JP2002173397A - Hexagonal oxide magnetic film and method of producing the same - Google Patents

Hexagonal oxide magnetic film and method of producing the same

Info

Publication number
JP2002173397A
JP2002173397A JP2000370528A JP2000370528A JP2002173397A JP 2002173397 A JP2002173397 A JP 2002173397A JP 2000370528 A JP2000370528 A JP 2000370528A JP 2000370528 A JP2000370528 A JP 2000370528A JP 2002173397 A JP2002173397 A JP 2002173397A
Authority
JP
Japan
Prior art keywords
hexagonal oxide
film
hexagonal
oxide magnetic
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000370528A
Other languages
Japanese (ja)
Inventor
Masaru Fujino
優 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000370528A priority Critical patent/JP2002173397A/en
Publication of JP2002173397A publication Critical patent/JP2002173397A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a hexagonal oxide magnetic film, by which the hexagonal oxide magnetic film can be produced without causing precipitation of a hetero phase of an oxide magnetic material having a spinel structure. SOLUTION: The method of producing the hexagonal oxide magnetic film comprises forming a hexagonal oxide film free from components (at least one selected from Mn, Sn, Co, Ni, Mg, Cr, Li and V) which are capable of forming the spinel structure on a substrate having the spinel structure and expressed by the formula: AB2O4 (wherein A is at least one element selected from Zn and Mg, and B is at least one element selected from In, Ga, and Al) by a liquid phase epitaxial growth method, a laser abrasion method, a sputtering method, a chemical vapor deposition method or the like and then forming the hexagonal oxide magnetic film on the formed hexagonal oxide film by the liquid phase epitaxial growth method, the laser abrasion method, the sputtering method, the chemical vapor deposition method or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は六方晶系酸化物磁
性体膜およびその製造方法に関し、特にたとえば電子部
品に用いられる六方晶系酸化物磁性体膜およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hexagonal oxide magnetic film and a method for producing the same, and more particularly, to a hexagonal oxide magnetic film used for electronic components and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器の高周波化に伴い、電子
部品もより高周波で動作するものが要望されている。従
来、六方晶系酸化物磁性体膜は数GHz〜数十GHzで
動作することがわかっており、その作製は、H.L.G
lassら(Mat.Res.Bull.11(197
6)1319−1326)によって、MgGa24
MgAl2 4 などのスピネル構造を持った酸化物単結
晶基板上にPbO系フラックスを用いて液相エピタキシ
ャル成長方法(LPE法)によるものが示されていた。
2. Description of the Related Art In recent years, with the increase in frequency of electronic devices,
There is a demand for components that operate at higher frequencies. Subordinate
Hexagonal oxide magnetic films have been used
It is known to work, and its fabrication is described in L. G
las et al. (Mat. Res. Bull.11(197
6) According to 1319-1326), MgGaTwo OFourAnd
MgAlTwoO FourSingle oxide with spinel structure such as
Phase epitaxy using PbO-based flux on crystalline substrates
In this case, the method according to the conventional growth method (LPE method) was shown.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
作製方法では、MgAl24 などのスピネル構造の基
板に、たとえばスピネル構造であるZnFe24 を形
成できる成分を含んだ六方晶系酸化物磁性体膜BaZn
Fe611を直接作製すると、スピネル構造であるZn
Fe24 構造の酸化物磁性体が異相として析出し、目
的の六方晶系酸化物磁性体膜BaZnFe611を単相
で作製することが困難であった。
However, in the conventional manufacturing method, a hexagonal oxide containing a component capable of forming, for example, ZnFe 2 O 4 having a spinel structure is formed on a substrate having a spinel structure such as MgAl 2 O 4 . Magnetic film BaZn
When Fe 6 O 11 is directly produced, Zn having a spinel structure is obtained.
The oxide magnetic material having the Fe 2 O 4 structure was precipitated as a different phase, and it was difficult to produce the desired hexagonal oxide magnetic material film BaZnFe 6 O 11 in a single phase.

【0004】それゆえに、この発明の主たる目的は、ス
ピネル構造の酸化物磁性体が異相として析出することな
く製造することができる、六方晶系酸化物磁性体膜を提
供することである。この発明の他の目的は、スピネル構
造の酸化物磁性体が異相として析出することなく六方晶
系酸化物磁性体膜を製造することができる、六方晶系酸
化物磁性体膜の製造方法を提供することである。
[0004] Therefore, a main object of the present invention is to provide a hexagonal oxide magnetic film which can be manufactured without depositing a spinel-structured oxide magnetic material as a different phase. Another object of the present invention is to provide a method for producing a hexagonal oxide magnetic film, which can produce a hexagonal oxide magnetic film without depositing a spinel-structured oxide magnetic material as a different phase. It is to be.

