JP2002164556A - Back electrode type solar battery element - Google Patents

Back electrode type solar battery element

Info

Publication number
JP2002164556A
JP2002164556A JP2000360142A JP2000360142A JP2002164556A JP 2002164556 A JP2002164556 A JP 2002164556A JP 2000360142 A JP2000360142 A JP 2000360142A JP 2000360142 A JP2000360142 A JP 2000360142A JP 2002164556 A JP2002164556 A JP 2002164556A
Authority
JP
Japan
Prior art keywords
region
silicon substrate
solar cell
surface side
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000360142A
Other languages
Japanese (ja)
Inventor
Hiroaki Takahashi
宏明 高橋
Kenji Fukui
健次 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000360142A priority Critical patent/JP2002164556A/en
Publication of JP2002164556A publication Critical patent/JP2002164556A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery element for preventing a decrease in efficiency caused by optical shadow area and a re-coupling loss of carriers. SOLUTION: In a back electrode type solar battery element, a light receiving side of a p-type silicon substrate is roughened in a rough face state, while a p+ region and a n+ region are formed on the back side, and each electrode is formed on the p+ region and the n+ region. A plurality of minute needle- shaped projected parts are formed in the rough face state on the light receiving side of the p-type silicon substrate, and at the same time a silicon dioxide film is formed on the rough face side thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は裏面電極型太陽電池
素子に関し、特に受光面側を粗面状にしたp型シリコン
基板を用いた裏面電極型太陽電池素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a back electrode type solar cell, and more particularly to a back electrode type solar cell using a p-type silicon substrate having a roughened light receiving surface.

【0002】[0002]

【従来の技術およびその問題点】従来の太陽電池素子
は、図3に示すように、p型シリコン基板31内の一主
面側にn+領域32を形成してp−n接合部を形成し、
このシリコン基板31の一主面側のn+領域32上と他
の主面側にそれぞれ電極33、34を形成したものが一
般的である。なお、図3中、35は反射防止膜である。
2. Description of the Related Art In a conventional solar cell element, as shown in FIG. 3, an n + region 32 is formed on one principal surface side in a p-type silicon substrate 31 to form a pn junction. And
In general, electrodes 33 and 34 are formed on n + region 32 on one main surface side of silicon substrate 31 and on the other main surface side, respectively. In FIG. 3, reference numeral 35 denotes an antireflection film.

【0003】太陽電池は表面に入射した太陽光などの光
エネルギーを電気エネルギーに変換するものである。こ
の電気エネルギーへの変換効率を向上させるための方法
にはいろいろな技術があり、従来より様々な試みがなさ
れてきた。その中のひとつに表面へ照射された光の反射
を少なくする技術があり、照射された光の反射を低減す
ることで電気エネルギーへの変換効率を高めることがで
きる。
[0003] Solar cells convert light energy, such as sunlight, incident on the surface into electric energy. There are various techniques for improving the conversion efficiency to electric energy, and various attempts have been made conventionally. One of the techniques is a technique for reducing the reflection of light applied to the surface. By reducing the reflection of the applied light, the conversion efficiency to electric energy can be increased.

【0004】シリコン基板を用いて太陽電池素子を形成
する場合に、基板表面を水酸化ナトリウムなどのアルカ
リ水溶液でエッチングすると、表面にピラミッド構造の
凹凸が形成され、基板表面の反射をある程度低減させる
ことができる。面方位が(100)面の単結晶シリコン
基板を用いた場合、基板表面にピラミッド構造を均一に
形成することができ、テクスチャー構造と呼ばれる。多
結晶シリコン基板で太陽電池素子を形成する場合、アル
カリ水溶液によるエッチングは結晶の面方位に依存する
ことから、ピラミッド構造を均一には形成できず、その
ために全体の反射率も効果的には低減できないという問
題がある。
When a solar cell element is formed using a silicon substrate, when the surface of the substrate is etched with an aqueous alkali solution such as sodium hydroxide, irregularities having a pyramid structure are formed on the surface, and the reflection on the substrate surface is reduced to some extent. Can be. When a single crystal silicon substrate having a (100) plane orientation is used, a pyramid structure can be uniformly formed on the surface of the substrate, which is called a texture structure. When a solar cell element is formed on a polycrystalline silicon substrate, the pyramid structure cannot be formed uniformly because the etching with an alkaline aqueous solution depends on the plane orientation of the crystal, and therefore the overall reflectance is also effectively reduced. There is a problem that can not be.

