JP2002172513A - Cutting method - Google Patents

Cutting method

Info

Publication number
JP2002172513A
JP2002172513A JP2000373239A JP2000373239A JP2002172513A JP 2002172513 A JP2002172513 A JP 2002172513A JP 2000373239 A JP2000373239 A JP 2000373239A JP 2000373239 A JP2000373239 A JP 2000373239A JP 2002172513 A JP2002172513 A JP 2002172513A
Authority
JP
Japan
Prior art keywords
processing
tool
cutting
concave
cutting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000373239A
Other languages
Japanese (ja)
Inventor
Shinichi Kiyota
晋一 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000373239A priority Critical patent/JP2002172513A/en
Publication of JP2002172513A publication Critical patent/JP2002172513A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a working surface step difference particularly the step difference of a working surface generated in the boundary between bottom surface working and side surface working. SOLUTION: This cutting method performs work of a recessed shape 6 in a workpiece 5 by rotary cutting tolls 3, 1 mounted in the spindle of a cutting machine, the cutting method comprises a side surface working process for performing working of a side part 8 of recessed shape by the rotary cutting toll and a bottom surface work process for performing work of a bottom surface 7 of recessed shape by replacing the rotary cutting toll to measure again a tool reference height after the side surface working process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は機械の主軸は熱変位
するものと位置付けた上で補正するのではなく加工順序
を適正化することで加工面段差を解消し、熱変位に影響
されること無く高精度に加工するための技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention solves a step difference in a machined surface by optimizing a machining order instead of performing correction after positioning a main shaft of a machine to be thermally displaced, and being affected by thermal displacement. The present invention relates to a technology for processing with high precision without any.

【0002】[0002]

【従来の技術】NC切削加工機において回転工具を使用
する場合、主軸の回転発熱による熱変位により主軸自体
が伸びる現象は必ず発生するものである。従来はこの伸
び量により加工面に段差が形成されてしまい、後の手仕
上げ工程で修正していた。
2. Description of the Related Art When a rotary tool is used in an NC cutting machine, a phenomenon in which the main spindle itself extends due to thermal displacement due to heat generated by rotation of the main spindle always occurs. Conventionally, a step is formed on the machined surface due to the amount of elongation, which has been corrected in a later hand finishing step.

【0003】図2は従来の加工方法を示した図である。
被加工物5には予め目標形状に近い形状の凹部6が形成
されている。そして、大径の工具3により先に底面7を
4で示す工具軌跡で仕上げ加工し、次に傾斜面8を9で
示す方向に切り込みながら仕上げ加工するが、長時間加
工するため、熱変異により主軸が伸びて、図中12の変
位量分深く加工されてしまい底面に段差がついてしま
う。
FIG. 2 shows a conventional processing method.
A recess 6 having a shape close to the target shape is formed in the workpiece 5 in advance. Then, the bottom surface 7 is first finished with the tool locus indicated by 4 using the large-diameter tool 3, and then the finishing process is performed while cutting the inclined surface 8 in the direction indicated by 9; The main shaft extends and is machined deeper by the displacement amount of 12 in the figure, resulting in a step on the bottom surface.

【0004】また、NC制御が進歩する中で熱変位によ
る伸び量を自動的に補正して加工する技術も向上してい
るため、加工の状況によって変位量が変化することによ
り加工面段差は多少付いてしまうものの仕上げ時間は減
少している。
[0004] In addition, with the advance of NC control, the technology of automatically correcting the amount of elongation due to thermal displacement has been improved, so that the level of the machined surface is slightly changed due to the change in the amount of displacement depending on the processing conditions. Finishing time is reduced, though it does.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、近年の
加工機及び切削工具の進歩により高速加工が可能となり
主軸回転も高速化してきている。また、金型の駒加工に
代表されるように多種多様な形状の高精度な切削加工の
ニーズも高まってきている。その中で主軸の回転数が高
くなることに伴い熱変位による伸び量も大きくなるのに
対して加工面段差は最低限に抑える必要が有り、従来の
自動補正による加工では対応出来なかった。
However, with recent advances in processing machines and cutting tools, high-speed machining has become possible and spindle rotation has also been accelerated. In addition, there is a growing need for high-precision cutting of various shapes, as represented by die machining. Among them, the amount of elongation due to thermal displacement increases with an increase in the rotation speed of the main shaft, but it is necessary to minimize the level difference on the machined surface.

【0006】従って、本発明は上述した課題に鑑みてな
されたものであり、その目的は、加工面段差、特に底面
加工と側面加工との境に出来る加工面の段差を解消する
ことである。
Accordingly, the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to eliminate a step on a processing surface, particularly a step on a processing surface at a boundary between bottom processing and side processing.

