JP2002164238A - Manufacturing method of rare earth sintered magnet and ring magnet - Google Patents

Manufacturing method of rare earth sintered magnet and ring magnet

Info

Publication number
JP2002164238A
JP2002164238A JP2001279655A JP2001279655A JP2002164238A JP 2002164238 A JP2002164238 A JP 2002164238A JP 2001279655 A JP2001279655 A JP 2001279655A JP 2001279655 A JP2001279655 A JP 2001279655A JP 2002164238 A JP2002164238 A JP 2002164238A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
slurry
weight
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001279655A
Other languages
Japanese (ja)
Other versions
JP2002164238A5 (en
Inventor
Hisato Tokoro
久人 所
Kimio Uchida
公穂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001279655A priority Critical patent/JP2002164238A/en
Publication of JP2002164238A publication Critical patent/JP2002164238A/en
Publication of JP2002164238A5 publication Critical patent/JP2002164238A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-performance rare earth sintered magnet that has a small content of oxygen, high density, and an improved degree of orientation, as compared with the conventional one. SOLUTION: In this manufacturing method of rare earth sintered magnets, alloy coarse powder for the rare earth sintered magnet is ground minutely to an average particle diameter of 1 to 10 μm in a non-oxidizing atmosphere, and the obtained fine particle is collected into the non-oxidizing liquid for manufacturing slurry. In this case, the non-oxidizing liquid includes at least one kind of oil selected from mineral, synthetic, and vegetable oils, and lubricant comprising at least one kind selected from the monohydric alcohol ester of fatty acid, the monohydric alcohol ester of polybasic acid, the fatty acid ester of polyhydric alcohol, and their derivatives. Then, the formation is made by the slurry, and the forming body obtained is subjected to deoiling, sintered, and them heat-treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低酸素含有量であ
り、高い焼結体密度を有し、従来に比べて配向度を高め
た高性能の希土類焼結磁石を得られる製造方法に関す
る。又本発明は、低酸素含有量であり、高い焼結体密度
を有し、従来に比べて極異方方向または平行異方性の配
向度を高めた、高性能のR−T−B系焼結リング磁石に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-performance rare earth sintered magnet having a low oxygen content, a high sintered body density, and a higher degree of orientation than in the past. Further, the present invention provides a high-performance RTB system having a low oxygen content, a high sintered body density, and a highly anisotropic or parallel anisotropic orientation degree as compared with the prior art. It relates to a sintered ring magnet.

【0002】[0002]

【従来の技術】R−Fe−B系焼結磁石(RはYを含む
希土類元素の少なくとも1種である)は、所定組成のR
−Fe−B系合金を粗粉砕し、次いでN等の不活性ガ
ス中で微粉砕し、得られた平均粒径1〜10μmの微粉末
を磁場中成形し、次いで焼結し、熱処理することにより
製造される。残留磁束密度Brおよび最大エネルギー積(B
H)maxを高めるには含有酸素量の低減が極めて重要であ
る。このため、本出願人は前記微粉の酸化の進行を阻止
する作用の顕著な鉱油や合成油を発見し、それら油中に
前記微粉を回収してスラリー化し、このスラリーを成形
し、次いで得られた成形体を脱油し、焼結し、熱処理す
ることにより低酸素含有量、高密度型の高性能R−Fe
−B系焼結磁石を得られる製造プロセスを提案した(特
許第2731337号等参照)。この製造プロセスは前記微粉
末及び成形体を前記油で被覆し大気と遮断することによ
り酸化の進行を実質的に抑えられるという特徴を有し、
脱油し、焼結して得られたR−Fe−B系焼結体の含有
酸素量が微粉砕前のR−Fe−B系合金粗粉に相当する
低水準に保持される。よってR−Fe−B系焼結体中の
R元素が酸化物化し、実質的に滅失して生じる有効希土
類量の減少が小さく抑えられ、粒界相を形成する希土類
リッチ相は健全に保持される。有効希土類量の実質的な
滅失が小さい分だけR含有量を低く設定できるので従来
に比べて余剰のRリッチ相及び希土類酸化物が低減で
き、同時に強磁性相のRFe14B型結晶粒(主相)
の体積比率を高められるのでBr,(BH)maxが顕著に向上
する。
2. Description of the Related Art An R—Fe—B sintered magnet (R is at least one kind of rare earth element containing Y) has a predetermined composition.
Coarsely crushed -fe-B-based alloy, and then finely pulverized in an inert gas such as N 2, fine powder having an average particle size of 1~10μm obtained by molding in a magnetic field and then sintered, heat-treated It is manufactured by Residual magnetic flux density Br and maximum energy product (B
It is very important to reduce the oxygen content in order to increase H) max. For this reason, the present applicant has discovered mineral oil or synthetic oil having a remarkable effect of inhibiting the progress of the oxidation of the fine powder, recovering the fine powder in the oil to form a slurry, molding the slurry, and then obtaining the slurry. Deoiled, sintered, and heat-treated compacts have low oxygen content and high density R-Fe
-Proposed a manufacturing process for obtaining a B-based sintered magnet (see Patent No. 2731337). This manufacturing process has a feature that the progress of oxidation can be substantially suppressed by coating the fine powder and the molded body with the oil and shielding the air from the atmosphere,
The oxygen content of the R-Fe-B-based sintered body obtained by deoiling and sintering is maintained at a low level corresponding to the R-Fe-B-based alloy coarse powder before fine pulverization. Therefore, the reduction of the amount of effective rare earth which occurs when the R element in the R—Fe—B based sintered body is oxidized and substantially lost is suppressed, and the rare earth rich phase forming the grain boundary phase is kept sound. You. Since the R content can be set lower by the amount that the substantial loss of the effective rare earth is small, the excess R-rich phase and rare earth oxide can be reduced as compared with the prior art, and at the same time, the R 2 Fe 14 B type crystal grains of the ferromagnetic phase (Prime Minister)
, The Br, (BH) max is significantly improved.

【0003】[0003]

【発明が解決しようとする課題】しかし最近のVCMやCD
ピックアップ、家電用モータ等の磁石応用製品の小型化
・軽量化のニーズは根強く、使用される希土類焼結磁石
の小サイズ化および高性能化の要求は益々厳しくなって
きている。この要求に対し、低酸素含有量、高密度型の
高性能R−Fe−B系焼結磁石を得られる前記製造プロ
セス(特許第2731337号等参照)を適用しても、本発明
者らが期待したほどBr及び(BH)maxは高くならなかっ
た。この現象を本発明者らが詳細に調査した結果、前記
スラリーの磁場配向性が十分ではなく、改良の余地を残
していることがわかった。この問題に鑑み、本発明者ら
は既に、鉱油等の非酸化性油と非イオン性又は陰イオン
性界面活性剤とを所定比率で配合してなる油中に前記微
粉を回収し、得られたスラリーが良好な磁場配向性を有
し、もってこのスラリーにより磁場中成形し、次いで順
次脱油、焼結及び熱処理を行うことにより従来に比べて
Br及び(BH)maxを高めた希土類焼結磁石が得られること
を知見し、その製造方法(特願2000−196345号)を出願
した。
[Problems to be solved by the invention] However, recent VCM and CD
There is a strong need for smaller and lighter magnet-applied products such as pickups and motors for home appliances, and the demand for smaller-sized and higher-performance rare-earth sintered magnets to be used is becoming more and more severe. In response to this demand, the present inventors have applied the above-described manufacturing process (see Patent No. 2731337 or the like) capable of obtaining a high-performance sintered magnet of low oxygen content and high density. Br and (BH) max were not as high as expected. As a result of a detailed investigation of this phenomenon by the present inventors, it has been found that the magnetic field orientation of the slurry is not sufficient, leaving room for improvement. In view of this problem, the present inventors have already recovered the fine powder in an oil obtained by mixing a non-oxidizing oil such as a mineral oil and a non-ionic or anionic surfactant in a predetermined ratio, and obtained the fine powder. The slurry has good magnetic field orientation, and is molded in a magnetic field with this slurry, and then sequentially deoiling, sintering, and heat-treating.
We found that a rare earth sintered magnet with increased Br and (BH) max could be obtained, and filed a method for producing it (Japanese Patent Application No. 2000-196345).

【0004】本発明者らは、非イオン性又は陰イオン性
界面活性剤以外で、それらと類似の効果を得られるスラ
リー改質剤を求めて鋭意検討した結果、スラリー改質剤
として後述の潤滑剤が好適であることを発見した。この
ように、本発明が解決しようとする課題は、低酸素含有
量であり、高い焼結体密度を有し、従来に比べて配向度
を高めた高性能の希土類焼結磁石を得られる製造方法を
提供することである。又本発明の課題は、低酸素含有量
であり、高い焼結体密度を有し、従来に比べて極異方方
向または平行異方性の配向度を高めた、高性能のR−T
−B系焼結リング磁石を提供することである。
[0004] The present inventors have conducted intensive studies in search of a slurry modifier other than a nonionic or anionic surfactant and capable of obtaining a similar effect to the above. The agent has been found to be suitable. As described above, the problem to be solved by the present invention is to produce a high-performance rare-earth sintered magnet having a low oxygen content, a high sintered body density, and a higher degree of orientation than conventional ones. Is to provide a way. Another object of the present invention is to provide a high-performance R-T having a low oxygen content, a high sintered body density, and a highly anisotropic or parallel anisotropic orientation degree as compared with the prior art.
-To provide a B-type sintered ring magnet.

【0005】[0005]

【課題を解決するための手段】上記課題を解決した本発
明の希土類焼結磁石の製造方法は、希土類焼結磁石用合
金粗粉を非酸化性雰囲気中で平均粒径1〜10μmに微粉
砕し、得られた微粉を鉱油、合成油及び植物油から選択
される少なくとも1種の油と、脂肪酸の1価アルコール
エステル,多塩基酸の1価アルコールエステル,多価ア
ルコールの脂肪酸エステル及びそれらの誘導体のうちか
ら選択される少なくとも1種からなる潤滑剤とからなる
非酸化性油中に回収してスラリーを作製し、次いで前記
スラリーにより成形し、得られた成形体を脱油し、次い
で焼結し、熱処理することを特徴とする。
A method for manufacturing a rare earth sintered magnet according to the present invention, which has solved the above-mentioned problems, comprises finely pulverizing an alloy coarse powder for a rare earth sintered magnet into an average particle size of 1 to 10 μm in a non-oxidizing atmosphere. Then, the obtained fine powder is mixed with at least one oil selected from mineral oil, synthetic oil and vegetable oil, monohydric alcohol ester of fatty acid, monohydric alcohol ester of polybasic acid, fatty acid ester of polyhydric alcohol and derivatives thereof. A slurry is prepared by recovering the slurry in a non-oxidizing oil comprising at least one lubricant selected from the group consisting of a lubricant, and then molded by the slurry, and the obtained molded body is deoiled, and then sintered. And heat-treating.

【0006】又本発明のリング磁石は、重量%で、R
(RはYを含む希土類元素の少なくとも1種であり、R
に占めるNdが50原子%以上である):28〜33%,B:
0.8〜1.5%,Co:0.5〜5%,Cu:0.01〜0.3%、及
び残部:Feの主要成分、ならびに不可避的不純物を含
有するR−Fe−Co−Cu−B系焼結磁石からなるリ
ング磁石であって、前記リング磁石の全重量に対し不可
避的に含有される酸素量が0.3%以下であり、極異方性
を有し、密度が7.56 Mg/m(g/cm)以上であり、リ
ング外径面での磁極間中心部表面位置で観測した(10
5)面からのX線回折ピーク強度:I(105)と(006)
面からのX線回折ピーク強度:I(006)との比率が、
I(105)/I(006)=0.5〜0.8であることを特徴とす
る。前記リング磁石は、X線源にCuKα1線(λ=0.
15405nm)を用いたX線回折による(105)面からのX線
回折ピーク強度:I(105)と(006)面からのX線回折
ピーク強度:I(006)との比率を測定しており、I(1
05)/I(006)=0.5〜0.8のときに、従来に比べて高い
Br及び(BH)maxを得られる。
Further, the ring magnet of the present invention has a weight percentage of R
(R is at least one rare earth element including Y;
Nd is at least 50 atomic%): 28-33%, B:
0.8 to 1.5%, Co: 0.5 to 5%, Cu: 0.01 to 0.3%, and the balance: a ring composed of an R-Fe-Co-Cu-B sintered magnet containing a main component of Fe and unavoidable impurities. A magnet having an inevitable oxygen content of 0.3% or less with respect to the total weight of the ring magnet, having polar anisotropy, and having a density of 7.56 Mg / m 3 (g / cm 3 ) or more It was observed at the surface position of the center between the magnetic poles on the ring outer diameter surface (10
5) X-ray diffraction peak intensity from plane: I (105) and (006)
X-ray diffraction peak intensity from the surface: the ratio to I (006) is
It is characterized in that I (105) / I (006) = 0.5 to 0.8. The ring magnet uses a CuKα1 ray (λ = 0.
The ratio of the X-ray diffraction peak intensity from the (105) plane: I (105) to the X-ray diffraction peak intensity from the (006) plane: I (006) by X-ray diffraction using (15405 nm) is measured. , I (1
05) / I (006) = 0.5-0.8, higher than before
Br and (BH) max are obtained.