【0005】このような問題を解決するために、多結晶
シリコンを用いて太陽電池素子を形成する場合に、基板
表面に微細な突起を反応性イオンエッチング(Reactive
IonEtching)法で形成することが提案されている(た
とえば特公昭60−27195号、特開平5−7515
2号、特開平9−102625号公報参照)。この方法
によると、多結晶シリコンにおける不規則な結晶の面方
位に左右されることなく微細な突起を均一に形成するこ
とができ、特に多結晶シリコンを用いた太陽電池素子に
おいては反射率をより効果的に低減することができるよ
うになる。この反応性イオンエッチング法ではテクスチ
ャー構造の形状を自由に制御できるが、反射率を充分に
低減させるには、概略円錐形状の構造の高さを底辺長よ
り充分大きくする、すなわち針状の形状にすることが望
ましい。
In order to solve such a problem, when a solar cell element is formed using polycrystalline silicon, fine projections are formed on a substrate surface by reactive ion etching (Reactive ion etching).
It has been proposed to form by the Ion Etching method (for example, JP-B-60-27195, JP-A-5-7515).
No. 2, JP-A-9-102625). According to this method, fine projections can be uniformly formed without being affected by the plane orientation of irregular crystals in the polycrystalline silicon. In particular, in a solar cell element using polycrystalline silicon, the reflectance is increased. Effective reduction can be achieved. In this reactive ion etching method, the shape of the texture structure can be freely controlled.However, in order to sufficiently reduce the reflectance, the height of the roughly conical structure is made sufficiently larger than the base length, that is, the shape of the needle is made into a needle shape. It is desirable to do.

【0006】しかしながら、針状のテクスチャー構造を
図3に示すような従来の太陽電池に形成すると、受光面
エミッタ(n+領域32)での再結合により良好な変換
効率が得られない。これは例えばp型基板31にn型の
エミッタ32を形成する場合、リンを表面に拡散させて
形成するが、針状のテクスチャー構造の凸状部の全てが
拡散されてしまい、実質的に深いエミッタとなって再結
合領域が増加して変換効率が低下するためである。
However, if a needle-shaped texture structure is formed in a conventional solar cell as shown in FIG. 3, good conversion efficiency cannot be obtained due to recombination at the light receiving surface emitter (n + region 32). For example, when the n-type emitter 32 is formed on the p-type substrate 31, phosphorus is diffused to the surface. However, all of the projections of the needle-like texture structure are diffused, and substantially deep. The reason is that the recombination region increases as an emitter and the conversion efficiency decreases.

【0007】また、このような太陽電池素子では、受光
面側に電極33があるために、この受光面側電極33に
よって入射光が遮られて影によるロスが発生する。つま
り、受光面側電極33は太陽電池素子の受光面側の面積
の4〜8%を占め、太陽電池の出力を低下させている。
この受光面側電極33による遮蔽損失が太陽電池の変換
効率の向上を妨げる大きな要因となっている。
Further, in such a solar cell element, since the electrode 33 is provided on the light receiving surface side, incident light is blocked by the light receiving surface side electrode 33 and a loss due to a shadow occurs. That is, the light receiving surface side electrode 33 occupies 4 to 8% of the area on the light receiving surface side of the solar cell element, and reduces the output of the solar cell.
The shielding loss due to the light receiving surface side electrode 33 is a major factor that hinders improvement in the conversion efficiency of the solar cell.

