す。写真中の白線は
5.0μmを示す。
FIG. 3 shows a micrograph of Example 4. The white line in the photograph indicates 5.0 μm.

【図4】比較例4の顕微鏡写真を示す。写真中の白線は
5.0μmを示す。
FIG. 4 shows a micrograph of Comparative Example 4. The white line in the photograph indicates 5.0 μm.

【符号の説明】[Explanation of symbols]

○ 実施例1〜4 ● 比較例1〜4 ○ Examples 1-4 ● Comparative Examples 1-4

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機繊維と無機粉体と結合材からなり、
無機繊維および無機粉体によって形成される網目構造の
中に結合材の大半が粒状に形成されていることを特徴と
する耐火断熱材。
1. An inorganic fiber, an inorganic powder and a binder,
A fire-resistant heat insulating material characterized in that most of the binder is formed in a granular form in a network structure formed by inorganic fibers and inorganic powder.
【請求項2】 無機繊維の平均繊維径が1〜3μmであ
り、無機繊維と無機粉体と結合材からなる無機繊維の成
形体に占める割合が30重量%以上であることを特徴と
する請求項1に記載の耐火断熱材。
2. The method according to claim 1, wherein the average fiber diameter of the inorganic fibers is 1 to 3 μm, and the proportion of the inorganic fibers comprising the inorganic fibers, the inorganic powder and the binder in the molded body is 30% by weight or more. Item 2. The fire-resistant heat-insulating material according to Item 1.
【請求項3】 無機繊維と無機粉体と結合材を水に分散
させてスラリーとし、そのスラリーを抄造する湿式真空
成形法において、結合材として無機コロイド粒子を配合
し、その無機コロイド粒子とは反対の電荷をもつ無機コ
ロイド粒子を添加して凝集物を生成させることを特徴と
する耐火断熱材の製造方法。
3. A wet vacuum forming method of dispersing inorganic fibers, an inorganic powder, and a binder in water to form a slurry, and paper-making the slurry, wherein inorganic colloid particles are blended as a binder, and the inorganic colloid particles are A method for producing a refractory heat-insulating material, comprising adding an inorganic colloid particle having an opposite charge to form an aggregate.
【請求項4】 無機繊維の平均繊維径が1〜3μmであ
り、無機繊維と無機粉体と結合材からなる成形体に占め
る無機繊維の割合が30重量%以上であることを特徴と
する請求項3に記載の耐火断熱材の製造方法。
4. The method according to claim 1, wherein the average fiber diameter of the inorganic fibers is 1 to 3 μm, and the proportion of the inorganic fibers in the molded body comprising the inorganic fibers, the inorganic powder and the binder is 30% by weight or more. Item 4. The method for producing a refractory heat insulating material according to item 3.
JP2000373296A 2000-12-07 2000-12-07 Refractory heat-insulating material and its production process Pending JP2002179474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373296A JP2002179474A (en) 2000-12-07 2000-12-07 Refractory heat-insulating material and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373296A JP2002179474A (en) 2000-12-07 2000-12-07 Refractory heat-insulating material and its production process

Publications (1)

Publication Number Publication Date
JP2002179474A true JP2002179474A (en) 2002-06-26

Family

ID=18842708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373296A Pending JP2002179474A (en) 2000-12-07 2000-12-07 Refractory heat-insulating material and its production process

Country Status (1)

Country Link
JP (1) JP2002179474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321053A (en) * 2005-05-17 2006-11-30 Takayasu Co Ltd Heat-resistant sound-absorbing and heat insulating material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855207A (en) * 1971-11-04 1973-08-03
JPS4961207A (en) * 1972-05-03 1974-06-13
JPS623081A (en) * 1985-06-26 1987-01-09 三菱化学株式会社 Manufacture of refractory heat-insulating board
JPH0288452A (en) * 1988-09-26 1990-03-28 Nichias Corp Heat-resistant inorganic compact
JPH08268747A (en) * 1995-03-31 1996-10-15 Mitsubishi Heavy Ind Ltd Production of ceramic molded body
JPH09208318A (en) * 1996-01-29 1997-08-12 Isolite Kogyo Kk Formed material of inorganic fiber having high heat-resistance
JPH1160323A (en) * 1997-08-04 1999-03-02 Toshiba Monofrax Co Ltd Inorganic fibered molded body and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855207A (en) * 1971-11-04 1973-08-03
JPS4961207A (en) * 1972-05-03 1974-06-13
JPS623081A (en) * 1985-06-26 1987-01-09 三菱化学株式会社 Manufacture of refractory heat-insulating board
JPH0288452A (en) * 1988-09-26 1990-03-28 Nichias Corp Heat-resistant inorganic compact
JPH08268747A (en) * 1995-03-31 1996-10-15 Mitsubishi Heavy Ind Ltd Production of ceramic molded body
JPH09208318A (en) * 1996-01-29 1997-08-12 Isolite Kogyo Kk Formed material of inorganic fiber having high heat-resistance
JPH1160323A (en) * 1997-08-04 1999-03-02 Toshiba Monofrax Co Ltd Inorganic fibered molded body and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321053A (en) * 2005-05-17 2006-11-30 Takayasu Co Ltd Heat-resistant sound-absorbing and heat insulating material

Similar Documents

Publication Publication Date Title
US5145811A (en) Inorganic ceramic papers
JP4860005B1 (en) Insulating material and manufacturing method thereof
JPS63230312A (en) Reinforced thermoplastic material and manufacture thereof
Long et al. Dielectric response and electromagnetic wave absorption of novel macroporous short carbon fibers/mullite composites
Zhou et al. Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process
Tang et al. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO 2@ BN)/polymethyl methacrylate (PMMA) composites
US6444600B1 (en) High strength light-weight ceramic insulator
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
US7588633B2 (en) Filler component for investment casting slurries
JP2002179474A (en) Refractory heat-insulating material and its production process
JP5963704B2 (en) Refractory insulation and method for producing the same
JP2001330375A (en) Fireproof insulating material
JPH05170525A (en) Heat-resistant fiber composition
JPH059083A (en) Heat insulating material and its production thereof
JP3774299B2 (en) Inorganic fibrous refractory insulation and method for producing the same
Lu et al. Synthesis of poly (styrene-co-3-trimethoxysilyl propyl methacrylate) microspheres coated with polysiloxane layer
JPH0656551A (en) Production of cordierite porous heat resistant material
JP2001192278A (en) Refractory and heat insulating formed body and method of producing the same
JP2008174408A (en) Ceramic raw material particle, slurry, sintered compact, and its manufacturing method
KR101774334B1 (en) Method for manufacturing porous composite ceramics and porous composite ceramics manufactured by the same
JPS62125060A (en) Heat insulating material and its production
JPH0411498B2 (en)
JPH0648860A (en) Production of porous heat resistant material
JP2017190274A (en) Inorganic colloid-containing liquid, composition for inorganic fiber molded body and inorganic fiber molded body
JP2001278676A (en) Inorganic fiber reinforced article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012