JP2002174472A - Pressure reducer - Google Patents

Pressure reducer

Info

Publication number
JP2002174472A
JP2002174472A JP2000371003A JP2000371003A JP2002174472A JP 2002174472 A JP2002174472 A JP 2002174472A JP 2000371003 A JP2000371003 A JP 2000371003A JP 2000371003 A JP2000371003 A JP 2000371003A JP 2002174472 A JP2002174472 A JP 2002174472A
Authority
JP
Japan
Prior art keywords
refrigerant
opening
valve body
pipe
pressure reducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000371003A
Other languages
Japanese (ja)
Inventor
Shigenobu Nishihara
重信 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2000371003A priority Critical patent/JP2002174472A/en
Publication of JP2002174472A publication Critical patent/JP2002174472A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure reducer which can secure an optimum quantity of throttling in a freezing cycle, and can improve the middle capacity other than rated capacity, and the consumption efficiency of energy (COP) at maximum/minimum capacity. SOLUTION: In a pressure reducer 3 which depressurizes the refrigerant used for the refrigerant circuit of a freezer, an inlet pipe 5 which leads a refrigerant into a valve body 3a and an outlet pipe 5 which leads it out are connected to each other, and an opening 7 is provided at the side of the refrigerant introduction side 3b of the valve body 3a, and also a passage pipe 8, which connect the opening 7 with the outlet pipe 6, is provided, and a valve body 9, which partitions the interior of the valve main body 3a and also opens and closes the opening 7, is arranged within the valve main body 3a, and an elastic member 10 energizes the valve body 9, and the aperture of the opening 7 is adjusted, according to the pressure of the refrigerant introduction side 3b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルにお
ける最適な絞り量を確保でき、定格能力以外の中間能
力、最大最小能力時のエネルギー消費効率(COP)を
改善することができる減圧器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure reducer capable of securing an optimum throttle amount in a refrigeration cycle and improving an energy consumption efficiency (COP) at an intermediate capacity other than a rated capacity and at a maximum and minimum capacity.

【0002】[0002]

【従来の技術】空気調和機は、図2に示すように冷凍サ
イクルを構成するとき、主要な構成要素として、圧縮機
1と、凝縮器2と、減圧器3と、蒸発器4とを備える。
冷房サイクルにおいては、冷媒は実線矢印の方向に流
れ、圧縮機1によって高圧ガスとして送り出される。こ
の冷媒は、室外の凝縮器2で空気中に熱を放散し、凝縮
する。凝縮した冷媒は、減圧器3によって減圧され、室
内の蒸発器4で室内から熱を吸収し蒸発する。この蒸発
器4の作用により、室内の空気は冷やされる。気化した
冷媒は、圧縮機1によって再び高圧ガスとして送り出さ
れる。
2. Description of the Related Art An air conditioner includes a compressor 1, a condenser 2, a decompressor 3, and an evaporator 4 as main components when constituting a refrigeration cycle as shown in FIG. .
In the cooling cycle, the refrigerant flows in the direction of the solid arrow and is sent out by the compressor 1 as high-pressure gas. This refrigerant dissipates heat into the air in the outdoor condenser 2 and condenses. The condensed refrigerant is decompressed by the decompressor 3 and is evaporated by the indoor evaporator 4 by absorbing heat from the room. The indoor air is cooled by the action of the evaporator 4. The vaporized refrigerant is sent out again by the compressor 1 as high-pressure gas.