【0007】また、本発明の他の目的は、加工面の段差
を解消することにより、加工の高精度化と手仕上げ加工
の削減を図ることである。
Another object of the present invention is to eliminate the steps on the machined surface so as to improve the machining accuracy and reduce hand finishing.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明に係わる切削加工方法
は、切削加工機の主軸に取り付けられた回転切削工具に
より被加工物に凹形状を加工するための切削加工方法で
あって、前記回転切削工具により、前記凹形状の側面部
分を加工する側面加工工程と、該側面加工工程の後に、
回転切削工具を交換して工具基準高さを再測定し、前記
凹形状の底面の加工を行う底面加工工程とを具備するこ
とを特徴としている。
Means for Solving the Problems The above-mentioned problems are solved,
In order to achieve the object, a cutting method according to the present invention is a cutting method for processing a concave shape on a workpiece by a rotary cutting tool attached to a main shaft of a cutting machine, wherein the rotary cutting is performed. With a tool, a side surface processing step of processing the concave side part, and after the side processing step,
A bottom machining step of re-measurement of the tool reference height by replacing the rotary cutting tool and machining the concave bottom surface.

【0009】また、この発明に係わる切削加工方法にお
いて、前記凹形状の側面部分は斜面であることを特徴と
している。
In the cutting method according to the present invention, the concave side surface portion is a slope.

【0010】また、この発明に係わる切削加工方法にお
いて、前記被加工物には、予め前記凹形状に近似した形
状の凹部が形成されており、前記側面加工工程及び前記
底面加工工程では、前記凹部の仕上げ加工を実行するこ
とを特徴としている。
Further, in the cutting method according to the present invention, a concave portion having a shape similar to the concave shape is previously formed in the workpiece, and the concave portion is formed in the side surface processing step and the bottom surface processing step. It is characterized in that the finishing process is performed.

【0011】また、この発明に係わる切削加工方法にお
いて、前記側面加工工程では、前記主軸の回転発熱によ
る前記回転切削工具先端位置の変位量以上の仕上げ代を
前記底面上に残して前記側面部分の仕上げ加工を実行す
ることを特徴としている。
Further, in the cutting method according to the present invention, in the side surface processing step, a finishing margin equal to or more than a displacement amount of the tip position of the rotary cutting tool due to heat generated by rotation of the spindle is left on the bottom surface. It is characterized by performing finishing.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な一実施形態
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0013】加工面段差がなぜ発生するか、熱変位の影
響をどう回避するかが本実施形態の課題である。
It is an object of the present embodiment to explain why a processing surface step is generated and how to avoid the influence of thermal displacement.

【0014】図3は主軸の熱変位特性を示している。主
軸回転を開始して時間が経過するにつれて主軸も伸びて
行くが、ある一定時間(T)経過すると伸び量が安定す
る所(P)があり、その時の伸び量(L)が最大とな
り、それ以降伸びは変化しなくなる。
FIG. 3 shows the thermal displacement characteristics of the main shaft. As the time elapses after the start of the main shaft rotation, the main shaft also elongates. However, after a certain time (T) elapses, there is a point (P) where the elongation is stabilized, and the elongation (L) at that time becomes maximum, Thereafter, the elongation stops changing.

【0015】このことから長時間加工すると最初に設定
した工具の基準高さより伸びた分だけ深く加工されてし
まうことが分かる。また、短時間ではそれほど伸びない
事も確認できる。
From this fact, it can be seen that if machining is performed for a long time, machining is performed deeper by an amount that is longer than the reference height of the initially set tool. In addition, it can be confirmed that it does not grow so much in a short time.

【0016】本実施形態では、これを利用して長時間加
工する側面加工から順番に加工し、比較的短時間で加工
できる底面を最後に仕上げるようにしている。
In this embodiment, the bottom surface which can be machined in a relatively short time is finally finished by utilizing the side surface machining which is machined for a long time.

【0017】以下、図面を参照して一実施形態について
具体的に説明する。
Hereinafter, an embodiment will be specifically described with reference to the drawings.