【0005】[0005]

【課題を解決するための手段】この発明にかかる六方晶
系酸化物磁性体膜は、スピネル構造の基板上に、スピネ
ル構造を形成できる成分を含まない六方晶系酸化物膜が
形成され、その六方晶系酸化物膜の上に形成されること
を特徴とする、六方晶系酸化物磁性体膜である。この発
明にかかる六方晶系酸化物磁性体膜では、たとえば、ス
ピネル構造を形成できる成分を含まない六方晶系酸化物
膜が、Mn、Zn、Co、Ni、Mg、Cr、Li、V
より選ばれる1種以上の元素を含まない六方晶系酸化物
膜である。また、この発明にかかる六方晶系酸化物磁性
体膜では、たとえば、スピネル構造の基板が、AB2
4 (ただし、AはZn、Mgより選ばれる1種以上の元
素、かつ、BはIn、Ga、Alより選ばれる1種以上
の元素)である。さらに、この発明にかかる六方晶系酸
化物磁性体膜では、たとえば、スピネル構造を形成でき
る成分を含まない六方晶系酸化物膜が、CFe12
19(ただし、CはBa、Sr、Ca、Pbより選ばれる
1種以上の元素)である。この発明にかかる六方晶系酸
化物磁性体膜の製造方法は、スピネル構造の基板上に、
スピネル構造を形成できる成分を含まない六方晶系酸化
物膜を形成した後、その六方晶系酸化物膜の上に六方晶
系酸化物磁性体膜を形成することを特徴とする、六方晶
系酸化物磁性体膜の製造方法である。この発明にかかる
六方晶系酸化物磁性体膜の製造方法では、たとえば、ス
ピネル構造を形成できる成分を含まない六方晶系酸化物
膜が、Mn、Zn、Co、Ni、Mg、Cr、Li、V
より選ばれる1種以上の元素を含まない六方晶系酸化物
膜である。また、この発明にかかる六方晶系酸化物磁性
体膜の製造方法では、たとえば、スピネル構造の基板
が、AB24 (ただし、AはZn、Mgより選ばれる
1種以上の元素、およびBはIn、Ga、Alより選ば
れる1種以上の元素)である。さらに、この発明にかか
る六方晶系酸化物磁性体膜の製造方法では、たとえば、
スピネル構造を形成できる成分を含まない六方晶系酸化
物膜が、CFe1219(ただし、CはBa、Sr、C
a、Pbより選ばれる1種以上の元素)である。また、
この発明にかかる六方晶系酸化物磁性体膜の製造方法で
は、たとえば、六方晶系酸化物膜の形成方法および六方
晶系酸化物磁性体膜の形成方法が、液相エピタキシャル
成長法、レーザーアブレーション法、スパッタ法および
化学蒸着法のうち少なくとも1種である。
According to the present invention, a hexagonal oxide magnetic film according to the present invention comprises a substrate having a spinel structure and a hexagonal oxide film containing no component capable of forming a spinel structure. A hexagonal oxide magnetic film formed on the hexagonal oxide film. In the hexagonal oxide magnetic film according to the present invention, for example, a hexagonal oxide film containing no component capable of forming a spinel structure is formed of Mn, Zn, Co, Ni, Mg, Cr, Li, V
It is a hexagonal oxide film not containing one or more elements selected from the group consisting of: In the hexagonal oxide magnetic film according to the present invention, for example, a substrate having a spinel structure is made of AB 2 O.
4 (where A is one or more elements selected from Zn and Mg, and B is one or more elements selected from In, Ga and Al). Further, in the hexagonal oxide magnetic film according to the present invention, for example, a hexagonal oxide film containing no component capable of forming a spinel structure may be CFe 12 O
19 (where C is one or more elements selected from Ba, Sr, Ca, and Pb). The method for producing a hexagonal oxide magnetic film according to the present invention includes the steps of:
Forming a hexagonal oxide film containing no component capable of forming a spinel structure, and then forming a hexagonal oxide magnetic material film on the hexagonal oxide film; This is a method for producing an oxide magnetic film. In the method for producing a hexagonal oxide magnetic film according to the present invention, for example, a hexagonal oxide film containing no component capable of forming a spinel structure is formed of Mn, Zn, Co, Ni, Mg, Cr, Li, V
It is a hexagonal oxide film not containing one or more elements selected from the group consisting of: In the method for producing a hexagonal oxide magnetic film according to the present invention, for example, a substrate having a spinel structure is made of AB 2 O 4 (where A is at least one element selected from Zn and Mg, and B Is one or more elements selected from In, Ga, and Al). Further, in the method for producing a hexagonal oxide magnetic film according to the present invention, for example,
A hexagonal oxide film containing no component capable of forming a spinel structure is CFe 12 O 19 (where C is Ba, Sr, C
a, one or more elements selected from Pb). Also,
In the method for manufacturing a hexagonal oxide magnetic film according to the present invention, for example, a method for forming a hexagonal oxide magnetic film and a method for forming a hexagonal oxide magnetic film include a liquid phase epitaxial growth method and a laser ablation method. , Sputtering, and chemical vapor deposition.