【0008】この受光面側電極33による遮蔽損失をな
くすには、受光面側にある金属電極33及びn+領域3
2をp型シリコン基板31の裏面側に配置すればよく、
図4に示すようなポイントコンタクト構造の集光用太陽
電池が提案されている。すなわち、p型シリコン基板4
1の一主面側には凹凸部42と反射防止膜43だけを形
成して、シリコン基板41内の他の主面側にn+領域4
4とp+領域45を形成し、このn+領域44部分とp+
領域45部分と点状に接触する電極46、47をそれぞ
れ形成したものである。このように構成することによ
り、受光面側には電極がないことから光影面積はゼロと
なり、また電極との接触面積を減少させることでキャリ
アの再結合も抑制できるようになる。
In order to eliminate the shielding loss caused by the light receiving surface side electrode 33, the metal electrode 33 and the n + region 3
2 may be arranged on the back side of the p-type silicon substrate 31,
A concentrating solar cell having a point contact structure as shown in FIG. 4 has been proposed. That is, the p-type silicon substrate 4
1 is formed only on the main surface side of the substrate 1 with an uneven portion 42 and an anti-reflection film 43, and the n + region 4 is formed on the other main surface side of the silicon substrate 41.
4 and p + region 45 are formed, and the n + region 44 and p +
Electrodes 46 and 47 that are in point contact with the region 45 are formed. With such a configuration, since there is no electrode on the light receiving surface side, the light shadow area becomes zero, and recombination of carriers can be suppressed by reducing the contact area with the electrode.

【0009】ところが、この従来の太陽電池素子では、
受光面側の表面再結合速度を充分に低下させる必要があ
り、またテクスチャー構造の具体的な形状についても充
分な検討がなされておらず、反射率を低下させ、且つ再
結合損失を低減するという効果は得られないものであっ
た。
However, in this conventional solar cell element,
It is necessary to sufficiently reduce the surface recombination speed on the light-receiving surface side, and no sufficient study has been made on the specific shape of the texture structure, and it is said that the reflectance is reduced and the recombination loss is reduced. No effect was obtained.

【0010】本発明は、このような従来装置の問題点に
鑑みてなされたものであり、光影面積による効率低下を
防止するとともにキャリアの再結合損失を防止した太陽
電池素子を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems of the conventional apparatus, and has as its object to provide a solar cell element which prevents a reduction in efficiency due to a light-shading area and a recombination loss of carriers. It is assumed that.

【0011】[0011]

【課題を解決するための手段】本発明によれば、上記目
的を達成するために、p型シリコン基板の受光面側を粗
面状にすると共に、裏面側にp+領域とn+領域を形成
し、このp+領域とn+領域上に電極を形成した裏面電極
型太陽電池素子において、前記p型シリコン基板の受光
面側に針状の微細な突起を多数形成して粗面状にすると
ともに、この粗面状部に二酸化珪素膜を形成したことを
特徴とする。
According to the present invention, in order to achieve the above object, the light receiving surface side of the p-type silicon substrate is made rough, and the p + region and the n + region are formed on the back surface side. In the back electrode type solar cell element in which electrodes are formed on the p + region and the n + region, a large number of needle-like fine protrusions are formed on the light receiving surface side of the p-type silicon substrate to form a rough surface. In addition, a silicon dioxide film is formed on the rough surface portion.

【0012】また、上記裏面電極型太陽電池素子では、
前記針状の微細な突起の平均アスペクト比が2以上であ
ることが望ましい。
In the back electrode type solar cell element,
It is desirable that the average aspect ratio of the needle-like fine projections is 2 or more.

【0013】また、上記裏面電極型太陽電池素子では、
前記p型シリコン基板が多結晶シリコン基板であること
が望ましい。
Further, in the back electrode type solar cell element,
Preferably, the p-type silicon substrate is a polycrystalline silicon substrate.

【0014】[0014]

【発明の実施の形態】以下、各請求項に係る発明を添付
図面に基づき詳細に説明する。図1は、請求項1に係る
裏面電極型太陽電池素子の一実施例を示す斜視図であ
り、1は全体としてp型シリコン基板を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a vehicle according to an embodiment of the present invention; FIG. 1 is a perspective view showing one embodiment of a back electrode type solar cell element according to claim 1, wherein 1 shows a p-type silicon substrate as a whole.