【0007】又本発明のリング磁石は、重量%で、R
(RはYを含む希土類元素の少なくとも1種であり、R
に占めるNdが50原子%以上である):28〜33%,B:
0.8〜1.5%,Co:0.5〜5%,Cu:0.01〜0.3%,及
び残部:Feの主要成分、ならびに不可避的不純物を含
有するR−Fe−Co−Cu−B系焼結磁石からなるリ
ング磁石であって、前記リング磁石の全重量に対し不可
避的に含有される酸素量が0.3%以下であり、平行異方
性を有し、密度が7.56 Mg/m(g/cm)以上であり、
室温の保磁力iHcが1.1MA/m(14kOe)以上であり、室温
における配向方向の残留磁束密度(Br//)と配向方向に
垂直な長さ方向の残留磁束密度(Br⊥)とで定義する配
向度:[(Br//)/(Br//+ Br⊥)×100(%)] が85.5%以
上であることを特徴とする。
Further, the ring magnet of the present invention has a weight percentage of R
(R is at least one rare earth element including Y;
Nd is at least 50 atomic%): 28-33%, B:
0.8 to 1.5%, Co: 0.5 to 5%, Cu: 0.01 to 0.3%, and balance: a main component of Fe and an R-Fe-Co-Cu-B-based sintered magnet containing unavoidable impurities. A magnet having an inevitable oxygen content of 0.3% or less with respect to the total weight of the ring magnet, having parallel anisotropy, and having a density of 7.56 Mg / m 3 (g / cm 3 ) or more And
Room temperature coercive force iHc of 1.1 MA / m (14 kOe) or more, defined by residual magnetic flux density (Br //) in the orientation direction at room temperature and residual magnetic flux density (Br⊥) in the length direction perpendicular to the orientation direction The degree of orientation: [(Br //) / (Br // + Br⊥) × 100 (%)] is 85.5% or more.

【0008】[0008]

【発明の実施の形態】本発明者らは前記スラリーの改質
用潤滑剤として、炭化水素鎖(CnHm)からなる親油基
と、化学結合の電荷分布に偏りがあって電気的極性を有
する,−OH,−COOH,−COO−,>NHなど
の極性基とで構成されている有機化学物質を検討した。
鉱油、合成油あるいは植物油と前記潤滑剤とを所定重量
比率で配合してなる液中にR−Fe−B系合金微粉を回
収しスラリー化すると、前記潤滑剤の極性基が前記微粉
粒子に吸着し、又前記潤滑剤の親油基が保護膜の役割を
果たす。その吸着力の源は極性基の電気的引力である
が、場合によってはR−Fe−B系合金微粉粒子の構成
元素と反応して化学吸着することもある。このため、極
性基の種類によって潤滑剤と前記微粉粒子との吸着の強
さ、及び前記微粉粒子表面への単位面積当りの吸着分子
数が変化し、脱油工程及びそれに続く焼結工程後の残留
炭素量が顕著に変化することがわかった。また同じ極性
基を有していても親油基の炭素数が多くなれば潤滑剤自
体の分子量が大きくなり、揮発性が低くなって残留炭素
量が増加する現象が見られた。こうして本発明者らは、
第一に極性基及び親油基の種類とR−Fe−B系焼結体
炭素量との関係、第二に極性基及び親油基の種類と磁気
特性との関係に着目し、上記課題を解決するにふさわし
い潤滑剤を詳細に検討した。その結果、焼結体含有炭素
量の増加が非常に小さく抑えられ、高いiHcを得られ、
かつ量産に好適な高い成形体強度の得られる、[化1]
の基本構造式の潤滑剤を発見した。[化1]において、
,R’は炭化水素基である。
As reforming lubricant DETAILED DESCRIPTION OF THE INVENTION The present inventors have the slurry, and the lipophilic group consisting of hydrocarbon chains (C n H m), electrically there is a bias in the charge distribution of chemical bonds We are having a polar, -OH, -COOH, -COO -, > were examined organic chemicals is composed of a polar group such as NH 2.
When R-Fe-B-based alloy fine powder is recovered and slurried in a liquid obtained by mixing mineral oil, synthetic oil or vegetable oil and the lubricant in a predetermined weight ratio, the polar groups of the lubricant are adsorbed on the fine powder particles. The lipophilic group of the lubricant serves as a protective film. The source of the adsorptive power is the electric attraction of the polar group, but in some cases, it may react with the constituent elements of the R-Fe-B-based alloy fine particles to chemically adsorb. For this reason, the strength of adsorption between the lubricant and the fine powder particles and the number of molecules adsorbed on the fine powder particle surface per unit area vary depending on the type of the polar group, and after the deoiling step and the subsequent sintering step. It was found that the amount of residual carbon significantly changed. In addition, even if they have the same polar group, when the number of carbon atoms of the lipophilic group increases, the molecular weight of the lubricant itself increases, the volatility decreases, and a phenomenon in which the residual carbon amount increases is observed. Thus we have
Focusing first on the relationship between the type of polar group and lipophilic group and the amount of R-Fe-B based sintered carbon, and secondly focusing on the relationship between the type of polar group and lipophilic group and magnetic properties, Lubricants suitable for solving the above were examined in detail. As a result, the increase in the carbon content of the sintered body is extremely small, and a high iHc can be obtained.
And high molded body strength suitable for mass production can be obtained.
The basic structural formula of the lubricant was discovered. In Chemical Formula 1,
R 1 and R 1 ′ are hydrocarbon groups.

【0009】[0009]

【化1】 Embedded image

【0010】本発明に好適な潤滑剤の極性基はCOO
(エステル結合)に限られ、親油基の炭素数は5個以上
20個以下の潤滑剤が好ましい。ここでCOO基は潤滑剤の1
分子中に1個ないし2個以上含んでいてもよい。また親油
基の炭化水素鎖(CnHm)も2個以上含んでいてもよい
(m,nは正の整数である)が、一つの親油基中の炭素
数は5個以上20個以下が好ましい。親油基中の炭素量が
5個未満では十分な潤滑性が得られず、磁気特性を改善
することが困難である。又親油基中の炭素量が20個超で
は潤滑剤の分子量が過大となり沸点が上昇し、揮発性が
低下して残留炭素量が0.1重量%超になり、iHcの低下を
招く。あるいは潤滑が過剰になり成形体強度を低下させ
てしまう。親油基の炭化水素は飽和、不飽和のいずれで
もよい。具体的には、本発明に用いる潤滑剤は脂肪酸の
1価アルコールエステル,多塩基酸の1価アルコールエス
テル,多価アルコールの脂肪酸エステル及びそれらの誘
導体のうちから選択される少なくとも1種である。潤滑
剤の添加量は、R−Fe−B系合金微粉との比率で表わ
される。配合比率は、(R−Fe−B系合金微粉):
(潤滑剤)=99.99〜99.5重量部:0.01〜0.5重量部とす
ることが好ましく、99.99〜99.7重量部:0.01〜0.3重量
部がより好ましい。潤滑剤の添加量が前記範囲未満では
添加効果が得られず、前記範囲を超えると成形体強度及
びiHcが顕著に低下する。なお、R−Fe−B系合金微
粉と潤滑剤に対する前記油の配合重量比率は特に限定さ
れず、R−Fe−B系合金微粉表面をくまなく被覆でき
るとともにスラリー中にR−Fe−B系合金微粉と潤滑
剤とが良好に分散し、スラリーの磁場配向性が向上する
ので好ましい。潤滑剤の添加時期は微粉砕前のR−Fe
−B系合金粗粉に添加してもよいし、スラリー作製時点
で添加してもよい。
The polar group of the lubricant suitable for the present invention is COO
(Ester bond), lipophilic group has 5 or more carbon atoms
No more than 20 lubricants are preferred. Here, the COO group is one of the lubricants
One or more may be contained in the molecule. The hydrocarbon chain of the lipophilic group (C n H m) which may also contain two or more (m, n is a positive integer) is the number of carbons in one lipophilic group 5 or more 20 The number is preferably less than or equal to the number. If the carbon content in the lipophilic group is less than 5, sufficient lubricity cannot be obtained, and it is difficult to improve the magnetic properties. If the amount of carbon in the lipophilic group is more than 20, the molecular weight of the lubricant becomes excessive and the boiling point increases, the volatility decreases, the residual carbon amount exceeds 0.1% by weight, and the iHc decreases. Or, the lubrication becomes excessive and the strength of the molded body is reduced. The lipophilic hydrocarbon may be saturated or unsaturated. Specifically, the lubricant used in the present invention is a fatty acid
It is at least one selected from monohydric alcohol esters, polybasic acid monohydric alcohol esters, polyhydric alcohol fatty acid esters, and derivatives thereof. The amount of the lubricant added is represented by the ratio to the R-Fe-B-based alloy fine powder. The compounding ratio is (R-Fe-B based alloy fine powder):
(Lubricant) = 99.99 to 99.5 parts by weight: preferably 0.01 to 0.5 parts by weight, and 99.99 to 99.7 parts by weight: more preferably 0.01 to 0.3 parts by weight. If the amount of the lubricant is less than the above range, the effect of adding the lubricant cannot be obtained. If the amount exceeds the above range, the strength of the molded article and iHc are remarkably reduced. The mixing weight ratio of the oil to the R-Fe-B-based alloy fine powder and the lubricant is not particularly limited, and the surface of the R-Fe-B-based alloy fine powder can be covered all over, and the R-Fe-B-based alloy is contained in the slurry. This is preferable because the alloy fine powder and the lubricant are well dispersed and the magnetic field orientation of the slurry is improved. The timing of adding the lubricant is as follows.
-It may be added to the B-based alloy coarse powder or may be added at the time of slurry preparation.

【0011】潤滑剤として適用可能なものを下記する。
例えば脂肪酸の一価アルコールエステルではカプリン酸
メチル、ミリスチン酸メチル、ラウリン酸メチル、ステ
アリン酸メチル、オイレン酸メチル、あるいはこれらエ
ステルのメチル基の代わりにブチル基、プロピル基、エ
チルヘキシル基がついているものがある。また、多塩基
酸の一価アルコールエステルでは、アジピン酸ジオレイ
ル、アジピン酸ジイソデシル、アジピン酸ジイソブチ
ル、フタル酸ジトリデシル、フタル酸2−エチルヘキシ
ル、フタル酸ジイソノニル、フタル酸ジデシル、フタル
酸ジアルキル等がある。また、多価アルコールの脂肪酸
およびその誘導体では、ソルビタントリオレエート等が
ある。多価アルコールの脂肪酸およびその誘導体のもの
よりは脂肪酸の一価アルコールエステル、または多塩基
酸の一価アルコールエステルの方が若干ではあるが磁石
の配向性を向上させやすい。
The following are applicable as lubricants.
For example, monohydric alcohol esters of fatty acids include methyl caprate, methyl myristate, methyl laurate, methyl stearate, methyl oleate, or those with butyl, propyl, or ethylhexyl groups in place of the methyl groups of these esters. is there. Examples of monohydric alcohol esters of polybasic acids include dioleyl adipate, diisodecyl adipate, diisobutyl adipate, ditridecyl phthalate, 2-ethylhexyl phthalate, diisononyl phthalate, didecyl phthalate, and dialkyl phthalate. In addition, fatty acids of polyhydric alcohols and derivatives thereof include sorbitan trioleate and the like. A monohydric alcohol ester of a fatty acid or a monohydric alcohol ester of a polybasic acid is more likely to improve the orientation of the magnet, albeit slightly, than those of a fatty acid and a derivative thereof of a polyhydric alcohol.