【0006】スピネル構造の基板上に、スピネル構造を
形成できる成分を含まない六方晶系酸化物膜を形成した
後、その六方晶系酸化物膜の上に六方晶系酸化物磁性体
膜を形成することによって、目的とする六方晶系酸化物
磁性体膜を異相の析出なしに製造することができる。つ
まり、たとえば、スピネル構造の基板AB24 (ただ
し、AはZn、Mgより選ばれる1種以上の元素、か
つ、BはIn、Ga、Alより選ばれる1種以上の元
素)上に、スピネル構造を形成できる成分(Mn、Z
n、Co、Ni、Mg、Cr、Li、Vより選ばれる1
種以上の元素)を含まない六方晶系酸化物膜を、液相エ
ピタキシャル成長法、レーザーアブレーション法、スパ
ッタ法および化学蒸着法などで形成した後、その六方晶
系酸化物膜の上に液相エピキタシャル成長法、レーザー
アブレーション法、スパッタ法および化学蒸着法などで
六方晶系酸化物磁性体膜を形成することによって、目的
とする六方晶系酸化物磁性体膜を異相の析出なしに製造
することができる。
After forming a hexagonal oxide film containing no component capable of forming a spinel structure on a substrate having a spinel structure, a hexagonal oxide magnetic film is formed on the hexagonal oxide film. By doing so, the desired hexagonal oxide magnetic film can be manufactured without depositing a different phase. That is, for example, on a spinel structure substrate AB 2 O 4 (where A is at least one element selected from Zn and Mg, and B is at least one element selected from In, Ga, and Al) Components capable of forming a spinel structure (Mn, Z
1 selected from n, Co, Ni, Mg, Cr, Li, and V
After forming a hexagonal oxide film containing no more than one element by liquid phase epitaxial growth, laser ablation, sputtering, or chemical vapor deposition, liquid phase epitaxy is formed on the hexagonal oxide. By forming a hexagonal oxide magnetic film by a growth method, a laser ablation method, a sputtering method, a chemical vapor deposition method, etc., it is possible to produce a desired hexagonal oxide magnetic film without depositing a different phase. it can.