【0015】前記シリコン基板1は、例えばボロンなど
のp型不純物を含有させた10Ωcm程度の比抵抗を有
する厚み50〜200μm程度のシリコン基板で構成さ
れる。このシリコン基板1は、引き上げ法などによって
形成した単結晶シリコン基板でもよく、また鋳込み法な
どによって形成した多結晶シリコン基板でもよいが、製
造コストの点から多結晶シリコン基板が有利である。
The silicon substrate 1 is formed of a silicon substrate having a specific resistance of about 10 Ωcm and a thickness of about 50 to 200 μm containing a p-type impurity such as boron. The silicon substrate 1 may be a single crystal silicon substrate formed by a pulling method or the like, or may be a polycrystalline silicon substrate formed by a casting method or the like, but a polycrystalline silicon substrate is advantageous in terms of manufacturing cost.

【0016】前記シリコン基板1の裏面には、多数のn
+領域5およびp+領域6が形成されている。選択的に形
成されたn+領域5は、リンなどの不純物を高濃度に含
有しており、同様に選択的に形成されたp+領域6はア
ルミニウムやボロンなどの不純物を高濃度に含有してい
る。
On the back surface of the silicon substrate 1, a large number of n
+ Region 5 and p + region 6 are formed. The selectively formed n + region 5 contains a high concentration of impurities such as phosphorus, and the selectively formed p + region 6 similarly contains a high concentration of impurities such as aluminum and boron. ing.

【0017】前記シリコン基板1の受光面側には、反応
性イオンエッチング法などによるテクスチャー処理によ
る針状凹凸部1が形成されている。この針状凹凸部1は、
シリコン基板1の表面での照射光の反射ロスを低減させ
るために形成される。このテクスチャー形状のアスペク
ト比(高さ/幅)が小さいと反射率が充分低下しない。
そのため、好ましくはアスペクト比を2以上にする。
On the light-receiving surface side of the silicon substrate 1, a needle-like uneven portion 1 is formed by texturing by a reactive ion etching method or the like. This needle-like uneven portion 1
It is formed to reduce the reflection loss of irradiation light on the surface of the silicon substrate 1. If the aspect ratio (height / width) of the texture shape is small, the reflectivity does not sufficiently decrease.
Therefore, the aspect ratio is preferably set to 2 or more.

【0018】受光面側にエミッタを形成する通常のテク
スチャー構造の太陽電池素子では、アスペクト比が2以
下が良いとされているが、裏面コンタクト型セルでは、
エミッタの再結合を考慮する必要が無いため、反射低減
を極限まで進める事が可能です。すなわち、この裏面コ
ンタクト型セルでは、アスペクト比が2以下では反射率
が充分低減できないため、太陽電池としての変換効率が
低くなるという問題がある。
It is said that an aspect ratio of 2 or less is good for a normal textured solar cell element having an emitter formed on the light receiving surface side.
Since there is no need to consider the recombination of the emitter, it is possible to reduce the reflection to the utmost. That is, in the back contact type cell, since the reflectance cannot be sufficiently reduced when the aspect ratio is 2 or less, there is a problem that the conversion efficiency as a solar cell is reduced.

【0019】また、前記針状凹凸部および、裏面電極接
触部以外の領域には、表面再結合速度を低下させるため
に熱酸化膜2、4が約1100Å形成されている。
In addition, thermal oxide films 2 and 4 are formed at about 1100 ° in regions other than the needle-like uneven portions and the back electrode contact portions in order to reduce the surface recombination speed.