【0003】暖房サイクルでは、冷媒の流れが逆になり
破線矢印方向に流れる。冷媒は、室外の蒸発器で空気中
から熱を吸収し、室内の凝縮器で室内に熱を放散して暖
房する。空気調和機における減圧機能として色々なもの
があるが、その中でも一番簡易な減圧器として図6に示
すようなキャピラリチューブがある。このキャピラリチ
ューブは、内径の細い銅管が一番多く使用されている。
一般的に中型のルームエアコンでは、内径1mmの場合、
必要長さは600 〜700mm となる。キャピラリチューブを
通る冷媒は、主として管壁との摩擦に起因する抵抗力に
よって減圧される。細管の内径Rが小さいときには冷媒
流量が少なく、内径Rが大きいときには冷媒流量が多く
なる。ヒートポンプ式の冷暖房の場合には、冷房サイク
ルと暖房サイクルでは高圧、低圧及びその高低圧圧力差
が異なるため冷凍サイクルに最適な絞り量を得るための
キャピラリー長さLは異なる。一般的には冷房が短く暖
房時は長くなることが多い。
In the heating cycle, the flow of the refrigerant is reversed and flows in the direction of the dashed arrow. The refrigerant absorbs heat from the air in the outdoor evaporator, and dissipates the heat in the room with the indoor condenser to heat the room. There are various decompression functions in an air conditioner. Among them, the simplest decompressor is a capillary tube as shown in FIG. As the capillary tube, a copper tube having a small inner diameter is most often used.
Generally, for a medium-sized room air conditioner, when the inner diameter is 1 mm,
The required length is 600-700mm. The refrigerant passing through the capillary tube is decompressed mainly by resistance due to friction with the tube wall. When the inner diameter R of the thin tube is small, the refrigerant flow rate is small, and when the inner diameter R is large, the refrigerant flow rate is large. In the case of the heat pump type heating / cooling, the high and low pressures and the difference between the high and low pressures are different between the cooling cycle and the heating cycle, so that the capillary length L for obtaining the optimum throttle amount for the refrigeration cycle is different. Generally, cooling is short and heating is often long.

【0004】しかし、このような従来のキャピラリチュ
ーブは絞り量が一定であり、最適な絞り量が得られな
い。また、圧縮機の回転数や負荷が変化した場合におい
ても、絞り量が一定であり、最適な絞り量を確保できな
い。最適な絞り量を確保するためには、電子膨張弁等を
用いて制御を行わなければならず、電子膨張弁は弁開度
を制御する制御部が必要であり、回路が複雑になるとい
う問題がある。
[0004] However, such a conventional capillary tube has a fixed throttle amount, and an optimum throttle amount cannot be obtained. Further, even when the rotational speed and load of the compressor change, the throttle amount is constant, and an optimum throttle amount cannot be secured. In order to secure an optimal throttle amount, control must be performed using an electronic expansion valve or the like, and the electronic expansion valve requires a control unit that controls the valve opening degree, and the circuit becomes complicated. There is.

【0005】[0005]

【発明が解決しようとする課題】本発明においては、上
記の問題点に鑑み、冷凍サイクルにおける最適な絞り量
を確保でき、定格能力以外の中間能力、最大最小能力時
のエネルギー消費効率(COP)を改善することができ
る減圧器を提供することを目的とする。
In the present invention, in consideration of the above problems, an optimum throttle amount in a refrigeration cycle can be secured, an intermediate capacity other than the rated capacity, and an energy consumption efficiency (COP) at the time of maximum and minimum capacity. It is an object of the present invention to provide a decompressor capable of improving the pressure.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、冷凍装置の冷媒回路に用いられる冷媒を
減圧する減圧器において、前記減圧器を、弁本体に冷媒
を導入する入口管と導出する出口管とを接続し、前記弁
本体の冷媒導入側の側面に開口部を設けるとともに、同
開口部と前記出口管とを連通する流路管を設け、前記弁
本体内に、同弁本体内を冷媒の導入側と導出側とに区画
すると同時に、前記開口部を開閉する弁体を配設し、同
弁体を付勢する弾性部材設けて、前記冷媒の導入側圧力
に応じて前記開口部の開度を調整するように構成されて
いる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a decompressor for reducing the pressure of a refrigerant used in a refrigerant circuit of a refrigerating apparatus. A pipe and an outlet pipe to be connected are connected to each other, and an opening is provided on a side surface of the valve body on the refrigerant introduction side, and a flow path pipe communicating the opening and the outlet pipe is provided. At the same time, the inside of the valve body is divided into a refrigerant introduction side and a refrigerant discharge side, a valve body for opening and closing the opening is provided, and an elastic member for urging the valve body is provided. The opening degree of the opening is adjusted accordingly.