【0007】この発明の上述の目的、その他の目的、特
徴および利点は、以下の発明の実施の形態の詳細な説明
から一層明らかとなろう。
[0007] The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments of the present invention.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】MgAl24 基板を、液相エピタキシャル
成長法でMn、Zn、Co、Ni、Mg、Cr、Li、
Vより選ばれる1種以上の元素を含まない六方晶系酸化
物膜としてBaFe1219膜を形成するための基板とし
た。次に、原料である純度99.99%のBaCO3
PbO、Fe23 、B23 を35.4、30.7、
14.0、19.9mol%の比で秤量し混合した後、
縦型電気炉内に保持された白金坩堝に充填し、1200
℃で均質化を行い融液化した。この融液を約910℃の
一定温度に保持して過飽和状態にした後、この融液中に
MgAl2 4 基板を浸漬し、回転させながら約10分
間成長を行って膜を形成した。その後、このMgAl2
4 基板を融液から引き上げ、500rpmで回転させ
て、形成した膜上に付着した融液を遠心力で振り切るこ
とによって、厚み約2μmの膜を形成した。その後、得
られた膜はX線回折でBaFe1219膜であることを確
認した。さらに、BaFe1219膜付きのMgAl2
4 基板を、2回目の液相エピタキシャル成長法で目的の
六方晶系酸化物磁性体膜であるBaZnFe611膜を
形成するための基板とした。次に、原料である純度9
9.99%のBaCO3 、PbO、ZnO、Fe2
3 、B23 を30.8、30.7、4.6、14.
0、19.9mol%の比で秤量し、すべての原料を混
合した後、縦型電気炉内に保持された白金坩堝に充填
し、1200℃で均質化を行い融液化した。この融液を
約900℃に保持して過飽和状態にした後、この融液中
にBaFe1219膜付きのMgAl24 基板を浸漬
し、回転させながら約1時間成長を行って膜を形成し
た。その後、このBaFe1219膜付きのMgAl2
4 基板を融液から引き上げ、500rpmで回転させ
て、形成した膜上に付着した融液を遠心力で振り切るこ
とによって、厚み約15μmの膜を形成した。得られた
膜はX線回折でBaZnFe611膜であることを確認
した。
[Example] MgAlTwo OFour Substrate, liquid phase epitaxial
Mn, Zn, Co, Ni, Mg, Cr, Li,
Hexagonal oxidation not containing one or more elements selected from V
BaFe as a material film12O19Used as a substrate for forming a film
Was. Next, the raw material BaCO having a purity of 99.99% is used.Three ,
PbO, FeTwo OThree , BTwo OThree To 35.4, 30.7,
After weighing and mixing at a ratio of 14.0 and 19.9 mol%,
Filled into a platinum crucible held in a vertical electric furnace,
It homogenized at ℃ and made it a melt. About 910 ° C.
After maintaining the temperature at a constant temperature to make it supersaturated,
MgAlTwo O Four Immerse the substrate and rotate it for about 10 minutes
A film was formed by performing inter-growth. Then, this MgAlTwo 
OFour The substrate is lifted from the melt and rotated at 500 rpm
And shake off the melt adhering to the formed film by centrifugal force.
As a result, a film having a thickness of about 2 μm was formed. Then get
The obtained film was BaFe by X-ray diffraction.12O19Make sure it is a membrane
I accepted. Furthermore, BaFe12O19MgAl with filmTwo O
Four Substrate is subjected to the second liquid phase epitaxial growth
BaZnFe which is a hexagonal oxide magnetic film6 O11Membrane
A substrate to be formed. Next, the raw material purity 9
9.99% BaCOThree , PbO, ZnO, FeTwo O
Three , BTwo OThree 30.8, 30.7, 4.6, 14.
0, 19.9 mol%, and mix all raw materials.
After filling, fill the platinum crucible held in the vertical electric furnace
The mixture was homogenized at 1200 ° C. and melted. This melt
After maintaining at about 900 ° C. to make it supersaturated,
BaFe12O19MgAl with filmTwo OFour Immerse the substrate
And grow for about 1 hour while rotating to form a film
Was. Then, this BaFe12O19MgAl with filmTwo O
Four The substrate is lifted from the melt and rotated at 500 rpm
To remove the melt adhering to the formed film by centrifugal force.
As a result, a film having a thickness of about 15 μm was formed. Got
The film is BaZnFe by X-ray diffraction.6 O11Confirm that it is a membrane
did.

【0009】[0009]

【比較例】MgAl24 基板を、液相エピタキシャル
成長法で六方晶系酸化物磁性体膜であるBaZnFe6
11膜を形成するための基板とした。次に、原料である
純度99.99%のBaCO3 、PbO、ZnO、Fe
23 、B23 を30.8、30.7、4.6、1
4.0、19.9mol%の比で秤量し、すべての原料
を混合した後、縦型電気炉内に保持された白金坩堝に充
墳し、1200℃で均質化を行い融液化した。この融液
を約900℃に保持して過飽和状態にした後、この融液
中にMgAl24 基板を浸漬し、回転させながら約1
時間成長を行って膜を形成した。その後、このMgAl
24 基板を融液から引き上げ、500rpmで回転さ
せて、形成した膜上に付着した融液を遠心力で振り切る
ことによって、厚み約15μmの膜を形成した。得られ
た膜は、形成物をX線回折で同定した結果、ZnFe2
4 とBaFe1219とBaZnFe611とであるこ
とを確認した。
COMPARATIVE EXAMPLE A MgAl 2 O 4 substrate was subjected to liquid phase epitaxial growth to form a hexagonal oxide magnetic film BaZnFe 6.
A substrate for forming an O 11 film was used. Next, raw materials such as BaCO 3 , PbO, ZnO, Fe
The 2 O 3, B 2 O 3 30.8,30.7,4.6,1
After weighing at a ratio of 4.0 to 19.9 mol% and mixing all the raw materials, the mixture was charged into a platinum crucible held in a vertical electric furnace, and homogenized at 1200 ° C. to be melted. After maintaining the melt at about 900 ° C. to make it supersaturated, the MgAl 2 O 4 substrate is immersed in the melt and rotated for about 1 hour.
A film was formed by performing time growth. Then, this MgAl
The 2 O 4 substrate was pulled up from the melt, rotated at 500 rpm, and the melt adhered on the formed film was shaken off by centrifugal force to form a film having a thickness of about 15 μm. As a result of identifying the formed product by X-ray diffraction, the obtained film showed ZnFe 2
It was confirmed that they were O 4 , BaFe 12 O 19 and BaZnFe 6 O 11 .