【0020】また、シリコン基板1の裏面側に形成され
たn+領域5上には、n+領域5と点状に接触するAlな
どから成る電極7、およびp+領域6と点状に接触する
Alなどから成る電極8がそれぞれ形成されている。な
お、n+領域5と電極7とp+領域6の電極8とは、シリ
コン基板1の裏面側の対向部でそれぞれ合流するように
櫛歯状に形成すればよい。また、このn+領域5の電極
7とp+領域6の電極8とは、BSR(裏面側反射防止
層)を兼ねるものである。
On the n + region 5 formed on the back surface side of the silicon substrate 1, an electrode 7 made of Al or the like in point contact with the n + region 5 and a point contact with the p + region 6 are formed. Each of the electrodes 8 made of Al or the like is formed. The n + region 5, the electrode 7, and the electrode 8 of the p + region 6 may be formed in a comb-tooth shape so as to merge at the opposing portions on the back surface side of the silicon substrate 1. The electrode 7 in the n + region 5 and the electrode 8 in the p + region 6 also serve as a BSR (backside anti-reflection layer).

【0021】上述のような太陽電池素子は以下のような
工程で形成される。まず、p型シリコン基板1をHCl
などで清浄化する。次に、ダメージ層を除去するため
に、フッ酸・硝酸の混合溶液などを用いてシリコン基板
1の表面を軽くエッチングする。次に、シリコン基板1
の受光面側に、針状の凹凸部1を形成する。この針状凹
凸部1は、反応性イオンエッチング法等のドライエッチ
ング法によりアスペクト比が2以上になるように形成さ
れる。
The solar cell element as described above is formed by the following steps. First, HCl is applied to the p-type silicon substrate 1.
Clean with etc. Next, in order to remove the damaged layer, the surface of the silicon substrate 1 is lightly etched using a mixed solution of hydrofluoric acid and nitric acid. Next, the silicon substrate 1
A needle-like uneven portion 1 is formed on the light-receiving surface side of. The needle-shaped uneven portion 1 is formed by a dry etching method such as a reactive ion etching method so that the aspect ratio becomes 2 or more.

【0022】次に、不純物拡散のマスクとして酸化シリ
コン膜を形成し、裏面側の所定部分(n+領域5に相当
する領域)をエッチング除去する。次に、シリコン基板
1の裏面側にn+領域5をイオン注入法または熱拡散法
により形成する。次に不純物拡散のマスクとしての酸化
シリコン膜を除去し、裏面側の所定部分にp+領域6を
アルミニウムの蒸着・熱処理法やイオン注入法により形
成する。次にパシベーション膜2および4を熱酸化法に
より形成して、n+領域5およびp+領域6上の熱酸化膜
4にコンタクトホールを形成し、Alなどから成る電極
7、8をスクリーン印刷法または蒸着法により形成す
る。
Next, a silicon oxide film is formed as a mask for impurity diffusion, and a predetermined portion (a region corresponding to the n + region 5) on the back surface is removed by etching. Next, an n + region 5 is formed on the back surface of the silicon substrate 1 by ion implantation or thermal diffusion. Next, the silicon oxide film as a mask for impurity diffusion is removed, and ap + region 6 is formed in a predetermined portion on the back surface side by an aluminum deposition / heat treatment method or an ion implantation method. Next, passivation films 2 and 4 are formed by thermal oxidation, contact holes are formed in thermal oxide film 4 on n + region 5 and p + region 6, and electrodes 7 and 8 made of Al or the like are formed by screen printing. Alternatively, it is formed by an evaporation method.

【0023】図2は、本発明に係る太陽電池素子の表面
の電子顕微鏡写真である。図2では、反応性イオンエッ
チング法による微細凹凸が、アスペクト比で約2〜3程
度に形成されている。
FIG. 2 is an electron micrograph of the surface of the solar cell element according to the present invention. In FIG. 2, fine irregularities formed by the reactive ion etching method are formed in an aspect ratio of about 2 to 3.