【0012】本発明による希土類焼結磁石がRFe
14B金属間化合物(RはYを含む希土類元素の少なく
とも1種であり、Rに占めるNdが50原子%以上であ
る)を主相とする場合、主要成分組成を、重量%で、
R:28〜33%.B:0.8〜1.5%、M :0〜0.6%(M
はNb,Mo,W,V,Ta,Cr,Ti,Zr及び
Hfから選択される少なくとも1種である), M
0〜0.6%(MはAl,Ga及びCuから選択される
少なくとも1種)及び残部Fe(但し、R+B+Fe+
+M=100重量%とした場合)とするのが好まし
い。以下、単に%と記すのは重量%を意味するものとす
る。R量は28〜33%が好ましい。良好な耐食性を具備す
るために、R量は28〜32%がより好ましく、28〜31%が
特に好ましい。R量が28%未満では所定のiHcを得られ
ず、33%超ではBrが著しく減少する。所定のBr及び
配向度を得るために、RはNd又はNdとDy、又はN
dとDyとPr及び不可避的R成分からなることが好ま
しい。即ち、Rに占めるNdを50原子%以上とし、Dy
含有量を0.3〜10%にするのが好ましい。又Rに占める
Ndを90原子%以上とし、Dy含有量を0.5〜8%にす
るのがより好ましい。Rに占めるNdが50原子%未満で
は資源上豊富なNdの使用が制限されて、実用性が低下
する。Dy含有量が0.3%未満ではDyの含有効果が得
られず、10%超ではBrが低下し所定の配向度を得られな
い。B量は0.8〜1.5%が好ましく、0.85〜1.2%がより
好ましい。B量が0.8%未満では1.1MA/m(14kOe)以上
のiHcを得ることが困難であり、B量が1.5%超ではBr
が著しく低下する。Nb,Mo,W,V,Ta,Cr,
Ti,Zr及びHfの少なくとも1種からなる高融点金
属元素Mを0.01〜0.6%含有することが磁気特性を高
めるために好ましい。Mを0.01〜0.6%含有すること
により、焼結過程での主相結晶粒の過度の粒成長が抑制
され、1.1MA/m(14kOe)以上のiHcを安定して得ること
ができる。しかし、Mを0.6%超含有すると逆に主相
結晶粒の正常な粒成長が阻害され、Brの低下を招く。又
含有量が0.01%未満では磁気特性を改良する効果が
得られない。M元素(Al,Ga及びCuの少なくと
も1種)の含有量は0.01〜0.6%が好ましい。Alの含
有によりiHcが向上し、耐食性が改善されるが、Al含
有量が0.6%超ではBrが大きく低下し、0.01%未満ではi
Hc及び耐食性を高める効果が得られない。より好ましい
Al含有量は0.05〜0.3%である。Gaの含有によりiHc
が顕著に向上するが、Ga含有量が0.6%超ではBrが大
きく低下し、0.01%未満ではiHcを高める効果が得られ
ない。より好ましいGa含有量は0.05〜0.2%である。
Cuの微量添加は耐食性の改善及びiHcの向上に寄与す
るが、Cu含有量が0.3%超ではBrが大きく低下し、0.0
1%未満では耐食性及びiHcを高める効果が得られない。
より好ましいCu含有量は0.05〜0.3%である。Coの
含有により耐食性が改善され、キュリー点が上昇し、希
土類焼結磁石の耐熱性が向上するが、Co含有量が5%
超では磁気特性に有害なFe−Co相が形成されあるい
はR(Fe,Co)14B相が形成されて、Br及びiH
cが大きく低下する。従って、Co含有量は5%以下が
好ましい。一方、Co含有量が0.5%未満では耐食性及
び耐熱性の向上効果が得られない。よって、Co含有量
は0.5〜5%が好ましい。Coを0.5〜5%及びCuを0.
01〜0.3%含有するときに1.1MA/m(14kOe)以上の室温
のiHcを得られる第2次熱処理の許容温度が広がる効果
を得られ、特に好ましい。Alを0.01〜0.3%含有させ
ると保磁力向上に寄与するとともに、熱処理温度のばら
つきによる保磁力の変動を低減することが可能である。
またNbを0.01〜0.08%含有させると焼結過程での結晶粒
成長を抑制し、粗大粒の形成を抑制することができる。
不可避に含有される酸素量は0.3%以下が好ましく、0.2
%以下がより好ましく、0.18%以下が特に好ましい。酸
素含有量を0.3%以下に低減することにより焼結体密度
を略理論密度まで高めることができる。RFe14
型金属間化合物を主相とするR−Fe−B系焼結磁石の
場合7.56Mg/m(g/cm)以上の焼結体密度を安定して
得られ、さらに主要成分組成、微粉砕平均粒径及び焼結
温度等を適宜選択すれば7.58Mg/m(g/cm)以上、さ
らには7.59Mg/m(g/cm)以上のものを得ることがで
きる。又不可避に含有される炭素量は0.10%以下が好ま
しく、0.07%以下がより好ましい。炭素含有量の低減に
より希土類炭化物の生成が抑えられ、有効希土類量が増
大し、iHc及び(BH)max等を高めることができる。又不可
避に含有される窒素量は0.15%が好ましい。窒素量が0.
15%を超えるとBrが大きく低下する。本発明の磁石には
公知の表面処理被膜(Niめっき等)が被覆され、実用
に供されるが、R量が28〜32%でかつ窒素量が0.002〜
0.15%のときに良好な耐食性が付与されるのでより好ま
しい。又、原料合金としてCaを還元剤とする還元拡散
法により作製したものを用いて本発明の磁石を作製した
場合、所定のiHc及び配向度を得るために、前記磁石の
全重量を100重量%としてCa含有量を0.1重量%以下
(0を含まず)に抑えることが好ましく、0.03重量%以
下(0を含まず)に抑えることがより好ましい。
The rare earth sintered magnet according to the present invention has an R2Fe
14B intermetallic compound (R is less of rare earth elements including Y
And N is 50% by atom or more in R.
) As the main phase, the main component composition is
R: 28-33%. B: 0.8-1.5%, M 1: 0 to 0.6% (M
1Are Nb, Mo, W, V, Ta, Cr, Ti, Zr and
Hf), M2:
0 to 0.6% (M2Is selected from Al, Ga and Cu
At least one) and the balance Fe (provided that R + B + Fe +
M1+ M2= 100% by weight)
No. Hereinafter, simply referring to “%” means “% by weight”.
You. The amount of R is preferably 28 to 33%. Has good corrosion resistance
Therefore, the R content is more preferably 28 to 32%, and 28 to 31%
Particularly preferred. If the amount of R is less than 28%, the specified iHc can be obtained.
If it exceeds 33%, Br is remarkably reduced. Predetermined Br and
In order to obtain a degree of orientation, R is Nd or Nd and Dy, or N
It preferably comprises d, Dy, Pr and an unavoidable R component.
New That is, Nd occupying R is 50 atomic% or more, and Dy
Preferably, the content is 0.3 to 10%. Also occupies R
Nd is 90 atomic% or more, and Dy content is 0.5-8%.
More preferably. When Nd in R is less than 50 atomic%
Is limited in the use of Nd, which is abundant in resources, reducing its practicality
I do. When the Dy content is less than 0.3%, the effect of Dy content is obtained.
If it exceeds 10%, Br decreases and the desired degree of orientation cannot be obtained.
No. B content is preferably 0.8 to 1.5%, more preferably 0.85 to 1.2%
preferable. 1.1MA / m (14kOe) or more when B content is less than 0.8%
It is difficult to obtain the iHc of
Is significantly reduced. Nb, Mo, W, V, Ta, Cr,
High melting point gold made of at least one of Ti, Zr and Hf
Genus element M1Contains 0.01 to 0.6% increases magnetic properties
It is preferable for M10.01 to 0.6%
Suppresses excessive grain growth of main phase grains during sintering process
To obtain a stable iHc of 1.1 MA / m (14 kOe) or more
Can be. But M1Is more than 0.6%
The normal grain growth of the crystal grains is inhibited, leading to a decrease in Br. or
M1If the content is less than 0.01%, the effect of improving the magnetic properties is not obtained.
I can't get it. M2Elements (at least Al, Ga and Cu)
Is preferably 0.01 to 0.6%. Including Al
The presence improves the iHc and improves the corrosion resistance.
When the content is more than 0.6%, Br is greatly reduced.
The effect of increasing Hc and corrosion resistance cannot be obtained. More preferred
The Al content is 0.05-0.3%. IHc
Is significantly improved, but when the Ga content exceeds 0.6%, Br is large.
It decreases sharply, and if it is less than 0.01%, the effect of increasing iHc is obtained.
Absent. A more preferable Ga content is 0.05 to 0.2%.
Trace addition of Cu contributes to improvement of corrosion resistance and iHc
However, when the Cu content exceeds 0.3%, Br is greatly reduced, and
If it is less than 1%, the effect of increasing the corrosion resistance and iHc cannot be obtained.
A more preferred Cu content is 0.05 to 0.3%. Co's
Inclusion improves corrosion resistance, raises the Curie point,
The heat resistance of the earth sintered magnet is improved, but the Co content is 5%
Above the formation of Fe-Co phase harmful to magnetic properties
Is R2(Fe, Co)14Phase B is formed and Br and iH
c is greatly reduced. Therefore, the Co content is 5% or less.
preferable. On the other hand, if the Co content is less than 0.5%, corrosion resistance and
And the effect of improving heat resistance cannot be obtained. Therefore, Co content
Is preferably 0.5 to 5%. 0.5 to 5% Co and 0.
Room temperature of 1.1MA / m (14kOe) or more when containing 01-0.3%
Effect of increasing the permissible temperature of the second heat treatment to obtain iHc
Is particularly preferred. Al 0.01-0.3%
This contributes to the improvement of coercive force and the variation of heat treatment temperature.
Variations in coercive force due to sticking can be reduced.
Also, if Nb is contained at 0.01 to 0.08%, the crystal grains during the sintering process
Growth can be suppressed, and formation of coarse grains can be suppressed.
The unavoidable oxygen content is preferably 0.3% or less, and 0.2% or less.
% Or less, more preferably 0.18% or less. acid
Reduces sintered body density by reducing elemental content to 0.3% or less
Can be increased to approximately the theoretical density. R2Fe14B
Of an R-Fe-B based sintered magnet having an intermetallic compound as a main phase
7.56Mg / m3(G / cm3) More stable sintered body density
Obtained, furthermore the main component composition, the finely pulverized average particle size and sintering
7.58Mg / m if you select temperature etc.3(G / cm3That's it
7.59Mg / m3(G / cm3Can get more than that
Wear. The amount of carbon unavoidably contained is preferably 0.10% or less.
And 0.07% or less is more preferable. For reduction of carbon content
The generation of rare earth carbides is suppressed, and the amount of effective rare earth increases.
On the other hand, iHc and (BH) max can be increased. Again impossible
The amount of nitrogen contained is preferably 0.15%. Nitrogen content is 0.
If it exceeds 15%, Br is greatly reduced. The magnet of the present invention
Well-known surface treatment film (Ni plating etc.)
The amount of R is 28-32% and the amount of nitrogen is 0.002-
0.15% is preferred because good corrosion resistance is imparted
New Also, reduction diffusion using Ca as a reducing agent as a raw material alloy
The magnet of the present invention was produced using the one produced by the method
In order to obtain a predetermined iHc and degree of orientation,
0.1% by weight or less of Ca content based on the total weight of 100% by weight
(Not including 0), preferably 0.03% by weight or less
It is more preferable to keep the temperature below (not including 0).

【0013】本発明による希土類焼結磁石にはSmCo
又はSmTM17(TMはCo,Fe,Cu及び
M’からなり、M’はZr,Hf,Ti及びVから選択
される少なくとも1種である)を主相とするものが包含
される。
The rare earth sintered magnet according to the present invention has SmCo
5 or Sm 2 TM 17 (TM is composed of Co, Fe, Cu and M ′, and M ′ is at least one selected from Zr, Hf, Ti and V). .