【0010】なお、上述の実施例では六方晶系酸化物膜
の形成方法および六方晶系酸化物磁性体膜の形成方法が
液相エピタキシャル成長法である場合について説明した
が、六方晶系酸化物膜の形成方法および六方晶系酸化物
磁性体膜の形成方法がレーザーアブレーション法、スパ
ッタ法、化学蒸着法などの方法である場合においても同
様の効果が得られる。
In the above-described embodiment, the case where the method for forming the hexagonal oxide film and the method for forming the hexagonal oxide magnetic film are liquid phase epitaxial growth methods has been described. The same effect can be obtained when the method of forming a hexagonal oxide magnetic film is a method such as a laser ablation method, a sputtering method, or a chemical vapor deposition method.

【0011】また、上述の実施例ではスピネル構造の基
板がMgAl24 基板である場合について説明した
が、その他のスピネル構造の基板である場合においても
同様の効果が得られる。
In the above embodiment, the case where the substrate having the spinel structure is the MgAl 2 O 4 substrate has been described. However, the same effect can be obtained when the substrate has another spinel structure.

【0012】さらに、上述の実施例ではスピネル構造を
形成できる成分Mn、Zn、Co、Ni、Mg、Cr、
Li、Vを含まない六方晶系酸化物膜がBaFe1219
膜である場合について説明したが、SrFe1219膜な
どのMn、Zn、Co、Ni、Mg、Cr、Li、Vよ
り選ばれる1種以上の元素を含まない六方晶系酸化物膜
である場合においても同様の効果が得られる。
Further, in the above-described embodiment, components Mn, Zn, Co, Ni, Mg, Cr, which can form a spinel structure,
The hexagonal oxide film not containing Li and V is made of BaFe 12 O 19
The case where the film is a film has been described, but a hexagonal oxide film not containing at least one element selected from Mn, Zn, Co, Ni, Mg, Cr, Li, and V, such as a SrFe 12 O 19 film. In this case, the same effect can be obtained.

【0013】また、上述の実施例では、目的の六方晶系
酸化物磁性体膜がBaZnFe6 11膜である場合につ
いて説明したが、その他の六方晶系酸化物磁性体膜にお
いても同様の効果が得られる。
In the above embodiment, the desired hexagonal system is used.
Oxide magnetic film is BaZnFe6 O 11When it is a membrane
However, other hexagonal oxide magnetic film
However, the same effect can be obtained.

【0014】[0014]