【0024】[0024]

【発明の効果】上記のように、請求項1に係る裏面電極
型太陽電池素子によれば、p型シリコン基板の受光面側
を粗面状にすると共に、裏面側にp+領域とn+領域を形
成し、このp+領域とn+領域上に電極を形成した裏面電
極型太陽電池素子において、前記p型シリコン基板の受
光面側に針状の微細な突起を多数形成して粗面状にする
とともに、この粗面状部に二酸化珪素膜を形成したこと
から、シリコン基板の受光面側には電極が存在せず、光
影損失とキャリアの再結合損失は発生しない。また、受
光面側にn+領域がないことから、受光面側高濃度層に
よるキャリアの再結合損失も発生しない。さらに、受光
面に形成した針状のテクスチャー構造により、表面パッ
シベーション酸化膜のみで反射防止膜を形成せずとも低
反射率が達成できる。さらに、反射率が充分低いために
表面パッシベーション酸化膜を十分厚くでき、表面再結
合速度を低下させることができる。したがって、高効率
の太陽電池素子を提供できるようになる。
As described above, according to the back electrode type solar cell element of the first aspect, the light receiving surface side of the p-type silicon substrate is made rough, and the p + region and the n + In the back electrode type solar cell element in which a region is formed and electrodes are formed on the p + region and the n + region, a large number of fine needle-like protrusions are formed on the light receiving surface side of the p-type silicon substrate to obtain a rough surface. In addition, since the silicon dioxide film is formed on the rough surface portion, no electrode is present on the light receiving surface side of the silicon substrate, so that light loss and carrier recombination loss do not occur. Further, since there is no n + region on the light receiving surface side, no recombination loss of carriers due to the high concentration layer on the light receiving surface side occurs. Further, due to the needle-like texture structure formed on the light receiving surface, a low reflectance can be achieved without forming an antireflection film using only the surface passivation oxide film. Further, since the reflectance is sufficiently low, the surface passivation oxide film can be made sufficiently thick, and the surface recombination speed can be reduced. Therefore, a highly efficient solar cell element can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池素子の一実施例を示す破
断斜視図である。
FIG. 1 is a cutaway perspective view showing one embodiment of a solar cell element according to the present invention.

【図2】本発明に係る太陽電池素子の受光面側を拡大し
て示す電子顕微鏡写真である。
FIG. 2 is an electron micrograph showing an enlarged light receiving surface side of a solar cell element according to the present invention.

【図3】従来の太陽電池素子を示す図である。FIG. 3 is a view showing a conventional solar cell element.

【図4】従来の他の太陽電池素子を示す図である。FIG. 4 is a view showing another conventional solar cell element.

【符号の説明】[Explanation of symbols]

1:テクスチャー構造、2:受光面酸化膜、3:p型シリ
コン基板、4:裏面酸化膜、5:n+領域、6:p+領域、
7:n+電極、8:p+電極
1: texture structure, 2: light-receiving surface oxide film, 3: p-type silicon substrate, 4: back surface oxide film, 5: n + region, 6: p + region,
7: n + electrode, 8: p + electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 p型シリコン基板の受光面側を粗面状に
すると共に、裏面側にp+領域とn+領域を形成し、この
+領域とn+領域上に電極を形成した裏面電極型太陽電
池素子において、前記p型シリコン基板の受光面側に針
状の微細な突起を多数形成して粗面状にするとともに、
この粗面状部に二酸化珪素膜を形成したことを特徴とす
る裏面電極型太陽電池素子。
1. A back surface in which a light-receiving surface side of a p-type silicon substrate is roughened, ap + region and an n + region are formed on the back surface side, and electrodes are formed on the p + region and the n + region. In the electrode type solar cell element, a large number of needle-like fine projections are formed on the light receiving surface side of the p-type silicon substrate to form a rough surface,
A back electrode type solar cell element characterized in that a silicon dioxide film is formed on the rough surface.
【請求項2】 前記微細な突起の平均アスペクト比が2
以上であることを特徴とする請求項1に記載の裏面電極
型太陽電池素子。
2. The fine projection has an average aspect ratio of 2
The back electrode type solar cell element according to claim 1, wherein:
【請求項3】 前記p型シリコン基板が多結晶シリコン
基板であることを特徴とする請求項1に記載の裏面電極
型太陽電池素子。
3. The back electrode type solar cell element according to claim 1, wherein said p-type silicon substrate is a polycrystalline silicon substrate.
JP2000360142A 2000-11-27 2000-11-27 Back electrode type solar battery element Pending JP2002164556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000360142A JP2002164556A (en) 2000-11-27 2000-11-27 Back electrode type solar battery element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000360142A JP2002164556A (en) 2000-11-27 2000-11-27 Back electrode type solar battery element