【0007】また、前記弁本体の冷媒導出側の側面に第
2の開口部を設けるとともに、同第2の開口部と前記入
口管とを連通する第2の流路管を設けた構成となってい
る。
Further, a second opening is provided on a side surface of the valve body on the refrigerant outlet side, and a second flow path pipe is provided for communicating the second opening with the inlet pipe. ing.

【0008】また、前記流路管および第2の流路管にそ
れぞれ逆止弁を設けた構成となっている。
[0008] Further, a check valve is provided in each of the flow path pipe and the second flow path pipe.

【0009】また、前記開口部を前記弁体の移動方向に
延伸するスリット状に形成した構成となっている。
Further, the opening is formed in a slit shape extending in the moving direction of the valve body.

【0010】また、前記弾性部材にバネ材を用いた構成
となっている。
Further, the elastic member is made of a spring material.

【0011】また、前記弁本体の冷媒導入側および導出
側の側面に、前記弁体の移動方向に沿ってそれぞれ複数
の開口を設け、同開口のそれぞれにキャピラリチューブ
の一端を接続し、前記冷媒導入側および導出側同士のそ
れぞれキャピラリチューブの他端を合流させ、前記冷媒
導入側と前記出口管を、前記導出側と前記入口管とをそ
れぞれ配管接続した構成となっている。
[0011] Further, a plurality of openings are respectively provided on the side faces of the valve body on the refrigerant introduction side and the discharge side along the moving direction of the valve body, and one end of a capillary tube is connected to each of the openings, and The other end of the capillary tube is joined to the inlet side and the outlet side to each other, and the refrigerant inlet side and the outlet pipe are connected to each other, and the outlet side and the inlet pipe are connected to each other.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいた実施例として説明する。図1(A)
は、本発明による冷房専用空気調和機の減圧器の一実施
例を示す縦断面図で、図1(B)は(A)のA矢視図で
ある。図2は本発明および従来例による冷媒回路の概略
構成図であるが、ここでは詳細説明は省略する。図にお
いて、空気調和機は主要な構成要素として、圧縮機1
と、凝縮器2と、減圧器3と、蒸発器4とを備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below as examples based on the attached drawings. FIG. 1 (A)
1 is a longitudinal sectional view showing an embodiment of a pressure reducer of a cooling only air conditioner according to the present invention, and FIG. 1 (B) is a view taken in the direction of arrow A in FIG. 1 (A). FIG. 2 is a schematic configuration diagram of a refrigerant circuit according to the present invention and a conventional example, but detailed description is omitted here. In the figure, an air conditioner is a compressor 1 as a main component.
, A condenser 2, a decompressor 3, and an evaporator 4.

【0013】前記減圧器3は、弁本体3aに冷媒を導入す
る入口管5と、冷媒を導出する出口管6とを接続し、前
記弁本体3aの冷媒導入側3bの側面に開口部7を設けると
ともに、同開口部7と前記出口管6とを連通する流路管
8を設け、前記弁本体3a内に、同弁本体3a内を冷媒導入
側3bと冷媒導出側3cとに区画すると同時に、前記開口部
7を開閉する弁体9を配設し、同弁体9を付勢するバネ
材を用いた弾性部材10とから構成し、前記冷媒導入側3b
の圧力に応じて前記開口部7の開度を調整する構成とな
っている。尚、前記開口部7は、前記弁体9の移動方向
に延伸するスリット状に形成した構成となっており、冷
媒の絞り量の調整を精度よく行えるようになっている。
The decompressor 3 connects an inlet pipe 5 for introducing a refrigerant to the valve body 3a and an outlet pipe 6 for discharging the refrigerant, and has an opening 7 on the side of the refrigerant introduction side 3b of the valve body 3a. At the same time, a flow pipe 8 communicating the opening 7 and the outlet pipe 6 is provided, and inside the valve body 3a, the inside of the valve body 3a is divided into a refrigerant introduction side 3b and a refrigerant discharge side 3c. A valve element 9 for opening and closing the opening 7, and an elastic member 10 using a spring material for biasing the valve element 9.
The degree of opening of the opening 7 is adjusted in accordance with the pressure. The opening 7 is formed in a slit shape extending in the direction of movement of the valve body 9 so that the amount of throttle of the refrigerant can be adjusted with high accuracy.