【0018】(1)加工方法の手順 図1は本発明の一実施形態に係わる加工方法を示す図で
あり、(a)は加工部を上方から見た平面図で、(b)
は加工部の側断面図である。図1において、被加工物5
には、予め目標形状に近い形状の凹部6が形成されてい
る。図中3は傾斜面加工用の工具であり、これにより図
中8の傾斜側面を上部から矢印9で示す方向に少しずつ
切り込んで図中4で示す工具奇跡で仕上げ加工する。こ
の際の加工時間は他より長くなるため加工中に主軸が徐
々に伸びると考えられる。そこで、事前に測定しておい
た熱変位特性から設定した仕上げ代11を残した図中A
のところまで側面加工を先に行なう。なお、形状の荒加
工は予め先に加工しておくものとする。
(1) Procedure of Processing Method FIG. 1 is a view showing a processing method according to an embodiment of the present invention, in which (a) is a plan view of a processing portion viewed from above, and (b).
FIG. 3 is a side sectional view of a processed part. In FIG. 1, a workpiece 5
Is formed in advance with a recess 6 having a shape close to the target shape. Reference numeral 3 in the drawing denotes a tool for machining an inclined surface, whereby the inclined side surface of the drawing 8 is cut little by little from the top in the direction indicated by the arrow 9 and finish machining is performed with a tool miracle indicated by 4 in the drawing. Since the processing time at this time is longer than that of the others, it is considered that the main shaft gradually extends during the processing. In view of this, A in the figure where the finishing allowance 11 set from the thermal displacement characteristics measured in advance is left.
Perform the side processing up to the point. It is assumed that the roughing of the shape is performed beforehand.

【0019】その後、底面加工用工具1に工具交換後、
再度工具の基準高さ測定を行ない図中2の工具軌跡によ
り正規深さ10である7で示す位置で底面仕上げ加工を
行なう。
Then, after changing the tool to the bottom surface machining tool 1,
The reference height of the tool is measured again, and bottom surface finishing is performed at the position indicated by 7 which is the regular depth 10 based on the tool locus of 2 in the figure.

【0020】(2)従来例との比較 図4は本発明の加工方法を従来方法と比較したフローチ
ャートである。
(2) Comparison with Conventional Example FIG. 4 is a flowchart comparing the processing method of the present invention with the conventional method.

【0021】従来は図中のaの所が長時間加工となるた
め、ここで主軸が伸び加工面段差が発生するのに対し、
本実施形態の加工方法では先に傾斜側面加工を行なうた
めbのところで主軸は伸びるがその量を考慮して目標深
さよりわずかに浅い深さまで側面を仕上げ加工する。そ
の後工具交換し、工具の基準高さ測定を再度実施して底
面仕上げ加工をするため加工面に段差は発生しない。
Conventionally, the point a in the figure is subjected to machining for a long time.
In the machining method of the present embodiment, the main shaft extends at b at first because the inclined side machining is performed, but the side is finished to a depth slightly smaller than the target depth in consideration of the amount. After that, the tool is replaced, the reference height of the tool is measured again, and the bottom surface is finished.

【0022】(3)具体例 図5を参照して本実施形態の一具体例を説明する。(3) Specific Example A specific example of the present embodiment will be described with reference to FIG.

【0023】図5(a)は傾斜側面8の仕上げ加工を示
している。工具3の基本回転数を10,000回転/分
とした時の最大伸び量を考慮して設定された図中11で
示す仕上げ代を付けた深さまで側面8の仕上げ加工を行
なう。浅切込み(0.5mm程度)で何度も繰り返すこ
とになるため結果として長時間の加工になり、熱変位に
より主軸が伸びて図中の16で示す深さだけ深く加工さ
れる。この時の状態は従来の仕上げ加工に似た形状にな
っている。次に図5(b)の様に工具を底面加工用エン
ドミル1に交換し、再度、工具の基準高さを測定した
後、正規の加工深さ10の位置まで図中14で示す工具
軌跡で仕上げ加工をする。このことで加工底面に段差は
なくなる。
FIG. 5A shows the finishing of the inclined side surface 8. Finishing of the side surface 8 is performed to a depth with a finishing allowance indicated by 11 in the figure, which is set in consideration of the maximum elongation when the basic rotation speed of the tool 3 is 10,000 rotations / minute. Since the process is repeated many times at a shallow depth of cut (about 0.5 mm), a long time of processing is required. As a result, the main shaft is extended due to thermal displacement and the processing is deepened by a depth indicated by 16 in the drawing. The state at this time has a shape similar to the conventional finishing. Next, as shown in FIG. 5B, the tool is replaced with the end mill 1 for bottom processing, and after the reference height of the tool is measured again, the tool is moved along the tool path shown in FIG. Finish finishing. As a result, there is no step on the processing bottom surface.

【0024】(4)削り残し部の扱い 図5(b)において本実施形態により底面7に加工面段
差はなくなるが、側面加工部と底面との間に図中の15
で示す様な削り残しが発生する。
(4) Handling of uncut portion In FIG. 5B, although there is no step difference in the processed surface on the bottom surface 7 according to the present embodiment, a portion between the side processed portion and the bottom surface in FIG.
As shown in the figure, uncut portions occur.