Publications (1)

Publication Number Publication Date
JP2002164556A true JP2002164556A (en) 2002-06-07

Family

ID=18831789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000360142A Pending JP2002164556A (en) 2000-11-27 2000-11-27 Back electrode type solar battery element

Country Status (1)

Country Link
JP (1) JP2002164556A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223080A (en) * 2004-02-04 2005-08-18 Sharp Corp Method of manufacturing solar cell
JP2005340362A (en) * 2004-05-25 2005-12-08 Sharp Corp Solar cell and solar cell module
JP2006041105A (en) * 2004-07-26 2006-02-09 Sharp Corp Solar cell and method of manufacturing the same
WO2006075426A1 (en) 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
KR100682017B1 (en) * 2004-12-16 2007-02-12 주식회사 실트론 Solar cell and method for manufacturing the same
KR100753630B1 (en) * 2004-12-17 2007-08-29 주식회사 실트론 Solar cell and method of manufacturing the same
JP2009049443A (en) * 2008-12-04 2009-03-05 Sharp Corp Solar battery and manufacturing method of same
JPWO2008065918A1 (en) * 2006-12-01 2010-03-04 シャープ株式会社 Solar cell and method for manufacturing the same
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
KR101051574B1 (en) 2009-04-17 2011-07-22 서태욱 Solar cell and manufacturing method
KR101103144B1 (en) 2010-12-08 2012-01-04 현대중공업 주식회사 Back contact solar cell fabrication method
JP2012023349A (en) * 2010-06-18 2012-02-02 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JP2012069538A (en) 2010-05-11 2012-04-05 Tokyo Univ Of Agriculture & Technology Semiconductor solar cell and manufacturing method therefor
CN102437211A (en) * 2011-12-06 2012-05-02 天津中环半导体股份有限公司 Back-electrode solar cell structure and manufacturing method thereof
US8183081B2 (en) 2008-07-16 2012-05-22 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a metal layer mask
JP2012114452A (en) * 2005-12-21 2012-06-14 Sunpower Corp Back side contact solar cell structures and fabrication processes
CN102610686A (en) * 2012-03-28 2012-07-25 星尚光伏科技(苏州)有限公司 Back contact crystal silicon solar battery and manufacture process of back contact crystal silicon solar battery
WO2011094158A3 (en) * 2010-01-27 2012-09-13 Varian Semiconductor Equipment Associates, Inc. Method for attaching contacts to a solar cell without cell efficiency loss
JP2012530381A (en) * 2009-06-16 2012-11-29 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Workpiece processing system
US8383930B2 (en) 2004-10-27 2013-02-26 Sharp Kabushiki Kaisha Solar cell and method for producing solar cell
US9076909B2 (en) 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223080A (en) * 2004-02-04 2005-08-18 Sharp Corp Method of manufacturing solar cell
JP4632672B2 (en) * 2004-02-04 2011-02-16 シャープ株式会社 Manufacturing method of solar cell
JP2005340362A (en) * 2004-05-25 2005-12-08 Sharp Corp Solar cell and solar cell module
JP2006041105A (en) * 2004-07-26 2006-02-09 Sharp Corp Solar cell and method of manufacturing the same
US8383930B2 (en) 2004-10-27 2013-02-26 Sharp Kabushiki Kaisha Solar cell and method for producing solar cell
KR100682017B1 (en) * 2004-12-16 2007-02-12 주식회사 실트론 Solar cell and method for manufacturing the same
KR100753630B1 (en) * 2004-12-17 2007-08-29 주식회사 실트론 Solar cell and method of manufacturing the same
WO2006075426A1 (en) 2004-12-27 2006-07-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
US7700400B2 (en) 2004-12-27 2010-04-20 Naoetsu Electronics Co., Ltd. Back junction solar cell and process for producing the same
JP2012114452A (en) * 2005-12-21 2012-06-14 Sunpower Corp Back side contact solar cell structures and fabrication processes
JPWO2008065918A1 (en) * 2006-12-01 2010-03-04 シャープ株式会社 Solar cell and method for manufacturing the same
JP5019397B2 (en) * 2006-12-01 2012-09-05 シャープ株式会社 Solar cell and method for manufacturing the same
US8183081B2 (en) 2008-07-16 2012-05-22 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a metal layer mask
US8309446B2 (en) 2008-07-16 2012-11-13 Applied Materials, Inc. Hybrid heterojunction solar cell fabrication using a doping layer mask
JP2009049443A (en) * 2008-12-04 2009-03-05 Sharp Corp Solar battery and manufacturing method of same
KR101051574B1 (en) 2009-04-17 2011-07-22 서태욱 Solar cell and manufacturing method
JP2012530381A (en) * 2009-06-16 2012-11-29 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Workpiece processing system
JP2011061020A (en) * 2009-09-10 2011-03-24 Sharp Corp Back contact solar cell element, and method of manufacturing the same
WO2011094158A3 (en) * 2010-01-27 2012-09-13 Varian Semiconductor Equipment Associates, Inc. Method for attaching contacts to a solar cell without cell efficiency loss
US10236502B2 (en) 2010-04-28 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9685275B2 (en) 2010-04-28 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
JP2012069538A (en) 2010-05-11 2012-04-05 Tokyo Univ Of Agriculture & Technology Semiconductor solar cell and manufacturing method therefor
US8816194B2 (en) 2010-06-18 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US9076909B2 (en) 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US9099579B2 (en) 2010-06-18 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2012023349A (en) * 2010-06-18 2012-02-02 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
KR101103144B1 (en) 2010-12-08 2012-01-04 현대중공업 주식회사 Back contact solar cell fabrication method
US9337475B2 (en) 2011-08-30 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
CN102437211A (en) * 2011-12-06 2012-05-02 天津中环半导体股份有限公司 Back-electrode solar cell structure and manufacturing method thereof
US9929407B2 (en) 2011-12-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and manufacturing methods thereof
CN102610686A (en) * 2012-03-28 2012-07-25 星尚光伏科技(苏州)有限公司 Back contact crystal silicon solar battery and manufacture process of back contact crystal silicon solar battery