【0014】上記構成において、前記減圧器3は、入口
管5が凝縮器2の出口側に、前記出口管6が蒸発器4の
入口側に接続されている。冷房運転を行う場合、圧縮機
1に入力される周波数は、室内の空調負荷(室内温度と
設定温度との差)に応じて、略30Hz〜120Hz の間で制御
される。この圧縮機1から吐出された冷媒は、凝縮器2
から減圧器3の入口管5を介して弁本体3aの冷媒導入側
3bに流れ込む。この時、空調負荷が大きい(周波数が高
い)程、圧縮機1の電動機の回転数が高く、冷媒導入側
3bに流れ込む流速が速くなり冷媒の圧力も高くなって、
弾性部材10の弾性力に打ち勝って弁体9を図1の上方へ
動かす。この弁体9の動きによって、前記開口部7の開
口面積が増加し、冷媒流路の抵抗値が小さくなり絞りが
緩くなる。これにより、圧力により絞りが可変し、最適
な絞り量が確保される。この減圧された冷媒は前記流路
管8を経由して、前記出口管6より蒸発器4に流れ、圧
縮機1に戻される。
In the above configuration, the pressure reducer 3 has the inlet pipe 5 connected to the outlet side of the condenser 2 and the outlet pipe 6 connected to the inlet side of the evaporator 4. When performing the cooling operation, the frequency input to the compressor 1 is controlled between approximately 30 Hz and 120 Hz according to the indoor air conditioning load (the difference between the indoor temperature and the set temperature). The refrigerant discharged from the compressor 1 is supplied to a condenser 2
Through the inlet pipe 5 of the pressure reducer 3 and the refrigerant introduction side of the valve body 3a
Flow into 3b. At this time, the larger the air conditioning load (the higher the frequency), the higher the rotational speed of the electric motor of the compressor 1
The flow velocity flowing into 3b increases, the refrigerant pressure also increases,
The valve body 9 is moved upward in FIG. 1 by overcoming the elastic force of the elastic member 10. Due to the movement of the valve element 9, the opening area of the opening 7 increases, the resistance value of the refrigerant flow path decreases, and the throttle becomes loose. As a result, the diaphragm is changed by the pressure, and an optimal diaphragm amount is secured. The decompressed refrigerant flows from the outlet pipe 6 to the evaporator 4 via the flow pipe 8, and is returned to the compressor 1.

【0015】また、この作用とは反対に空調負荷小さく
(周波数が低く)なると、弁本体3aの冷媒導入側3bに流
れ込む冷媒の流速が遅くなり、(冷媒の圧力が下がっ
て)弁体9は上記の状態から下方へ動き、開口部7の開
口面積が減少し抵抗値が大きくなり、絞りが可変し、最
適な絞り量が確保される。
Contrary to this effect, when the air-conditioning load is reduced (frequency is reduced), the flow rate of the refrigerant flowing into the refrigerant introduction side 3b of the valve body 3a is reduced, and the valve body 9 is lowered (the pressure of the refrigerant decreases). Moving downward from the above state, the opening area of the opening 7 is reduced, the resistance value is increased, the diaphragm is varied, and an optimal diaphragm amount is secured.

【0016】図3は本発明による冷暖房用空気調和機の
減圧器の実施例である。上記冷房専用の減圧器3に、さ
らに、前記弁本体3aの冷媒導出側3cの側面に第2の開口
部7aを設けるとともに、同第2の開口部7aと前記入口管
6とを連通する第2の流路管8aを設ける一方、前記流路
管8および第2の流路管8aにそれぞれ逆止弁11a,11bを
設けた構成となっている。
FIG. 3 shows an embodiment of a pressure reducer for an air conditioner for cooling and heating according to the present invention. The decompressor 3 for cooling is further provided with a second opening 7a on the side surface of the refrigerant outlet side 3c of the valve body 3a, and a second opening 7a communicating the second opening 7a and the inlet pipe 6 is provided. While two flow path pipes 8a are provided, check valves 11a and 11b are provided in the flow path pipe 8 and the second flow path pipe 8a, respectively.