【発明の効果】この発明によれば、目的とする六方晶系
酸化物磁性体膜をスピネル構造などの異相を形成するこ
となく製造することが可能となる。
According to the present invention, a desired hexagonal oxide magnetic film can be manufactured without forming a heterophase such as a spinel structure.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 スピネル構造の基板上に、スピネル構造
を形成できる成分を含まない六方晶系酸化物膜が形成さ
れ、 前記六方晶系酸化物膜の上に形成されることを特徴とす
る、六方晶系酸化物磁性体膜。
1. A hexagonal oxide film containing no component capable of forming a spinel structure is formed on a substrate having a spinel structure, and the hexagonal oxide film is formed on the hexagonal oxide film. Hexagonal oxide magnetic film.
【請求項2】 スピネル構造を形成できる成分を含まな
い六方晶系酸化物膜が、Mn、Zn、Co、Ni、M
g、Cr、Li、Vより選ばれる1種以上の元素を含ま
ない六方晶系酸化物膜である、請求項1に記載の六方晶
系酸化物磁性体膜。
2. A hexagonal oxide film containing no component capable of forming a spinel structure is formed of Mn, Zn, Co, Ni, M
The hexagonal oxide magnetic film according to claim 1, which is a hexagonal oxide film not containing at least one element selected from g, Cr, Li, and V.
【請求項3】 スピネル構造の基板が、AB24 (た
だし、AはZn、Mgより選ばれる1種以上の元素、か
つ、BはIn、Ga、Alより選ばれる1種以上の元
素)である、請求項1または請求項2に記載の六方晶系
酸化物磁性体膜。
3. A substrate having a spinel structure is made of AB 2 O 4 (where A is at least one element selected from Zn and Mg, and B is at least one element selected from In, Ga and Al) The hexagonal oxide magnetic material film according to claim 1 or 2, wherein
【請求項4】 スピネル構造を形成できる成分を含まな
い六方晶系酸化物膜が、CFe1219(ただし、CはB
a、Sr、Ca、Pbより選ばれる1種以上の元素)で
ある、請求項1ないし請求項3のいずれかに記載の六方
晶系酸化物磁性体膜。
4. A hexagonal oxide film containing no component capable of forming a spinel structure is formed of CFe 12 O 19 (where C is B
4. The hexagonal oxide magnetic film according to claim 1, wherein the film is at least one element selected from a, Sr, Ca, and Pb).
【請求項5】 スピネル構造の基板上に、スピネル構造
を形成できる成分を含まない六方晶系酸化物膜を形成し
た後、 前記六方晶系酸化物膜の上に六方晶系酸化物磁性体膜を
形成することを特徴とする、六方晶系酸化物磁性体膜の
製造方法。
5. After forming a hexagonal oxide film containing no component capable of forming a spinel structure on a substrate having a spinel structure, a hexagonal oxide magnetic film is formed on the hexagonal oxide film. Forming a hexagonal oxide magnetic film.
【請求項6】 スピネル構造を形成できる成分を含まな
い六方晶系酸化物膜が、Mn、Zn、Co、Ni、M
g、Cr、Li、Vより選ばれる1種以上の元素を含ま
ない六方晶系酸化物膜である、請求項5に記載の六方晶
系酸化物磁性体膜の製造方法。
6. A hexagonal oxide film containing no component capable of forming a spinel structure is formed of Mn, Zn, Co, Ni, M
The method for producing a hexagonal oxide magnetic film according to claim 5, wherein the film is a hexagonal oxide film not containing at least one element selected from g, Cr, Li, and V.
【請求項7】 スピネル構造の基板が、AB24 (た
だし、AはZn、Mgより選ばれる1種以上の元素、お
よびBはIn、Ga、Alより選ばれる1種以上の元
素)である、請求項5または請求項6に記載の六方晶系
酸化物磁性体膜の製造方法。
7. A substrate having a spinel structure is made of AB 2 O 4 (where A is at least one element selected from Zn and Mg, and B is at least one element selected from In, Ga and Al). 7. The method for producing a hexagonal oxide magnetic film according to claim 5 or claim 6.
【請求項8】 スピネル構造を形成できる成分を含まな
い六方晶系酸化物膜が、CFe1219(ただし、CはB
a、Sr、Ca、Pbより選ばれる1種以上の元素)で
ある、請求項5ないし請求項7のいずれかに記載の六方
晶系酸化物磁性体膜の製造方法。
8. A hexagonal oxide film containing no component capable of forming a spinel structure is formed of CFe 12 O 19 (where C is B
The method for producing a hexagonal oxide magnetic film according to any one of claims 5 to 7, wherein the element is at least one element selected from a, Sr, Ca, and Pb).
【請求項9】 六方晶系酸化物膜の形成方法および六方
晶系酸化物磁性体膜の形成方法が、液相エピタキシャル
成長法、レーザーアブレーション法、スパッタ法および
化学蒸着法のうち少なくとも1種である、請求項5ない
し請求項8のいずれかに記載の六方晶系酸化物磁性体膜
の製造方法。
9. The method for forming a hexagonal oxide film and the method for forming a hexagonal oxide magnetic film are at least one of a liquid phase epitaxial growth method, a laser ablation method, a sputtering method and a chemical vapor deposition method. A method for producing a hexagonal oxide magnetic film according to any one of claims 5 to 8.
JP2000370528A 2000-12-05 2000-12-05 Hexagonal oxide magnetic film and method of producing the same Pending JP2002173397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000370528A JP2002173397A (en) 2000-12-05 2000-12-05 Hexagonal oxide magnetic film and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000370528A JP2002173397A (en) 2000-12-05 2000-12-05 Hexagonal oxide magnetic film and method of producing the same