【0014】本発明の希土類焼結磁石の製造方法におけ
る原料合金の微粉砕は不活性ガスを粉砕媒体とするジェ
ットミル等による乾式粉砕装置または酸化を阻止できる
条件に設定された湿式ボールミル等の湿式粉砕装置を用
いて行うことができる。例えば、酸素濃度が0.1体積%
未満、より好ましくは0.01体積%以下の不活性ガス雰囲
気中でジェットミル微粉砕後、大気に触れないように前
記不活性ガス雰囲気中から直接微粉を所定配合比率の鉱
油、合成油及び植物油から選択される少なくとも1種の
油と潤滑剤とからなる非酸化性液中に回収し、スラリー
化する。前記微粉の平均粒径は1〜10μmが好ましく、
3〜6μmがより好ましい。平均粒径が1μm未満では
微粉の粉砕効率が大きく低下し、10μm超ではiHc及び
配向度が大きく低下する。回収したスラリーを成形原料
として、所定の成形装置により磁場中成形する。成形体
の酸化による磁気特性の劣化を阻止するために、成形直
後から脱油までの間前記液中で保存することが望まし
い。成形体を常温から焼結温度まで急激に昇温すると成
形体の内部温度が急激に上昇し、成形体に残留する油と
成形体を構成する希土類元素とが反応して希土類炭化物
を生成し磁気特性が劣化する。この対策として、温度10
0〜500℃、真空度13.3Pa(10−1Torr)以下で30分間以
上加熱する脱油処理を施すことが望ましい。脱油処理に
より成形体に残留する油が十分に除去される。なお、脱
油処理の加熱温度は100〜500℃であれば一点である必要
はなく二点以上であってもよい。また13.3Pa(10−1To
rr)以下で室温から500℃までの昇温速度を10℃/分以
下、より好ましくは5℃/分以下とする脱油処理を施す
ことによっても脱油が効率よく行われる。
In the method for producing a rare earth sintered magnet of the present invention, the raw material alloy is finely pulverized by a dry pulverizer using a jet mill or the like using an inert gas as a pulverizing medium, or a wet pulverizer such as a wet ball mill set to a condition capable of preventing oxidation. It can be performed using a crusher. For example, if the oxygen concentration is 0.1% by volume
After finely pulverizing a jet mill in an inert gas atmosphere of less than 0.01% by volume or less, and then selecting fine powder directly from the inert gas atmosphere from mineral oil, synthetic oil, and vegetable oil in the inert gas atmosphere so as not to come into contact with the air. It is recovered in a non-oxidizing liquid composed of at least one type of oil and a lubricant to be slurried. The average particle size of the fine powder is preferably 1 to 10 μm,
3-6 μm is more preferred. If the average particle size is less than 1 μm, the pulverization efficiency of the fine powder is greatly reduced, and if it is more than 10 μm, iHc and the degree of orientation are significantly reduced. The recovered slurry is used as a forming raw material and is formed in a magnetic field by a predetermined forming apparatus. In order to prevent deterioration of the magnetic properties due to oxidation of the molded body, it is desirable to store the molded body in the liquid immediately after molding until deoiling. When the temperature of the compact rapidly rises from room temperature to the sintering temperature, the internal temperature of the compact rapidly rises, and the oil remaining in the compact and the rare earth elements constituting the compact react with each other to generate rare-earth carbides and magnetic properties. The characteristics deteriorate. As a countermeasure against this, temperature 10
It is desirable to perform a deoiling treatment by heating at 0 to 500 ° C. and a degree of vacuum of 13.3 Pa (10 −1 Torr) or less for 30 minutes or more. Oil remaining on the compact is sufficiently removed by the deoiling treatment. The heating temperature in the deoiling treatment is not required to be one point as long as it is 100 to 500 ° C., and may be two or more points. 13.3Pa (10 -1 To
rr) or less, deoiling can be efficiently performed by performing a deoiling treatment at a temperature rising rate from room temperature to 500 ° C. of 10 ° C./min or less, more preferably 5 ° C./min or less.

【0015】鉱液油、合成油又は植物油として、脱油及
び成形性の点から、分留点が350℃以下のものがよい。
又室温の動粘度が10cSt以下のものがよく、5cSt以下の
ものがさらに好ましい。
As the mineral oil, synthetic oil or vegetable oil, those having a fractionation point of 350 ° C. or less are preferred from the viewpoint of deoiling and moldability.
The kinematic viscosity at room temperature is preferably 10 cSt or less, more preferably 5 cSt or less.

【0016】[0016]

【実施例】以下、実施例により本発明を説明するが、そ
れら実施例により本発明が限定されるものではない。 (実施例1)重量%で、Nd:23.1%,Pr:6.4%,D
y:1.0%,B:0.9%,Co:2.0%,Ga:0.1%,C
u:0.1%及び残部:Fe からなるR−Fe−B系合
金粗粉を、酸素濃度が体積比で10ppm以下に調整した窒
素ガス雰囲気中でジェットミル微粉砕し、得られた平均
粒径4.0μmの微粉をこの窒素ガス雰囲気中で大気に触
れることなく鉱油(出光興産(株)製、商品名:出光ス
ーパーゾルPA-30)中に回収しスラリー化した。なお、
平均粒径はSympatec社製レーザー回折型粒径分布測定装
置(商品名:ヘロス・ロードス)により測定した。次い
で得られたスラリーに所定量のオレイン酸メチルを添加
し、攪拌機により混合した。スラリーの配合内訳を前記
微粉:70重量部、鉱油:29.9重量部、オレイン酸メチ
ル:0.10重量部とした。このスラリーを所定の金型キャ
ビティに注入し、配向磁場強度:1.0MA/m(13kOe),成
形圧力: 98MPa(1.0ton/cm2)の条件で横磁場の圧縮成
形を行い、15mm×25mm×10mmの直方体状の成形体
を得た。また、配向方向は10mm辺方向とした。この
成形体の室温強度を3点曲げ試験により測定した。な
お、成形体の15mm×25mmの面が上下面になるように
曲げ試験機の治具にセットし、10mmの辺に平行に加圧
し3点曲げ強度を測定した。結果を表1に示す。また同
様にして成形した別の成形体を真空度約66.5Pa(5×10
−1Torr),200℃の条件で3時間加熱して脱油し、次い
で同雰囲気中で1050℃まで昇温し、次いで1050℃で2時
間保持して焼結し、その後室温まで冷却した。得られた
焼結体をアルゴン雰囲気中で900℃で2時間加熱し、次い
で室温まで急冷する第1次熱処理を行い、続いてアルゴ
ン雰囲気中で480℃で1時間加熱し、次いで室温まで冷却
する第2次熱処理を行い、約10mm角のR−Fe−B系
焼結磁石を得た。得られた焼結磁石を7mm角に加工
し、磁気特性測定用試料とした。次に、室温(20℃)に
おいて11.9MA/m(150kOe)のパルス磁場を前記試料の異
方性付与方向に沿って印加し、磁気特性を測定した。磁
気特性は11.9MA/mのパルス磁場を印加したときの磁化の
強さの最大値(4πImax )を求め、配向度を(Br/4πI
max )で定義し、評価した。結果を表1に示す。又得ら
れた焼結磁石の含有炭素量の分析値を表1に示す。 (実施例2〜4)オレイン酸メチルの代わりにステアリ
ン酸メチル、アジピン酸ジイソデシル、ステアリン酸2
−エチルヘキシルを各々添加した以外は、実施例1と同
様にして各3種のスラリーを作製した。以降このスラリ
ーを用いた以外は実施例1と同様にして各R−Fe−B
系焼結磁石を作製し評価した。結果を表1に示す。 (比較例1)オレイン酸メチルを添加せずに、実施例1
のR−Fe−B系微粉と鉱油とからなるスラリーを作製
し、以降このスラリーを用いた以外は実施例1と同様に
してR−Fe−B系焼結磁石を作製し評価した。結果を
表1に示す。 (比較例2)オレイン酸メチルに替えて、実施例1のス
ラリーにオレイルアルコールを0.1重量部添加した以外
は実施例1と同様の手順でR−Fe−B系焼結磁石を作
製し評価した。結果を表1に示す。 (比較例3)オレイン酸メチルに替えて、実施例1のス
ラリーにオレイルアミンを0.1重量部添加した以外は実
施例1と同様の手順でR−Fe−B系焼結磁石を作製し
評価した。結果を表1に示す。 (比較例4)オレイン酸メチルに替えて、実施例1のス
ラリーに酢酸メチルを0.1重量部添加した以外は実施例
1と同様の手順でR−Fe−B系焼結磁石を作製し評価
した。結果を表1に示す。 (比較例5)オレイン酸メチルに替えて、実施例1のス
ラリーにベヘニン酸メチルを0.1重量部添加した以外は
実施例1と同様の手順でR−Fe−B系焼結磁石を作製
し評価した。結果を表1に示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. (Example 1) By weight%, Nd: 23.1%, Pr: 6.4%, D
y: 1.0%, B: 0.9%, Co: 2.0%, Ga: 0.1%, C
u: 0.1% and balance: Fe—R-Fe—B-based alloy coarse powder is finely pulverized by a jet mill in a nitrogen gas atmosphere in which the oxygen concentration is adjusted to 10 ppm or less by volume, and the obtained average particle size is 4.0. The μm fine powder was recovered in a mineral oil (trade name: Idemitsu Super Sol PA-30, manufactured by Idemitsu Kosan Co., Ltd.) without being exposed to the air in this nitrogen gas atmosphere to form a slurry. In addition,
The average particle size was measured by a laser diffraction type particle size distribution measuring device (trade name: Heros Rhodes) manufactured by Sympatec. Next, a predetermined amount of methyl oleate was added to the obtained slurry and mixed with a stirrer. The composition of the slurry was 70 parts by weight of the fine powder, 29.9 parts by weight of mineral oil, and 0.10 parts by weight of methyl oleate. This slurry is poured into a predetermined mold cavity, and a horizontal magnetic field is compression-molded under the conditions of an orientation magnetic field strength of 1.0 MA / m (13 kOe) and a molding pressure of 98 MPa (1.0 ton / cm 2 ). A 10 mm rectangular solid was obtained. The orientation direction was a 10 mm side direction. The room temperature strength of this molded body was measured by a three-point bending test. The molded body was set on a jig of a bending tester such that the 15 mm × 25 mm surface was the upper and lower surfaces, and pressed in parallel to the 10 mm side to measure the three-point bending strength. Table 1 shows the results. In addition, another molded body molded in the same manner was vacuumed to about 66.5 Pa (5 × 10
−1 Torr) and 200 ° C. for 3 hours to remove oil, and then heated to 1050 ° C. in the same atmosphere, and then sintered at 1050 ° C. for 2 hours, and then cooled to room temperature. The obtained sintered body is heated in an argon atmosphere at 900 ° C. for 2 hours, and then subjected to a first heat treatment of rapidly cooling to room temperature, followed by heating in an argon atmosphere at 480 ° C. for 1 hour and then cooling to room temperature. A second heat treatment was performed to obtain an R-Fe-B based sintered magnet of about 10 mm square. The obtained sintered magnet was processed into a 7 mm square to obtain a magnetic property measurement sample. Next, a pulse magnetic field of 11.9 MA / m (150 kOe) was applied at room temperature (20 ° C.) along the anisotropy imparting direction of the sample, and the magnetic properties were measured. For the magnetic properties, the maximum value of the magnetization intensity (4πI max ) when a pulse magnetic field of 11.9 MA / m was applied was determined, and the degree of orientation was determined as (Br / 4πI
max ) and evaluated. Table 1 shows the results. Table 1 shows the analysis values of the carbon content of the obtained sintered magnet. (Examples 2 to 4) Instead of methyl oleate, methyl stearate, diisodecyl adipate, stearic acid 2
Three kinds of slurries were prepared in the same manner as in Example 1 except that -ethylhexyl was added. Thereafter, each R-Fe-B was prepared in the same manner as in Example 1 except that this slurry was used.
A sintered magnet was produced and evaluated. Table 1 shows the results. (Comparative Example 1) Example 1 without adding methyl oleate
A slurry comprising R-Fe-B-based fine powder and mineral oil was prepared, and thereafter, an R-Fe-B-based sintered magnet was prepared and evaluated in the same manner as in Example 1 except that this slurry was used. Table 1 shows the results. (Comparative Example 2) An R-Fe-B based sintered magnet was prepared and evaluated in the same procedure as in Example 1 except that 0.1 parts by weight of oleyl alcohol was added to the slurry of Example 1 instead of methyl oleate. . Table 1 shows the results. (Comparative Example 3) An R-Fe-B based sintered magnet was prepared and evaluated in the same procedure as in Example 1 except that 0.1 parts by weight of oleylamine was added to the slurry of Example 1 instead of methyl oleate. Table 1 shows the results. (Comparative Example 4) An R-Fe-B-based sintered magnet was prepared and evaluated in the same procedure as in Example 1 except that 0.1 parts by weight of methyl acetate was added to the slurry of Example 1 instead of methyl oleate. . Table 1 shows the results. (Comparative Example 5) An R-Fe-B sintered magnet was prepared and evaluated in the same procedure as in Example 1 except that 0.1 part by weight of methyl behenate was added to the slurry of Example 1 instead of methyl oleate. did. Table 1 shows the results.