【0017】上記構成において、冷房時は、上記実施例
と同様冷媒は実線矢印のように流れ、作用も同じであ
る。但し、冷媒は逆止弁11b により第2の流路管8a側に
は流れて行かない。暖房時は、冷媒の流れが逆になり破
線矢印方向に流れる。冷媒は、室外の蒸発器4から弁本
体3aの冷媒導出側3cに流れ込む。この冷媒は第2の開口
部7a、第2の流路管8aを経由し、逆止弁11b を通り、入
口管6から室内の凝縮器2に流れ、圧縮機1に戻され
る。この場合の弁体9の動きは冷房時と逆方向に作用す
る以外は、前記冷房専用時と同じ動作である。
In the above configuration, at the time of cooling, the refrigerant flows as shown by the solid line arrow and the operation is the same as in the above embodiment. However, the refrigerant does not flow toward the second flow path pipe 8a by the check valve 11b. During heating, the flow of the refrigerant is reversed and flows in the direction of the dashed arrow. The refrigerant flows from the outdoor evaporator 4 to the refrigerant outlet side 3c of the valve body 3a. The refrigerant flows through the second opening 7a and the second flow path pipe 8a, passes through the check valve 11b, flows from the inlet pipe 6 to the indoor condenser 2, and returns to the compressor 1. In this case, the movement of the valve body 9 is the same as that of the above-described cooling only, except that it acts in the opposite direction to the cooling.

【0018】図4は本発明による冷房専用空気調和機の
減圧器の他の実施例を示したものである。前記弁本体3a
の冷媒導入側3bの側面に、前記弁体9の移動方向に沿っ
て複数の開口12を設け、同開口12のそれぞれにキャピラ
リチューブ13の一端を接続し、他端をそれぞれ配管8'に
合流させ、同配管8'と出口管6とを接続した構成となっ
ている。
FIG. 4 shows another embodiment of the pressure reducer of the cooling-only air conditioner according to the present invention. The valve body 3a
A plurality of openings 12 are provided on the side surface of the refrigerant introduction side 3b along the moving direction of the valve body 9, one end of a capillary tube 13 is connected to each of the openings 12, and the other ends are respectively joined to a pipe 8 '. Thus, the pipe 8 'and the outlet pipe 6 are connected.

【0019】上記構成において、前記減圧器3は、入口
管5が凝縮器2の出口側に、前記出口管6が蒸発器4の
入口側に接続されている。冷房運転を行う場合、圧縮機
1から吐出された冷媒は、凝縮器2から減圧器3の入口
管5を介して弁本体3aの冷媒導入側3bに流れ込む。この
時、空調負荷が大きい程、冷媒導入側3bに流れ込む流速
が速くなり冷媒の圧力も高くなって、弾性部材10の弾性
力に打ち勝って弁体9を図4の上方へ動かす。この弁体
9の動きによって、前記開口12は下部から順次開口して
冷媒流路の抵抗値が小さくなり絞りが緩くなる。これに
より、圧力により絞りが可変し、最適な絞り量が確保さ
れる。この減圧された冷媒は前記流路管8を経由して、
前記出口管6より蒸発器4に流れ、圧縮機1に戻され
る。
In the above configuration, the pressure reducer 3 has the inlet pipe 5 connected to the outlet side of the condenser 2 and the outlet pipe 6 connected to the inlet side of the evaporator 4. When performing the cooling operation, the refrigerant discharged from the compressor 1 flows from the condenser 2 to the refrigerant introduction side 3b of the valve body 3a via the inlet pipe 5 of the pressure reducer 3. At this time, as the air conditioning load increases, the flow velocity flowing into the refrigerant introduction side 3b increases, and the pressure of the refrigerant also increases, thereby overcoming the elastic force of the elastic member 10 and moving the valve 9 upward in FIG. Due to the movement of the valve body 9, the opening 12 is sequentially opened from the lower portion, the resistance value of the refrigerant flow path is reduced, and the throttle is loosened. As a result, the diaphragm is changed by the pressure, and an optimal diaphragm amount is secured. This depressurized refrigerant passes through the flow pipe 8
It flows from the outlet pipe 6 to the evaporator 4 and returns to the compressor 1.