Publications (1)

Publication Number Publication Date
JP2002173397A true JP2002173397A (en) 2002-06-21

Family

ID=18840405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000370528A Pending JP2002173397A (en) 2000-12-05 2000-12-05 Hexagonal oxide magnetic film and method of producing the same

Country Status (1)

Country Link
JP (1) JP2002173397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158926A1 (en) * 2015-03-31 2016-10-06 Tdk株式会社 Magnetoresistive effect element
EP3279958A4 (en) * 2015-03-31 2018-12-05 TDK Corporation Magnetoresistive effect element
US10629231B2 (en) 2015-03-31 2020-04-21 Tdk Corporation Magnetoresistance effect element
US10720178B2 (en) 2015-03-31 2020-07-21 Tdk Corporation Magnetoresistance effect element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158926A1 (en) * 2015-03-31 2016-10-06 Tdk株式会社 Magnetoresistive effect element
EP3279958A4 (en) * 2015-03-31 2018-12-05 TDK Corporation Magnetoresistive effect element
US10319904B2 (en) 2015-03-31 2019-06-11 Tdk Corporation Magnetoresistance effect element
US10446740B2 (en) 2015-03-31 2019-10-15 Tdk Corporation Magnetoresistance effect element
US10629231B2 (en) 2015-03-31 2020-04-21 Tdk Corporation Magnetoresistance effect element
US10720178B2 (en) 2015-03-31 2020-07-21 Tdk Corporation Magnetoresistance effect element
US11056642B2 (en) 2015-03-31 2021-07-06 Tdk Corporation Magnetoresistance effect element
US11133028B2 (en) 2015-03-31 2021-09-28 Tdk Corporation Magnetoresistance effect element
US11600771B2 (en) 2015-03-31 2023-03-07 Tdk Corporation Magnetoresistance effect element
US11763841B2 (en) 2015-03-31 2023-09-19 Tdk Corporation Magnetoresistance effect element
US11871681B2 (en) 2015-03-31 2024-01-09 Tdk Corporation Magnetoresistance effect element

Similar Documents

Publication Publication Date Title
JPWO2004067813A1 (en) Magnetic garnet single crystal film forming substrate, optical element, and method for manufacturing the same
CN106637405A (en) An infinitely mixable and meltable ferroelectric solid solution monocrystalline lead scandium niobate-lead magnesium niobate-lead titanate and a preparing method thereof
CN100350562C (en) Method for preparation of ferroelectric single crystal film structure using deposition method
JP2002173397A (en) Hexagonal oxide magnetic film and method of producing the same
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
KR0143799B1 (en) Single crystal growth method for bariumtitanikm oxide using noncrystalline solio growth
US20070104639A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JPH0692796A (en) Production of thin film by epitaxial growth
JP4422678B2 (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
KR20170140488A (en) Method of manufacturing potassium sodium niobate ceramics with single crystal and potassium sodium niobate ceramics with single crystal manufactured by the method
JP6887678B2 (en) Method for manufacturing magnetic garnet single crystal
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2998628B2 (en) Magnetostatic wave device
US4354254A (en) Devices depending on garnet materials
JP3188541B2 (en) Method for producing single crystal thin film by liquid phase epitaxy
RU2128734C1 (en) METHOD OF PREPARING MONOCRYSTALS OF POTASSIUM TITANYL ARSENATE KTiOAsO4
KR100355150B1 (en) Method for Single Crystal Growth of Barium Titanate Solid Solution
JP4432875B2 (en) Method for producing garnet single crystal
JP2763040B2 (en) Oxide garnet single crystal
JPH10273396A (en) Production of oxide having layered crystal structure
JPH0867600A (en) Production of bismuth-substituted rare-earth iron garnet single crystal
JPH09208393A (en) Production of microwave element material
JPH0478595B2 (en)
JP4239506B2 (en) Method for manufacturing substrate for piezoelectric device
JP2000357622A (en) Method for manufacturing magnetic garnet single crystal film, and the magnetic garnet single crystal film