Similar Documents

Publication Publication Date Title
JP2002164556A (en) Back electrode type solar battery element
US5356488A (en) Solar cell and method for its manufacture
JP3732993B2 (en) Solar cell and manufacturing method thereof
US6313397B1 (en) Solar battery cell
US20080271780A1 (en) Photovoltaic Cell and Production Thereof
WO2016078365A1 (en) High-efficiency n-type double-sided solar cell
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
KR20090035355A (en) High efficiency solar cell and method for the same
JP2000183379A (en) Method for manufacturing solar cell
JP2023549905A (en) Solar power cells and solar power modules
JP2001352083A (en) Solar cell and its manufacturing method
JP2866982B2 (en) Solar cell element
JP4325912B2 (en) Solar cell element and manufacturing method thereof
KR101023144B1 (en) Solar cell using layer transfer process and fabrication method thereof
KR100741306B1 (en) High efficiency solar cells and manufacturing method the same
US20110056548A1 (en) Wafer-Based Solar Cell with Deeply Etched Structure
KR100366348B1 (en) manufacturing method of silicon solar cell
JP2005260157A (en) Solar cell and solar cell module
KR100403803B1 (en) NPRIL(n-p and rear inversion layer) bifacial solar cell and method for manufacturing the same
JPH11312814A (en) Solar cell device
JPH08274356A (en) Solar cell element
JP2931451B2 (en) Solar cell element
JP2003101053A (en) Solar battery device and manufacturing method therefor
KR101092469B1 (en) Solar cell and manufacturing method of the same
JPH0945945A (en) Solar cell element and fabrication thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609