【0020】図5は本発明による冷暖房用空気調和機の
減圧器の他の実施例を示したものである。上記図4の冷
房専用の減圧器3に、さらに、前記弁本体3aの冷媒導出
側3cの側面に前記弁体9の移動方向に沿って複数の開口
12a を設け、同開口12a のそれぞれにキャピラリチュー
ブ13の一端一端を接続し、他端をそれぞれ配管8a' に合
流させ、同配管8a' と出口管6とを接続しする一方、前
記配管8'および第2の配管8a' にそれぞれ逆止弁11a,11
b を設けた構成となっている。
FIG. 5 shows another embodiment of the pressure reducer of the air conditioner for cooling and heating according to the present invention. In addition to the decompressor 3 dedicated to cooling shown in FIG. 4, a plurality of openings are provided on the side of the refrigerant outlet side 3c of the valve body 3a along the moving direction of the valve body 9.
One end of a capillary tube 13 is connected to each of the openings 12a, the other end is joined to a pipe 8a ', and the pipe 8a' and the outlet pipe 6 are connected, while the pipe 8 ' Check valves 11a, 11a
The configuration is provided with b.

【0021】上記構成において、冷房時は、上記図4の
実施例と同様冷媒は実線矢印のように流れ、作用も同じ
である。但し、冷媒は逆止弁11b により第2の配管8a'
側には流れて行かない。暖房時は、冷媒の流れが逆にな
り破線矢印方向に流れる。冷媒は、室外の蒸発器4から
弁本体3aの冷媒導出側3cに流れ込む。この冷媒は複数の
開口部12a'、第2の配管8a' を経由し、逆止弁11b を通
り、入口管6から室内の凝縮器2に流れ、圧縮機1に戻
される。この場合の弁体9の動きは冷房時と逆方向に作
用する以外は、前記冷房専用時と同じ動作である。
In the above configuration, at the time of cooling, the refrigerant flows as indicated by the solid arrows as in the embodiment of FIG. 4, and the operation is the same. However, the refrigerant is supplied to the second pipe 8a 'by the check valve 11b.
It does not flow to the side. During heating, the flow of the refrigerant is reversed and flows in the direction of the dashed arrow. The refrigerant flows from the outdoor evaporator 4 to the refrigerant outlet side 3c of the valve body 3a. The refrigerant flows through the plurality of openings 12a 'and the second pipe 8a', passes through the check valve 11b, flows from the inlet pipe 6 to the indoor condenser 2, and is returned to the compressor 1. In this case, the movement of the valve body 9 is the same as that of the above-described cooling only, except that it acts in the opposite direction to the cooling.

【0022】以上に説明したように、減圧器3は、弁本
体3aに冷媒を導入する入口管5と、冷媒を導出する出口
管6とを接続し、前記弁本体3aの冷媒導入側3bの側面に
開口部7を設けるとともに、同開口部7と前記出口管6
とを連通する流路管8を設け、前記弁本体3a内に、同弁
本体3a内を冷媒導入側3bと冷媒導出側3cとに区画すると
同時に、前記開口部7を開閉する弁体9を配設し、同弁
体9を付勢するバネ材を用いた弾性部材10とから構成
し、前記冷媒導入側3bの圧力に応じて前記開口部7の開
度を調整する構成とすることにより、冷凍サイクルにお
ける最適な絞り量を確保でき、定格能力以外の中間能
力、最大最小能力時のエネルギー消費効率(COP)を
改善することができる減圧器となる。
As described above, the decompressor 3 connects the inlet pipe 5 for introducing the refrigerant to the valve main body 3a and the outlet pipe 6 for discharging the refrigerant, and is connected to the refrigerant introducing side 3b of the valve main body 3a. An opening 7 is provided on the side surface, and the opening 7 and the outlet pipe 6 are provided.
And a valve body 9 for opening and closing the opening 7 at the same time as partitioning the inside of the valve body 3a into a refrigerant introduction side 3b and a refrigerant discharge side 3c in the valve body 3a. And an elastic member 10 using a spring material for urging the valve body 9 to adjust the degree of opening of the opening 7 in accordance with the pressure of the refrigerant introduction side 3b. In addition, the pressure reducer can secure an optimum throttle amount in the refrigeration cycle, and can improve the energy consumption efficiency (COP) at the time of the intermediate capacity other than the rated capacity and the maximum and minimum capacity.