【0017】実施例1の成形体強度は比較例1(潤滑剤
無添加)に比べてやや低いが工業生産上なんら問題を発
生しないレベルであることが実証された。実施例1のオ
レイン酸メチル、比較例2のオレイルアルコール、比較
例3のオレイルアミンは各々親油基が同一(炭素数17
個)であり、極性基だけが異なる(順に−COO−、−
OH、>NH)。実施例1及び比較例2,3から明ら
かなように成形体強度は潤滑剤の極性基の種類に依存す
ることがわかる。又磁気特性は、実施例1及び比較例
2,3ではいずれも配向度(Br/4πImax )は同程度で
あるが、実施例1に比べて比較例2,3のiHcが低下し
ている。比較例1を基準にすると、添加した潤滑剤の残
留により焼結体炭素量が増加し、iHcが低下する程度が
異なることから焼結体炭素量も極性基の種類に依存して
いると判断される。又、比較例4,5は潤滑剤の極性基
を−COO−とし、親油基中の炭化水素鎖の炭素数を変
えたものである。比較例4の結果から、炭化水素鎖が短
い場合には配向度(Br/4πImax )の改善が認められな
いので、前記微粉間の潤滑性向上には寄与していないと
判断される。一方、比較例5から、炭化水素鎖が長い場
合には配向度(Br/4πImax )がみられるものの、焼結
体炭素量が増加してしまいiHcの低下が大きいことがわ
かる。
Although the strength of the molded article of Example 1 was slightly lower than that of Comparative Example 1 (without adding a lubricant), it was proved that the molded article had a strength at which no problem occurred in industrial production. The methyl oleate of Example 1, the oleyl alcohol of Comparative Example 2, and the oleylamine of Comparative Example 3 have the same lipophilic group (17 carbon atoms).
) And only the polar groups are different (in order -COO-,-
OH,> NH 2). As is clear from Example 1 and Comparative Examples 2 and 3, it can be seen that the strength of the compact depends on the type of polar group of the lubricant. Regarding the magnetic properties, the degree of orientation (Br / 4πI max ) is almost the same in Example 1 and Comparative Examples 2 and 3, but the iHc of Comparative Examples 2 and 3 is lower than that of Example 1. . Based on Comparative Example 1, the amount of sintered carbon increases due to the residual lubricant added, and the degree of decrease in iHc is different. Therefore, it is determined that the amount of carbon in the sintered compact also depends on the type of the polar group. Is done. In Comparative Examples 4 and 5, the polar group of the lubricant was -COO-, and the carbon number of the hydrocarbon chain in the lipophilic group was changed. From the results of Comparative Example 4, it is judged that no improvement in the degree of orientation (Br / 4πI max ) was observed when the hydrocarbon chain was short, and thus did not contribute to the improvement in lubricity between the fine powders. On the other hand, Comparative Example 5 shows that when the hydrocarbon chain is long, although the degree of orientation (Br / 4πI max ) is observed, the amount of carbon in the sintered body increases and the decrease in iHc is large.

【0018】[0018]

【表1】 [Table 1]

【0019】以下に極異方性を有する、R−T−B系焼
結リング磁石を作製し、評価した実施例を説明する。 (実施例5)重量%で、主要成分組成がNd:23.1%,
Pr:6.4%,Dy:1.0%,B:1.05%、Ga:0.08
%、Nb:0.2%,Al:0.05%,Cu:0.13%,C
o:2.0%及び残部FeからなるR−Fe−B系原料合
金粗粉(320メッシュアンタ゛ー)を酸素濃度が1ppm未満(体積
比)の窒素雰囲気中でジェットミル粉砕し、得られた平
均粒径3.8μmの微粉を用いた以外は実施例1と同様に
してスラリーを作製した。得られたスラリーを、図1に
示す成形機のキャビティ59に充填後、成形圧力:78.4MP
a(0.8ton/cm)及び100Vのパルス磁場で極異方とな
るよう磁場中成形し、成形体を得た。成形体を真空度が
約66.5Pa(5×10−1Torr)、200℃の条件で1時間加熱し
脱油後、続いて約4.0×10−3Pa(3×10−5Torr)、1060
℃の条件で2時間焼結後室温まで冷却し焼結体を得た。
次に、アルゴン雰囲気中で900℃で1時間加熱後550℃ま
で冷却し、次いで550℃で2時間加熱後さらに室温まで冷
却する熱処理を行った。次に所定寸法に加工後、電着に
より平均膜厚12μmのエポキシ樹脂膜をコーティング
し、外径48mm、内径30mm及び高さ11mmの8極の極異方性
を有する極異方リングを得た。次に上記の極異方リング
の外径面での磁極間中央部が測定できるようX線回折用
の試料を切り出し、その試料を理学電気(株)製のX線回
折装置(RU-200BH)にセットし、2θ−θ走査法によりX
線回折した。X線源にはCuKα1線(λ=0.15405n
m)を用い、ノイズ(バックグラウンド)は装置に内蔵
されたソフトにより除去した。主な回折ピークは主相で
あるR14B型金属間化合物の、2θ=29.08°の
(004)面、38.06°の(105)面、44.34°の(006)面であ
り、(006)面からのX線回折ピーク強度:I(006)を100%
として、I(004)/I(006)=0.33,I(105)/I(006)=0.63で
あった。結果を表2に示す。 (比較例6)実施例5のスラリーに替えて、比較例1の
スラリーにより極異方方向へ磁場中成形した以外は実施
例5と同様にして比較例の極異方リングを作製した。以
後は実施例5と同様に比較例6の極異方リングのX線回
折を行なった。結果を表2に示す。主な回折ピークは実
施例5と同様であったが、I(004)/I(006)=0.32,I(10
5)/I(006)=0.96であった。又前記極異方リングの酸素
量は0.13重量%であり、炭素量は0.05重量%であり、窒
素量は0.003重量%であった。
An example in which an RTB based sintered ring magnet having polar anisotropy was manufactured and evaluated will be described below. Example 5 By weight%, the main component composition was Nd: 23.1%,
Pr: 6.4%, Dy: 1.0%, B: 1.05%, Ga: 0.08
%, Nb: 0.2%, Al: 0.05%, Cu: 0.13%, C
o: R-Fe-B-based raw material alloy coarse powder (320 mesh antenna) composed of 2.0% and the balance Fe was jet-milled in a nitrogen atmosphere having an oxygen concentration of less than 1 ppm (volume ratio), and the average particle size obtained. A slurry was prepared in the same manner as in Example 1 except that 3.8 μm fine powder was used. After filling the obtained slurry into the cavity 59 of the molding machine shown in FIG.
It was molded in a magnetic field so as to be extremely anisotropic with a (0.8 ton / cm 2 ) and a pulse magnetic field of 100 V to obtain a molded article. The molded body was heated at 200 ° C. for 1 hour at a degree of vacuum of about 66.5 Pa (5 × 10 −1 Torr) and deoiled, and subsequently, about 4.0 × 10 −3 Pa (3 × 10 −5 Torr), 1060
After sintering at a temperature of 2 ° C. for 2 hours, it was cooled to room temperature to obtain a sintered body.
Next, heat treatment was performed in an argon atmosphere at 900 ° C. for 1 hour, followed by cooling to 550 ° C., and then heating at 550 ° C. for 2 hours and further cooling to room temperature. Next, after processing to a predetermined size, an epoxy resin film having an average film thickness of 12 μm was coated by electrodeposition to obtain a polar anisotropic ring having a polar anisotropy of 8 poles having an outer diameter of 48 mm, an inner diameter of 30 mm, and a height of 11 mm. . Next, a sample for X-ray diffraction was cut out so that the central portion between the magnetic poles on the outer diameter surface of the above-mentioned pole anisotropic ring could be measured, and the sample was used for an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. And X by the 2θ-θ scanning method.
Line diffraction. X-ray source is CuKα1 ray (λ = 0.15405n)
m), the noise (background) was removed by software built in the apparatus. The main diffraction peak is at 2θ = 29.08 ° of the main phase R 2 T 14 B type intermetallic compound.
(004) plane, (105) plane at 38.06 °, and (006) plane at 44.34 °. X-ray diffraction peak intensity from the (006) plane: 100% of I (006)
I (004) / I (006) = 0.33 and I (105) / I (006) = 0.63. Table 2 shows the results. (Comparative Example 6) An extremely anisotropic ring of a comparative example was manufactured in the same manner as in Example 5 except that the slurry of Comparative Example 1 was molded in a magnetic field in an extremely anisotropic direction instead of the slurry of Example 5. Thereafter, the X-ray diffraction of the extremely anisotropic ring of Comparative Example 6 was performed in the same manner as in Example 5. Table 2 shows the results. The main diffraction peaks were the same as in Example 5, but I (004) / I (006) = 0.32, I (10
5) / I (006) = 0.96. The amount of oxygen in the extremely anisotropic ring was 0.13% by weight, the amount of carbon was 0.05% by weight, and the amount of nitrogen was 0.003% by weight.

【0020】[0020]

【表2】 [Table 2]

【0021】表4の実施例5及び比較例6の結果より、
本発明によれば、極異方性を有し、密度が7.56 Mg/m
(g/cm)以上であり、リング外径面での磁極間中心部
表面位置で観測した(105)面からのX線回折ピーク強
度:I(105)と(006)面からのX線回折ピーク強度:
I(006)との比率が、I(105)/I(006)=0.5〜0.8
である極異方リングを提供できることがわかる。
From the results of Example 5 and Comparative Example 6 in Table 4,
According to the present invention, it has polar anisotropy and has a density of 7.56 Mg / m 3.
(G / cm 3 ) or more, and the X-ray diffraction peak intensity from the (105) plane observed at the center position between the magnetic poles on the outer surface of the ring: X-rays from the I (105) and (006) planes Diffraction peak intensity:
The ratio with I (006) is I (105) / I (006) = 0.5 to 0.8
It can be seen that a very anisotropic ring can be provided.