【0025】しかし、図中11で示す仕上げ代から16
で示す伸び量を引いた量は数ミクロンであり、加工形状
の角部にこの程度の段差が出来ても製品機能上の問題は
なく、手仕上げで取り除くのも容易である。
However, the finishing allowance shown in FIG.
The amount obtained by subtracting the elongation indicated by is several microns. Even if such a step is formed at the corner of the processed shape, there is no problem in the function of the product, and it is easy to remove by hand finishing.

【0026】以上説明した様に、上記の実施形態によれ
ば、加工面段差がなくなるため、加工精度を安定させる
ことが可能となる。また、後工程での手仕上げ時間も大
幅に削減出来る。
As described above, according to the above-described embodiment, since there is no step on the processing surface, the processing accuracy can be stabilized. In addition, hand finishing time in the post-process can be significantly reduced.

【0027】本実施形態の加工方法は制御やソフトで伸
び量を補正するのではなく、伸び量を考慮して加工順序
を最適化することを特徴としているため機械や制御の変
更が不要であり経費的に有利である。
The machining method according to the present embodiment is characterized by optimizing the machining sequence in consideration of the amount of elongation instead of correcting the amount of elongation by control or software, so that there is no need to change the machine or control. It is cost effective.

【0028】本実施形態の加工方法で発生する削り残し
部は事前の熱変位特性測定の精度を上げて詳細に設定す
ることで最小限に抑えることが可能である。
The uncut portion generated by the processing method of this embodiment can be minimized by increasing the precision of the thermal displacement characteristic measurement in advance and setting it in detail.

【0029】[0029]

【発明の効果】以上説明した様に、本発明によれば、加
工面段差、特に底面加工と側面加工との境に出来る加工
面の段差を解消することが可能となる。
As described above, according to the present invention, it is possible to eliminate a step on a processing surface, particularly a step on a processing surface at a boundary between bottom processing and side processing.

【0030】また、加工面の段差を解消することによ
り、加工の高精度化と手仕上げ加工の削減を図ることが
可能となる。
In addition, by eliminating the step on the processing surface, it is possible to improve the precision of the processing and reduce the hand finishing processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の加工方法を示す図であ
る。
FIG. 1 is a diagram showing a processing method according to an embodiment of the present invention.

【図2】従来の加工方法を示す図である。FIG. 2 is a view showing a conventional processing method.

【図3】主軸の熱変位特性曲線を示す図である。FIG. 3 is a diagram showing a thermal displacement characteristic curve of a spindle.

【図4】加工順序の比較を示す図である。FIG. 4 is a diagram showing a comparison of a processing order.

【図5】一実施形態の加工方法の具体例を示す図であ
る。
FIG. 5 is a diagram showing a specific example of a processing method according to one embodiment.

【符号の説明】[Explanation of symbols]

1 底面仕上げ用エンドミル 2 底面加工工具軌跡 3 側面仕上げ用エンドミル 4 側面加工工具軌跡 5 加工対象物 6 加工形状 7 底面 8 側面(傾斜面) 9 側面加工方向 10 正規加工深さ 11 伸び量を考慮した仕上代 12 熱変位による加工面段差 13 通常使用回転数 14 底面加工方向 15 削り残し部分 16 熱変位量(伸び量) DESCRIPTION OF SYMBOLS 1 Bottom finishing end mill 2 Bottom machining tool locus 3 Side finishing end mill 4 Side machining tool locus 5 Workpiece 6 Machining shape 7 Bottom 8 Side (slope) 9 Side machining direction 10 Regular machining depth 11 Considering the amount of elongation Finishing allowance 12 Processing surface step due to thermal displacement 13 Normal rotation speed 14 Bottom processing direction 15 Uncut portion 16 Thermal displacement (elongation)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 切削加工機の主軸に取り付けられた回転
切削工具により被加工物に凹形状を加工するための切削
加工方法であって、 前記回転切削工具により、前記凹形状の側面部分を加工
する側面加工工程と、 該側面加工工程の後に、回転切削工具を交換して工具基
準高さを再測定し、前記凹形状の底面の加工を行う底面
加工工程とを具備することを特徴とする切削加工方法。
1. A cutting method for processing a concave shape on a workpiece by a rotary cutting tool attached to a main shaft of a cutting machine, wherein the rotary cutting tool processes the concave side surface portion. And a bottom processing step of replacing the rotary cutting tool, re-measuring the tool reference height, and processing the concave bottom surface after the side processing step. Cutting method.
【請求項2】 前記凹形状の側面部分は斜面であること
を特徴とする請求項1に記載の切削加工方法。
2. The cutting method according to claim 1, wherein the concave side surface is a slope.
【請求項3】 前記被加工物には、予め前記凹形状に近
似した形状の凹部が形成されており、前記側面加工工程
及び前記底面加工工程では、前記凹部の仕上げ加工を実
行することを特徴とする請求項1に記載の切削加工方
法。
3. A concave portion having a shape similar to the concave shape is formed on the workpiece in advance, and finishing the concave portion is performed in the side surface processing step and the bottom surface processing step. The cutting method according to claim 1, wherein
【請求項4】 前記側面加工工程では、前記主軸の回転
発熱による前記回転切削工具先端位置の変位量以上の仕
上げ代を前記底面上に残して前記側面部分の仕上げ加工
を実行することを特徴とする請求項3に記載の切削加工
方法。
4. The method according to claim 1, wherein in the side surface processing step, the side surface portion is subjected to finish processing while leaving a finishing allowance equal to or more than a displacement amount of a tip position of the rotary cutting tool due to heat generated by rotation of the main spindle on the bottom surface. The cutting method according to claim 3, wherein the cutting method is performed.
JP2000373239A 2000-12-07 2000-12-07 Cutting method Withdrawn JP2002172513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373239A JP2002172513A (en) 2000-12-07 2000-12-07 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373239A JP2002172513A (en) 2000-12-07 2000-12-07 Cutting method