【0023】[0023]

【発明の効果】以上のように本発明によると、冷凍サイ
クルにおける最適な絞り量を確保でき、定格能力以外の
中間能力、最大最小能力時のエネルギー消費効率(CO
P)を改善することができる減圧器となる。
As described above, according to the present invention, it is possible to secure the optimum throttle amount in the refrigeration cycle, and to use the intermediate capacity other than the rated capacity and the energy consumption efficiency (CO
The pressure reducer can improve P).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷房専用空気調和機の減圧器の一
実施例を示したもので、(A)は要部縦断面図、(B)
は(A)のA矢視図である。
FIG. 1 shows an embodiment of a pressure reducer of a cooling only air conditioner according to the present invention, in which (A) is a longitudinal sectional view of a main part, and (B).
FIG. 3 is a view as viewed in the direction of arrow A in FIG.

【図2】本発明および従来例による冷媒回路の概略構成
図である。
FIG. 2 is a schematic configuration diagram of a refrigerant circuit according to the present invention and a conventional example.

【図3】本発明による冷暖房用空気調和機の減圧器の一
実施例を示す要部縦断面図である。
FIG. 3 is a longitudinal sectional view showing a main part of an embodiment of a pressure reducer for an air conditioner for cooling and heating according to the present invention.

【図4】本発明による冷房専用空気調和機の減圧器の他
の実施例を示しす要部縦断面図である。
FIG. 4 is a longitudinal sectional view of a main part showing another embodiment of the pressure reducer of the cooling only air conditioner according to the present invention.

【図5】本発明による冷暖房用空気調和機の減圧器の他
の実施例を示す要部縦断面図である。
FIG. 5 is a longitudinal sectional view showing a main part of another embodiment of the pressure reducer of the air conditioner for cooling and heating according to the present invention.

【図6】従来例によるキャピラリチューブの断面図であ
る。
FIG. 6 is a cross-sectional view of a conventional capillary tube.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器 4 蒸発器 5 入口管 6 出口管 7 開口部 7a 第2の開口部 8 流路管 8a 第2の流路管 9 弁体 10 弾性部材 11a,11b 逆止弁 12 開口 13 キャピラリチューブ DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Decompressor 4 Evaporator 5 Inlet pipe 6 Outlet pipe 7 Opening 7a Second opening 8 Flow path pipe 8a Second flow path pipe 9 Valve body 10 Elastic member 11a, 11b Check valve 12 Opening 13 Capillary tube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷凍装置の冷媒回路に用いられる冷媒を
減圧する減圧器において、 前記減圧器を、弁本体に冷媒を導入する入口管と導出す
る出口管とを接続し、前記弁本体の冷媒導入側の側面に
開口部を設けるとともに、同開口部と前記出口管とを連
通する流路管を設け、前記弁本体内に、同弁本体内を冷
媒の導入側と導出側とに区画すると同時に、前記開口部
を開閉する弁体を配設し、同弁体を付勢する弾性部材を
設けて、前記冷媒の導入側圧力に応じて前記開口部の開
度を調整するようにしてなることを特徴とする減圧器。
1. A decompressor for depressurizing a refrigerant used in a refrigerant circuit of a refrigeration apparatus, wherein the depressurizer is connected to an inlet pipe for introducing the refrigerant to a valve body and an outlet pipe for discharging the refrigerant, and Along with providing an opening on the side surface on the introduction side, providing a flow path tube that communicates with the opening and the outlet pipe, and within the valve body, the inside of the valve body is divided into a refrigerant introduction side and a discharge side. At the same time, a valve element for opening and closing the opening is provided, and an elastic member for urging the valve element is provided, and the opening degree of the opening is adjusted according to the pressure on the introduction side of the refrigerant. A pressure reducer characterized by the above-mentioned.
【請求項2】 前記弁本体の冷媒導出側の側面に第2の
開口部を設けるとともに、同第2の開口部と前記入口管
とを連通する第2の流路管を設けてなることを特徴とす
る請求項1記載の減圧器。
2. A method according to claim 1, wherein a second opening is provided on a side surface of the valve body on a refrigerant outlet side, and a second flow path pipe is provided for communicating the second opening with the inlet pipe. The pressure reducer according to claim 1, characterized in that:
【請求項3】 前記流路管および第2の流路管にそれぞ
れ逆止弁を設けてなることを特徴とする請求項1または
2記載の減圧器。
3. The pressure reducer according to claim 1, wherein a check valve is provided in each of the flow pipe and the second flow pipe.
【請求項4】 前記開口部を前記弁体の移動方向に延伸
するスリット状に形成してなることを特徴とする請求項
1または2記載の減圧器。
4. The pressure reducer according to claim 1, wherein the opening is formed in a slit shape extending in a moving direction of the valve element.
【請求項5】 前記弾性部材にバネ材を用いてなること
を特徴とする請求項1記載の減圧器。
5. The pressure reducer according to claim 1, wherein a spring material is used for the elastic member.
【請求項6】 前記弁本体の冷媒導入側および導出側の
側面に、前記弁体の移動方向に沿ってそれぞれ複数の開
口を設け、同開口のそれぞれにキャピラリチューブの一
端を接続し、前記冷媒導入側および導出側同士のそれぞ
れキャピラリチューブの他端を合流させ、前記冷媒導入
側と前記出口管を、前記導出側と前記入口管とをそれぞ
れ配管接続してなることを特徴とする請求項1記載の減
圧器。
6. A plurality of openings are respectively provided on side surfaces of the valve body on a refrigerant introduction side and a discharge side along a moving direction of the valve body, and one end of a capillary tube is connected to each of the openings. 2. The other end of the capillary tube on the inlet side and the other end of the capillary tube on the outlet side are joined, and the refrigerant inlet side and the outlet pipe are connected to each other, and the outlet side and the inlet pipe are connected by piping. A pressure reducer as described.
JP2000371003A 2000-12-06 2000-12-06 Pressure reducer Pending JP2002174472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371003A JP2002174472A (en) 2000-12-06 2000-12-06 Pressure reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371003A JP2002174472A (en) 2000-12-06 2000-12-06 Pressure reducer