【0022】以下に全体が軸垂直方向へ一方向に配向し
た(以後、平行異方性という)、R−T−B系焼結リン
グ磁石を作製し、評価した実施例を説明する。 (実施例6)実施例1と同様にしてスラリーを作製し
た。得られたスラリーを、図1に示す成形機のキャビテ
ィ59(ダイス51及び52の内径:60mm、コア53の外径:45m
m、ダイス強磁性部51の長さ:34mm、充填深さ:34mm)に
充填後、成形圧力:78.4MPa(0.8ton/cm)及び軸垂直方
向へ一方向に磁場強度:約238.7kA/m(3kOe)をかけた条
件で磁場中成形し、成形体を得た。以後は実施例5と同
様にして平行異方性を有する平行異方性リングを得た。
次に、図2に示すように、作製した前記平行異方性リン
グ70の配向方向に沿って切り出し、接線方向5mm×長さ
方向6.5mm×径方向2.8mmの直方体を得た。直方体の切り
出し要領については図2(b)により説明する。平行異
方性リング70の中心点Oから半径方向に配向方向に垂直
に直線OPQを引く。点Pは内周面との接点であり、点Q
は外周面との接点である。次に、接点Pにおける接線RP
Sを引き、接線RPSの長さが接点Pを中心にして5mmにな
るようにする。次に、接線RPSに垂直に直線RT(長さ2.8
mm)及び直線SU(長さ2.8mm)を引く。次に、接線RPSに
平行に直線TU(長さ5mm)を引く。長方形RSUTにおける
RPS方向及びTU方向が平行異方性リング70の接線方向で
あり、RT方向およびSU方向を平行異方性リング70の配向
方向と定義する。又、長方形RSUTの厚み方向が平行異方
性リング70の長さ方向であり6.5mmの長さに切り出し
た。この切り出し要領により合計4個の直方体を切り出
した後、それらの各方向を一致させて貼りあわせた直方
体を得た。この直方体により下記の磁気特性を測定し
た。なお、測定対象の平行異方性リングから前記寸法の
直方体が切り出せない場合は、寸法が異なる以外は前記
の切り出し要領に従い複数の直方体を切り出した後、そ
れらの各方向を一致させて貼りあわせて寸法を調整すれ
ばよい。前記直方体の室温(20℃)における配向方向の
残留磁束密度(Br//)、保磁力iHc、最大エネルギー積
(BH)max及び角形比(Hk/iHc)を測定した。Hkは4πI
(磁化の強さ)−H(磁界の強さ)曲線の第2象限にお
いて、0.9Brに相当するHの値であり、HkをiHcで除した
角形比(Hk/iHc)は4πI−H減磁曲線の矩形性を示して
いる。次に、前記直方体の室温(20℃)における長さ方
向の残留磁束密度(Br⊥)を測定後、[(Br//)/(Br//+
Br⊥)×100(%)]により定義する平行異方性リングの配
向度を求めた。又平行異方性リングの密度を測定した。
それらの測定結果を表3に示す。又前記平行異方性リン
グの酸素量は0.13重量%であり、炭素量は0.05重量%で
あり、窒素量は0.003重量%であった。 (比較例7)実施例5のスラリーに替えて、比較例1の
スラリーにより配向方向へ磁場中成形した以外は実施例
5と同様にして比較例の平行異方性リングを作製し、評
価した。結果を表3に示す。
An example in which an RTB-based sintered ring magnet in which the whole is oriented in one direction in the direction perpendicular to the axis (hereinafter referred to as parallel anisotropy) is manufactured and evaluated will be described. (Example 6) A slurry was prepared in the same manner as in Example 1. The obtained slurry was poured into the cavity 59 (the inner diameter of the dies 51 and 52: 60 mm, the outer diameter of the core 53: 45 m) of the molding machine shown in FIG.
m, the length of the die ferromagnetic part 51: 34 mm, the filling depth: 34 mm), the molding pressure: 78.4 MPa (0.8 ton / cm 2 ) and the magnetic field strength in one direction perpendicular to the axis: about 238.7 kA / m (3 kOe) was applied in a magnetic field to obtain a molded product. Thereafter, a parallel anisotropic ring having parallel anisotropy was obtained in the same manner as in Example 5.
Next, as shown in FIG. 2, the formed parallel anisotropic ring 70 was cut along the orientation direction to obtain a rectangular parallelepiped having a tangential direction of 5 mm, a length direction of 6.5 mm and a radial direction of 2.8 mm. The method of cutting out the rectangular parallelepiped will be described with reference to FIG. A straight line OPQ is drawn from the center point O of the parallel anisotropic ring 70 in the radial direction and perpendicular to the orientation direction. Point P is a contact point with the inner peripheral surface, and point Q
Is a contact point with the outer peripheral surface. Next, the tangent RP at the contact point P
S is drawn so that the length of the tangent line RPS becomes 5 mm around the contact point P. Next, a straight line RT (length 2.8
mm) and a straight line SU (length 2.8mm). Next, a straight line TU (length 5 mm) is drawn parallel to the tangent line RPS. In rectangular RSUT
The RPS direction and the TU direction are tangential directions of the parallel anisotropic ring 70, and the RT direction and the SU direction are defined as the orientation directions of the parallel anisotropic ring 70. The thickness direction of the rectangular RSUT is the length direction of the parallel anisotropic ring 70, and was cut into a length of 6.5 mm. After a total of four rectangular parallelepipeds were cut out according to the cutout procedure, a rectangular parallelepiped was obtained in which the directions of the rectangular parallelepipeds were matched and bonded. The following magnetic properties were measured using this rectangular parallelepiped. If a rectangular parallelepiped having the above dimensions cannot be cut out from the parallel anisotropic ring to be measured, a plurality of rectangular parallelepipeds are cut out according to the above cutout procedure except that the dimensions are different. The dimensions may be adjusted. Residual magnetic flux density (Br //), coercive force iHc, maximum energy product of the cuboid at room temperature (20 ° C)
(BH) max and squareness ratio (Hk / iHc) were measured. Hk is 4πI
In the second quadrant of the (magnetization strength) -H (magnetic field strength) curve, this is the value of H corresponding to 0.9 Br, and the squareness ratio (Hk / iHc) obtained by dividing Hk by iHc is reduced by 4πI−H. This shows the rectangularity of the magnetic curve. Next, after measuring the residual magnetic flux density (Br⊥) in the length direction of the rectangular parallelepiped at room temperature (20 ° C.), [(Br //) / (Br // +
Br⊥) × 100 (%)] to determine the degree of orientation of the parallel anisotropic ring. The density of the parallel anisotropic ring was measured.
Table 3 shows the measurement results. The amount of oxygen in the parallel anisotropic ring was 0.13% by weight, the amount of carbon was 0.05% by weight, and the amount of nitrogen was 0.003% by weight. (Comparative Example 7) A parallel anisotropic ring of a comparative example was produced and evaluated in the same manner as in Example 5 except that the slurry of Comparative Example 1 was molded in a magnetic field in the orientation direction instead of the slurry of Example 5. . Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】表3の実施例6及び比較例7の結果より、
本発明によれば、密度が7.56g/cm以上、配向方向にお
けるBr//が1.25T(12.5kG)以上、iHcが1.1MA/m(14.0kO
e)以上、(BH)maxが282.6kJ/m(35.5MGOe)以上、(Hk/iH
c)が87.5%以上、及び配向方向の配向度が85.5%以上と
いう、従来にない高い磁気特性を有する平行異方性リン
グを提供できることがわかる。
From the results of Example 6 and Comparative Example 7 in Table 3,
According to the present invention, the density is 7.56 g / cm 3 or more, the Br // in the orientation direction is 1.25 T (12.5 kG) or more, and the iHc is 1.1 MA / m (14.0 kO
e) or more, (BH) max is 282.6 kJ / m 3 (35.5 MGOe) or more, (Hk / iH
It can be seen that a parallel anisotropic ring having unprecedented high magnetic properties can be provided in which c) is 87.5% or more and the degree of orientation in the orientation direction is 85.5% or more.

【0025】以下に他の実施例として平行異方性を有す
る、R−T−B系焼結アークセグメント磁石を作製し、
評価した実施例を説明する。 (実施例7)実施例1で作製したスラリーを図3のスラ
リー供給装置15の原料タンク13に充填した。次に、スラ
リー供給管6をシリンダー(図示省略)で下降させ、ア
ークセグメント形状のキャビティ3の底面近傍位置(下
パンチ2の上面近傍位置)で停止させた。次に、ポンプ
10を作動させて原料タンク13からスラリーを配管11を通
してスラリー供給管6からキャビティ3に吐出しながら
スラリー供給管6をシリンダー(図示省略)でキャビテ
ィ3の上端部位置まで上昇し、キャビティ3に所定量の
スラリーを充填した。次いでスラリー供給管6をシリン
ダー(図示省略)で上昇させてキャビティ3から引き抜
いた後、供給ヘッド9をシリンダー4により左方向に移
動し、次いで水平方向に1.0MA/m(13kOe)の配向磁場を印
加しながら上パンチ(図示省略)及び下パンチ2により
98MPa(1ton/cm)の圧力を加えて横磁場圧縮成形を
行い、アークセグメント成形体を得た。以降は実施例1
と同様にして成形体を脱油後、焼結し、熱処理した。次
いで得られた焼結磁石素材表面の焼結肌が無くなるまで
加工し、次いで平均膜圧15μmのエポキシ樹脂膜をコ
ーティングしてなる。図4に示す厚みT=2.8mm、長
さL=80.0mm、中心角θ=45°の薄肉、長尺形状の
R−Fe−B系焼結アークセグメント磁石30を得た。加
工前の前記素材のL方向の反りは1mm未満であり小さ
く、異方性付与方向の配向度(Br/4πImax)が良好で
あった。アークセグメント焼結磁石30の異方性は↑方向
(紙面にほぼ垂直方向)に付与されている。前記アーク
セグメント磁石30から試料を切り出し、磁気異方性付与
方向の磁気特性を室温(20℃)で測定した結果、配向度
(Br/4πImax)=96.8%、iHc=1.24MA/m(15.6kO
e)及び(BH)max=394.8kJ/m(49.6MGOe)という高い値が
得られた。又、密度は7.60Mg/m(g/cm)であり、酸
素量は0.14重量%、炭素量は0.05重量%及び窒素量は0.
02重量%であった。又、試料を理学電気(株)製のX線回
折装置(RU-200BH)にセットし、2θ−θ走査法によりX
線回折(CuKα1線;λ=0.15405nmを使用)した結
果、主な回折ピークは主相であるR14B型金属間
化合物の、2θ=29.08°の(004)面,38.06°の(105)
面、及び44.34°の(006)面であり、(006)面からのX線
回折ピーク強度:I(006)を100%として、I(105)/I
(006)=0.66であった。
Hereinafter, as another embodiment, an RTB based sintered arc segment magnet having parallel anisotropy was prepared.
The evaluated embodiment will be described. (Example 7) The slurry prepared in Example 1 was filled in the raw material tank 13 of the slurry supply device 15 shown in FIG. Next, the slurry supply pipe 6 was lowered by a cylinder (not shown), and stopped at a position near the bottom surface of the cavity 3 having the arc segment shape (a position near the upper surface of the lower punch 2). Then the pump
The slurry supply pipe 6 is raised to the upper end position of the cavity 3 by a cylinder (not shown) while the slurry is discharged from the raw material tank 13 through the pipe 11 to the cavity 3 from the slurry supply pipe 6 by operating the cylinder 10. A fixed amount of slurry was charged. Next, after raising the slurry supply pipe 6 with a cylinder (not shown) and pulling it out of the cavity 3, the supply head 9 is moved leftward by the cylinder 4, and then an orientation magnetic field of 1.0 MA / m (13 kOe) is horizontally applied. By applying upper punch (not shown) and lower punch 2 while applying voltage
A transverse magnetic field compression molding was performed by applying a pressure of 98 MPa (1 ton / cm 2 ) to obtain an arc segment molded body. Hereinafter, Example 1
The compact was deoiled, sintered and heat-treated in the same manner as described above. Then, the obtained sintered magnet material is processed until the surface of the sintered magnet disappears, and then coated with an epoxy resin film having an average film pressure of 15 μm. A thin, long R-Fe-B sintered arc segment magnet 30 having a thickness T 1 = 2.8 mm, a length L 1 = 80.0 mm, and a central angle θ 1 = 45 ° shown in FIG. 4 was obtained. L 1 direction of warpage of the material before processing is less than 1mm smaller, anisotropy imparting direction orientation (Br / 4πImax) was good. The anisotropy of the arc segment sintered magnet 30 is given in the ↑ direction (the direction substantially perpendicular to the paper surface). A sample was cut out from the arc segment magnet 30 and the magnetic properties in the direction of imparting magnetic anisotropy were measured at room temperature (20 ° C.). As a result, the degree of orientation (Br / 4πI max ) = 96.8% and iHc = 1.24 MA / m (15.6 kO
e) and (BH) max = 394.8 kJ / m 3 (49.6 MGOe), high values were obtained. The density is 7.60 Mg / m 3 (g / cm 3 ), the amount of oxygen is 0.14% by weight, the amount of carbon is 0.05% by weight, and the amount of nitrogen is 0.1%.
It was 02% by weight. The sample was set on an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd.
As a result of X-ray diffraction (using CuKα1 line; using λ = 0.15405 nm), the main diffraction peak was the (004) plane of 2θ = 29.08 °, (38.06 °) of the main phase R 2 T 14 B type intermetallic compound. 105)
X-ray diffraction peak intensity from the (006) plane: I (105) / I, where I (006) is 100%.
(006) = 0.66.