Publications (1)

Publication Number Publication Date
JP2002172513A true JP2002172513A (en) 2002-06-18

Family

ID=18842656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373239A Withdrawn JP2002172513A (en) 2000-12-07 2000-12-07 Cutting method

Country Status (1)

Country Link
JP (1) JP2002172513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130630A1 (en) * 2008-06-06 2009-12-09 Status Pro Maschinenmesstechnik GmbH Method for face milling workpiece surfaces
JP2012091284A (en) * 2010-10-27 2012-05-17 Jtekt Corp Grinding method and multifunction grinding machine
CN102744450A (en) * 2012-07-30 2012-10-24 沈阳机床(集团)设计研究院有限公司 Test member for testing cutting capacity of machine tool and application thereof
US9050701B2 (en) 2010-10-27 2015-06-09 Jtekt Corporation Grinding method, grinding system and multifunction grinding machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130630A1 (en) * 2008-06-06 2009-12-09 Status Pro Maschinenmesstechnik GmbH Method for face milling workpiece surfaces
JP2012091284A (en) * 2010-10-27 2012-05-17 Jtekt Corp Grinding method and multifunction grinding machine
US9050701B2 (en) 2010-10-27 2015-06-09 Jtekt Corporation Grinding method, grinding system and multifunction grinding machine
CN102744450A (en) * 2012-07-30 2012-10-24 沈阳机床(集团)设计研究院有限公司 Test member for testing cutting capacity of machine tool and application thereof

Similar Documents

Publication Publication Date Title
WO2015114734A1 (en) Cutting method and tool path generating device
JP2005096070A (en) Generating method for spiral bevel gear and machine
JP5402192B2 (en) Cutting method
JP2002172513A (en) Cutting method
JP3756793B2 (en) Machine tool thermal displacement compensation device
JPH06335841A (en) Numerical control device and numerically controlled working method
JP5705355B1 (en) Wall part machining method and tool path generation device
JP7161254B2 (en) Processing method, processing equipment and program
JP7143186B2 (en) Parts manufacturing method, processing equipment and parts
JP4236483B2 (en) Machine tools with tool wear compensation
JP2021111026A (en) Machine tool machining control method
JP4338458B2 (en) Grinding apparatus and grinding method
JPH07195254A (en) Finishing machine and machining method
JP2023053762A (en) Work-piece turning method and machine tool, and processing program
JPH0825178A (en) Cutting method for rotary cutting tool
JP4144955B2 (en) Gear machining method
KR101538795B1 (en) A workpiece cutting method of tool axis rotation
JP2837044B2 (en) Cutting method
JP2009285781A (en) Working method of inside diameter of workpiece in compound working machine
JP2001277073A (en) Tool position correcting method for machining device
JPH0691420A (en) Pick feed automatic efficient machining method in ball end mill
JP2002052438A (en) Tool locus creating method and machining method
JP2940435B2 (en) Adjustment method of retraction amount in grinding
JP6866213B2 (en) Control method of feed shaft in machine tool and machine tool
JP4301159B2 (en) Mold forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304