Publications (1)

Publication Number Publication Date
JP2002174472A true JP2002174472A (en) 2002-06-21

Family

ID=18840791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371003A Pending JP2002174472A (en) 2000-12-06 2000-12-06 Pressure reducer

Country Status (1)

Country Link
JP (1) JP2002174472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080889A1 (en) * 2004-02-19 2005-09-01 Robert Bosch Gmbh Expansion module for a coolant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080889A1 (en) * 2004-02-19 2005-09-01 Robert Bosch Gmbh Expansion module for a coolant

Similar Documents

Publication Publication Date Title
US6651451B2 (en) Variable capacity refrigeration system with a single-frequency compressor
US10500925B2 (en) Refrigeration cycle device
KR100884804B1 (en) Refrigerant cycle device
US7320229B2 (en) Ejector refrigeration cycle
JP4053283B2 (en) Supercritical vapor compression system and apparatus for adjusting the pressure of the high-pressure component of the refrigerant circulating in the supercritical vapor compression system
US8429931B2 (en) Ejector refrigerant cycle device
JP3925545B2 (en) Refrigeration equipment
US6910343B2 (en) Vapor-compression refrigerant cycle with ejector
JPH11278045A (en) Refrigerating cycle device
KR100665744B1 (en) Heat-pump air-conditioner
CN110382880B (en) Injector assembly
JPH07120076A (en) Air conditioner
JP2001065953A (en) Air conditioner and control method of the same
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2002174472A (en) Pressure reducer
JP2001324246A (en) Expansion valve and freezing cycle using it
WO2018159321A1 (en) Ejector module
JP2007147228A (en) Refrigerating device
JP2002107008A (en) Air conditioner
KR100473942B1 (en) Structure of silencer for expansion means
US20230228469A1 (en) Air conditioner
JPH05223359A (en) Freezing cycle
JPH01314857A (en) Refrigerating cycle
KR100697675B1 (en) Expansion device
KR100473943B1 (en) Structure of silencer for expansion means