【0026】(実施例8)キャビティ3の厚み及びスラ
リーの充填量を変えた以外は実施例7と同様にして、表
2の長さL,厚みT及びθの寸法を有する薄肉、
長尺形状の焼結アークセグメント磁石を作製した。これ
らの磁石は、磁気異方性付与方向の配向度(Br/4πIm
ax)=96.4〜96.7%、iHc=1.23〜1.25MA/m(15.4〜15.7
kOe)、(BH)max=393.2〜395.6kJ/m(49.4〜49.7MGOe)
という高い磁気特性を有し、密度は7.60 Mg/m(g/cm
)であり、酸素量は0.13〜0.14重量%、炭素量は0.06
重量%及び窒素量は0.02〜0.03重量%であった。又、実
施例7の場合と同様にしてX線回折した結果、I(10
5)/I(006)=0.67〜0.68であった。 (比較例8)比較例1のスラリーを成形原料とした以外
は実施例7と同様に横磁場成形法を適用し、T=1.0〜
4.0mmのR−Fe−B系焼結アークセグメント磁石用成
形体の成形を試みたが、成形体に亀裂が発生し、亀裂の
無い健全な成形体を得られなかった。
(Embodiment 8) In the same manner as in Embodiment 7 except that the thickness of the cavity 3 and the filling amount of the slurry were changed, a thin wall having dimensions of length L 1 , thickness T 1 and θ 1 in Table 2 was prepared.
An elongated sintered arc segment magnet was manufactured. These magnets have a degree of orientation in the direction of imparting magnetic anisotropy (Br / 4πIm
ax) = 96.4 to 96.7%, iHc = 1.23 to 1.25 MA / m (15.4 to 15.7
kOe), (BH) max = 393.2~395.6kJ / m 3 (49.4~49.7MGOe)
With high magnetic properties, and a density of 7.60 Mg / m 3 (g / cm
3 ) The oxygen content is 0.13-0.14% by weight and the carbon content is 0.06
% By weight and the amount of nitrogen was 0.02-0.03% by weight. Further, as a result of X-ray diffraction in the same manner as in Example 7, I (10
5) / I (006) = 0.67-0.68. (Comparative Example 8) A transverse magnetic field forming method was applied in the same manner as in Example 7, except that the slurry of Comparative Example 1 was used as a forming raw material.
An attempt was made to mold a 4.0 mm R-Fe-B based sintered arc segment magnet molded body, but cracks occurred in the molded body and a sound molded body without cracks could not be obtained.

【0027】[0027]

【表4】 [Table 4]

【0028】以下にラジアル異方性を有する、R−T−
B系焼結アークセグメント磁石を作製し、評価した実施
例を説明する。 (実施例9)ラジアル異方性を有するアークセグメント
焼結磁石用成形体の内径寸法及びラジアル配向磁場強度
(Hap)を変化させて、最終的に長さL=65mm、厚みT
=2.5mm、θ=40°及び表3の内径を有する図5の
焼結アークセグメント磁石40を作製し、内径とHap及び
ラジアル方向の配向度(%)との関係を調査した。調査
結果を表3に示す。なお、このアークセグメント焼結磁
石の製造は、成形条件及び成形体寸法を変えた以外は実
施例7と同様にして順次脱油、焼結、熱処理、加工及び
表面処理を行った。表3よりラジアル方向の高い配向度
を有することがわかる。又、表3のアークセグメント磁
石はいずれも角形比(Hk/iHc)が87.5%超であり、iHc
は1.1MA/m(14kOe)超であり、酸素量は0.13〜0.14重量%
であり、炭素量は0.05〜0.06重量%であり、窒素量は0.
003〜0.004重量%であった。 (比較例9)比較例1のスラリーを成形原料とした以外
は実施例9と同様の形状を有する焼結アークセグメント
磁石用成形体の成形を試みたが、成形体亀裂が発生し、
焼結アークセグメント磁石を作製することができなかっ
た。
R-T- having radial anisotropy is described below.
An example in which a B-based sintered arc segment magnet was manufactured and evaluated will be described. Example 9 Inner Diameter and Radial Orientation Magnetic Field Strength of Arc Segment Sintered Magnet Mold Having Radial Anisotropy
(Hap) and finally the length L 2 = 65 mm and the thickness T
The sintered arc segment magnet 40 of FIG. 5 having 2 = 2.5 mm, θ 2 = 40 ° and the inner diameter shown in Table 3 was produced, and the relationship between the inner diameter, Hap, and the degree of orientation (%) in the radial direction was investigated. Table 3 shows the survey results. The production of this arc segment sintered magnet was performed in the same manner as in Example 7, except that the molding conditions and the size of the molded body were changed, and then the deoiling, sintering, heat treatment, processing, and surface treatment were sequentially performed. Table 3 shows that the film has a high degree of orientation in the radial direction. The arc segment magnets in Table 3 all have a squareness ratio (Hk / iHc) of more than 87.5%, and the iHc
Is more than 1.1MA / m (14kOe) and the oxygen content is 0.13-0.14% by weight
The carbon content is 0.05 to 0.06% by weight, and the nitrogen content is 0.
003 to 0.004% by weight. (Comparative Example 9) An attempt was made to form a molded body for a sintered arc segment magnet having the same shape as in Example 9 except that the slurry of Comparative Example 1 was used as a forming raw material.
A sintered arc segment magnet could not be produced.

【0029】[0029]

【表5】 [Table 5]

【0030】次に、ラジアルリングの実施例について説
明する。 (実施例10)重量%で、主要成分組成がNd:21.4
%,Pr:6.0%,Dy:3.1%,B:1.05%、Ga:0.
08%、Nb:0.2%,Al:0.05%,Cu:0.13%,C
o:2.0%及び残部FeからなるR−Fe−B系原料合
金粗粉(320メッシュアンタ゛ー)を酸素濃度が1ppm未満(体積
比)のアルゴン雰囲気中でジェットミル粉砕し、得られ
た平均粒径3.8μmの微粉を用いた以外は実施例1と同
様にしてスラリーを作製した。得られたスラリーを、図
1に示す成形機のキャビティ59(ダイス51及び52の内
径:60mm、コア53の外径:45mm、ダイス強磁性部51の長
さ:34mm、充填深さ:34mm)に充填後、成形圧力:78.4M
Pa(0.8ton/cm)及びラジアル方向の配向磁場強度:約2
38.7kA/m(3kOe)の条件でラジアル磁場中成形し、成形体
を得た。成形体を真空度が約66.5Pa(5×10−1Torr)、2
00℃の条件で1時間加熱し脱油後、続いて約4.0×10
−3Pa(3×10−5Torr)、1060℃の条件で2時間焼結後
室温まで冷却し焼結体を得た。次に、アルゴン雰囲気中
で900℃で1時間加熱後550℃まで冷却し、次いで550℃
で2時間加熱後さらに室温まで冷却する熱処理を行っ
た。次に所定寸法に加工後、電着により平均膜厚12μm
のエポキシ樹脂膜をコーティングし、外径48mm、内径39
mm及び高さ11mmのラジアル異方性を有するラジアルリン
グを得た。次に、図2に示すように、作製した前記ラジ
アルリング70の任意の位置から接線方向5mm×長さ方向
6.5mm×ラジアル方向2.8mmの直方体を切り出した。直方
体の切り出し要領について図2(b)により説明する。
ラジアルリング70の中心点Oから半径方向に直線OPQを
引く。点Pは内周面との接点であり、点Qは外周面との
接点である。次に、接点Pにおける接線RPSを引き、接
線RPSの長さが接点Pを中心にして5mmになるようにす
る。次に、接線RPSに垂直に直線RT(長さ2.8mm)及び直
線SU(長さ2.8mm)を引く。次に、接線RPSに平行に直線
TU(長さ5mm)を引く。長方形RSUTにおけるRPS方向及
びTU方向がラジアルリング70の接線方向であり、RT方向
およびSU方向をラジアルリング70のラジアル方向と定義
する。又、長方形RSUTの厚み方向がラジアルリング70の
長さ方向であり6.5mmの長さに切り出した。この切り出
し要領により合計4個の直方体を切り出した後、それら
の各方向を一致させて貼りあわせた直方体を得た。この
直方体により下記の磁気特性を測定した。なお、測定対
象のラジアルリングから前記寸法の直方体が切り出せな
い場合は、寸法が異なる以外は前記の切り出し要領に従
い複数の直方体を切り出した後、それらの各方向を一致
させて貼りあわせて寸法を調整すればよい。前記直方体
の室温(20℃)におけるラジアル方向の残留磁束密度
(Br//)、保磁力iHc、最大エネルギー積(BH)max及び角
形比(Hk/iHc)を測定した。Hkは4πI(磁化の強さ)−
H(磁界の強さ)曲線の第2象限において、0.9Brに相
当するHの値であり、HkをiHcで除した角形比(Hk/iHc)
は4πI−H減磁曲線の矩形性を示している。次に、前
記直方体の室温(20℃)における長さ方向の残留磁束密
度(Br⊥)を測定後、[(Br//)/(Br//+ Br⊥)×100
(%)]により定義するラジアルリングの配向度を求め
た。又ラジアルリングの密度を測定した。それらの測定
結果を表4に示す。又前記ラジアルリングの酸素量は0.
13重量%であり、炭素量は0.05重量%であり、窒素量は
0.003重量%であった。 (比較例10)実施例10のスラリーに替えて、比較例
1のスラリーによりラジアル磁場中成形した以外は実施
例10と同様にして比較例のラジアルリングを作製し、
評価した。結果を表4に示す。
Next, an embodiment of the radial ring will be described. (Example 10) By weight%, the main component composition was Nd: 21.4.
%, Pr: 6.0%, Dy: 3.1%, B: 1.05%, Ga: 0.
08%, Nb: 0.2%, Al: 0.05%, Cu: 0.13%, C
o: R-Fe-B-based raw material alloy coarse powder (320 mesh antenna) composed of 2.0% and balance Fe was jet-milled in an argon atmosphere having an oxygen concentration of less than 1 ppm (volume ratio), and the average particle size obtained. A slurry was prepared in the same manner as in Example 1 except that 3.8 μm fine powder was used. The obtained slurry is applied to the cavity 59 of the molding machine shown in FIG. 1 (the inner diameter of the dies 51 and 52: 60 mm, the outer diameter of the core 53: 45 mm, the length of the ferromagnetic part 51: 34 mm, the filling depth: 34 mm). After filling, molding pressure: 78.4M
Pa (0.8ton / cm 2 ) and radial alignment magnetic field strength: about 2
Molding was performed in a radial magnetic field under the conditions of 38.7 kA / m (3 kOe) to obtain a molded body. The molded body is vacuumed to about 66.5 Pa (5 × 10 -1 Torr), 2
After heating at 00 ° C for 1 hour and deoiling, about 4.0 × 10
After sintering at −3 Pa (3 × 10 −5 Torr) and 1060 ° C. for 2 hours, the mixture was cooled to room temperature to obtain a sintered body. Next, after heating at 900 ° C for 1 hour in an argon atmosphere, cooling to 550 ° C, then 550 ° C
And then heat-treated for further cooling to room temperature. Next, after processing to a predetermined size, the average film thickness is 12 μm by electrodeposition
48mm outer diameter, 39 inner diameter
A radial ring having a radial anisotropy of 11 mm in height and 11 mm in height was obtained. Next, as shown in FIG. 2, from the arbitrary position of the manufactured radial ring 70, a tangential direction of 5 mm × length direction
A rectangular parallelepiped of 6.5 mm x 2.8 mm in the radial direction was cut out. The method for cutting out a rectangular parallelepiped will be described with reference to FIG.
A straight line OPQ is drawn from the center point O of the radial ring 70 in the radial direction. Point P is a contact point with the inner peripheral surface, and point Q is a contact point with the outer peripheral surface. Next, a tangent line RPS at the contact point P is drawn so that the length of the tangent line RPS becomes 5 mm around the contact point P. Next, a straight line RT (length 2.8 mm) and a straight line SU (length 2.8 mm) are drawn perpendicular to the tangent line RPS. Next, a straight line parallel to the tangent RPS
Subtract TU (length 5mm). The RPS direction and the TU direction in the rectangular RSUT are tangential directions of the radial ring 70, and the RT direction and the SU direction are defined as the radial directions of the radial ring 70. The thickness direction of the rectangular RSUT is the length direction of the radial ring 70, and was cut into a length of 6.5 mm. After a total of four rectangular parallelepipeds were cut out according to the cutout procedure, a rectangular parallelepiped was obtained in which the directions of the rectangular parallelepipeds were matched and bonded. The following magnetic properties were measured using this rectangular parallelepiped. If a rectangular parallelepiped of the above dimensions cannot be cut out from the radial ring to be measured, cut out a plurality of rectangular parallelepipeds according to the above cutout procedure except that the dimensions are different, then adjust their dimensions by matching their directions and pasting them. do it. The residual magnetic flux density (Br //), coercive force iHc, maximum energy product (BH) max, and squareness ratio (Hk / iHc) of the rectangular parallelepiped at room temperature (20 ° C.) were measured. Hk is 4πI (magnetization intensity)-
In the second quadrant of the H (magnetic field strength) curve, this is the value of H corresponding to 0.9 Br, and the squareness ratio (Hk / iHc) obtained by dividing Hk by iHc.
Indicates the rectangularity of the 4πI-H demagnetization curve. Next, after measuring the residual magnetic flux density (Br⊥) in the length direction of the rectangular parallelepiped at room temperature (20 ° C), [(Br //) / (Br // + Br⊥) × 100
(%)] To determine the degree of orientation of the radial ring. The radial ring density was also measured. Table 4 shows the measurement results. The amount of oxygen in the radial ring is 0.
13% by weight, carbon content is 0.05% by weight, nitrogen content is
It was 0.003% by weight. (Comparative Example 10) A radial ring of a comparative example was manufactured in the same manner as in Example 10 except that the slurry of Comparative Example 1 was molded in a radial magnetic field instead of the slurry of Example 10.
evaluated. Table 4 shows the results.

【0031】[0031]

【表6】 [Table 6]

【0032】表4の実施例10及び比較例10の結果よ
り、本発明によれば、密度が7.56g/cm以上、ラジアル
方向におけるBr//が1.25T(12.5kG)以上、iHcが1.1MA/m
(14.0kOe)以上、(BH)maxが282.6kJ/m(35.5MGOe)以
上、(Hk/iHc)が87.5%以上、及びラジアル方向の配向度
が85.5%以上という、従来にない高い磁気特性を有する
ラジアルリングを提供できることがわかる。
According to the results of Example 10 and Comparative Example 10 in Table 4, according to the present invention, the density was 7.56 g / cm 3 or more, Br // in the radial direction was 1.25 T (12.5 kG) or more, and iHc was 1.1 or more. MA / m
Unprecedented high magnetic properties: (14.0 kOe) or more, (BH) max is 282.6 kJ / m 3 (35.5 MGOe) or more, (Hk / iHc) is 87.5% or more, and the degree of radial orientation is 85.5% or more. It can be seen that a radial ring having

【0033】(実施例11)図1の成形機のダイス51,5
2及びコア53等の寸法を変化させてラジアル異方性を有
する成形体リングの内径寸法を変化させ、ラジアル配向
磁場強度(Hap)を変えたときのHap、最終的に得られたラ
ジアルリングの内径及びラジアル方向の配向度(%)の
関係を調査した。Hapは表5に示すようにラジアル異方
性を有する成形体リングすなわちラジアルリングの内径
が小さくなるほど低下する。ラジアルリングの内径が10
0mmのときのHapは磁場発生用電源及びコイルの発熱等に
より716.2kA/m(9kOe)が上限であった。前記成形体リン
グの内径、外径(外径=内径+(8〜20mm))及びHapを
変えたラジアル磁場成形条件とした以外は実施例10と
同様にして順次脱油、焼結、熱処理、加工及び表面処理
を行い、表5に示す内径寸法を有するラジアルリングを
作製した。表5のいずれのラジアルリングもラジアル方
向の配向度が高いことがわかる。又、いずれのラジアル
リングも角形比(Hk/iHc)は87.5%超であり、1.1MA/m
(14.0kOe)超のiHcを有し、酸素量は0.14〜0.16重量%で
あり、炭素量は0.04〜0.05重量%であり、窒素量は0.00
3〜0.004重量%であった。 (比較例11)比較例1のスラリーを成形原料とした以
外は実施例11と同様にして表5のラジアルリングを作
製し、ラジアル方向の配向度を求めた。
(Embodiment 11) The dies 51, 5 of the molding machine shown in FIG.
Hap when the radial orientation magnetic field strength (Hap) is changed by changing the inner diameter of the molded body ring having radial anisotropy by changing the dimensions of 2 and the core 53, etc., of the radial ring finally obtained. The relationship between the inner diameter and the degree of orientation (%) in the radial direction was investigated. As shown in Table 5, Hap decreases as the inner diameter of the molded body ring having radial anisotropy, that is, the radial ring, decreases. Radial ring inner diameter is 10
The upper limit of Hap at 0 mm was 716.2 kA / m (9 kOe) due to the heat generated by the magnetic field generating power supply and the coil. Deoiling, sintering, heat treatment, and the like were performed in the same manner as in Example 10 except that the inner diameter, outer diameter (outer diameter = inner diameter + (8 to 20 mm)) of the molded body ring and radial magnetic field molding conditions in which Hap was changed were used. Processing and surface treatment were performed to produce a radial ring having an inner diameter shown in Table 5. It can be seen that all the radial rings in Table 5 have a high degree of orientation in the radial direction. In addition, each radial ring has a squareness ratio (Hk / iHc) of more than 87.5%, and is 1.1 MA / m
(14.0 kOe) iHc, oxygen content is 0.14-0.16 wt%, carbon content is 0.04-0.05 wt%, nitrogen content is 0.00
It was 3-0.004% by weight. (Comparative Example 11) Radial rings shown in Table 5 were prepared in the same manner as in Example 11 except that the slurry of Comparative Example 1 was used as a forming raw material, and the degree of orientation in the radial direction was determined.

【0034】[0034]

【表7】 [Table 7]

【0035】表5より、本発明によれば、内径が100mm
以下の従来にない高性能ラジアルリングを提供できるこ
とがわかる。
According to Table 5, according to the present invention, the inner diameter is 100 mm.
It can be seen that the following high performance radial ring, which has never existed before, can be provided.

【0036】[0036]

【発明の効果】以上記述の通り、本発明のよれば、低酸
素含有量であり、高い焼結体密度を有し、従来に比べて
配向度を高めた高性能の希土類焼結磁石を得られる製造
方法を提供することができた。又、低酸素含有量であ
り、高い焼結体密度を有し、従来に比べて配向方向を高
めた、極異方性および平行異方性を有する高性能のR−
T−B系焼結リング磁石を提供することができた。
As described above, according to the present invention, a high-performance rare-earth sintered magnet having a low oxygen content, a high sintered body density and a higher degree of orientation than conventional ones can be obtained. The manufacturing method can be provided. Also, it has a low oxygen content, has a high sintered body density, and has a highly oriented R-
A TB sintered ring magnet could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる成形装置の他の例を示す要部断
面図である。
FIG. 1 is a sectional view of a main part showing another example of a molding apparatus used in the present invention.

【図2】本発明のリング磁石の評価用試料の切り出し要
領を説明する斜視図(a)、要部断面図(b)である。
FIGS. 2A and 2B are a perspective view and a sectional view, respectively, illustrating a procedure for cutting out a sample for evaluation of a ring magnet of the present invention.

【図3】本発明に用いる成形装置の一例を示す要部断面
図である。
FIG. 3 is a sectional view of a main part showing an example of a molding apparatus used in the present invention.

【図4】平行異方性を有する本発明のアークセグメント
磁石の一例を示す斜視図である。
FIG. 4 is a perspective view showing an example of the arc segment magnet of the present invention having parallel anisotropy.

【図5】ラジアル異方性を有する本発明のアークセグメ
ント磁石の一例を示す斜視図である。
FIG. 5 is a perspective view showing an example of the arc segment magnet of the present invention having radial anisotropy.

【符号の説明】[Explanation of symbols]

1 ダイス、2 下パンチ、3 キャビティ、4 移動
手段、5 供給ヘッド、6 スラリー供給管、7 プレ
ート、8 摺動板、9 供給ヘッド本体、10スラリー
供給手段、11 配管、12 制御装置、13 タンク、15
スラリー供給装置、30,40 アークセグメント磁石、51
ダイス強磁性部、52 ダイス非磁性部、53 コア、54
上パンチ、55 下パンチ、56 上部コイル、57 下
部コイル、58 プレスフレーム、59 キャビティ、70,90
ラジアルリング。
Reference Signs List 1 die, 2 lower punches, 3 cavities, 4 moving means, 5 supply head, 6 slurry supply pipe, 7 plate, 8 sliding plate, 9 supply head body, 10 slurry supply means, 11 piping, 12 control device, 13 tank , 15
Slurry feeder, 30, 40 arc segment magnet, 51
Dice ferromagnetic part, 52 Dice non-magnetic part, 53 core, 54
Upper punch, 55 Lower punch, 56 Upper coil, 57 Lower coil, 58 Press frame, 59 cavity, 70, 90
Radial ring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/16 C22C 38/16 H01F 1/053 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/16 C22C 38/16 H01F 1/053 H01F 1/04 H

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 希土類焼結磁石用合金粗粉を非酸化性雰
囲気中で平均粒径1〜10μmに微粉砕し、得られた微粉
を鉱油、合成油及び植物油から選択される少なくとも1
種の油と、脂肪酸の1価アルコールエステル,多塩基酸
の1価アルコールエステル,多価アルコールの脂肪酸エ
ステル及びそれらの誘導体のうちから選択される少なく
とも1種からなる潤滑剤とからなる非酸化性液中に回収
してスラリーを作製し、次いで前記スラリーにより成形
し、得られた成形体を脱油し、次いで焼結し、熱処理す
ることを特徴とする希土類焼結磁石の製造方法。
1. An alloy coarse powder for a rare earth sintered magnet is finely pulverized in a non-oxidizing atmosphere to an average particle diameter of 1 to 10 μm, and the obtained fine powder is at least one selected from mineral oil, synthetic oil and vegetable oil.
Non-oxidizing agent comprising oils of at least one kind selected from monohydric alcohol esters of fatty acids, monohydric alcohol esters of polybasic acids, fatty acid esters of polyhydric alcohols and derivatives thereof. A method for producing a rare earth sintered magnet, comprising recovering a slurry in a liquid to form a slurry, forming the slurry with the slurry, deoiling the obtained formed body, sintering, and heat-treating.
【請求項2】 前記潤滑剤の添加量は、(R−Fe−B
系合金微粉):(潤滑剤)=99.99〜99.5重量部:0.01
〜0.5重量部となる範囲である請求項1に記載の希土類
焼結磁石の製造方法。
2. The amount of the lubricant to be added is (R-Fe-B
Alloy powder): (lubricant) = 99.99-99.5 parts by weight: 0.01
The method for producing a rare earth sintered magnet according to claim 1, wherein the amount is in the range of 0.5 to 0.5 parts by weight.
【請求項3】 前記希土類焼結磁石用合金粗粉は、R
(RはYを含む希土類元素の少なくとも1種であり、R
に占めるNdが50原子%以上である):28〜33%,B:
0.8〜1.5%,Co:0.5〜5%,Cu:0.01〜0.3%、G
a:0.01〜0.2%,Al:0.01〜0.3%,Nb:0.01〜0.
8%、及び残部:Feの主要成分、ならびに不可避的不
純物からなる請求項1または2に記載の希土類焼結磁石
の製造方法。
3. The alloy coarse powder for a rare earth sintered magnet is R
(R is at least one rare earth element including Y;
Nd is at least 50 atomic%): 28-33%, B:
0.8 to 1.5%, Co: 0.5 to 5%, Cu: 0.01 to 0.3%, G
a: 0.01-0.2%, Al: 0.01-0.3%, Nb: 0.01-0.
3. The method for producing a rare earth sintered magnet according to claim 1, comprising 8% and the balance: a main component of Fe and unavoidable impurities. 4.
【請求項4】 重量%で、R(RはYを含む希土類元素
の少なくとも1種であり、Rに占めるNdが50原子%以
上である):28〜33%,B:0.8〜1.5%,Co:0.5〜
5%,Cu:0.01〜0.3%、及び残部:Feの主要成
分、ならびに不可避的不純物を含有するR−Fe−Co
−Cu−B系焼結磁石からなるリング磁石であって、 前記リング磁石の全重量に対し不可避的に含有される酸
素量が0.3%以下であり、極異方性を有し、密度が7.56
Mg/m(g/cm)以上であり、リング外径面での磁極間
中心部表面位置で観測した(105)面からのX線回折ピ
ーク強度:I(105)と(006)面からのX線回折ピーク
強度:I(006)との比率が、I(105)/I(006)=0.
5〜0.8であることを特徴とするリング磁石。
4. In% by weight, R (R is at least one kind of rare earth element including Y, and Nd in R is 50 atom% or more): 28 to 33%, B: 0.8 to 1.5%, Co: 0.5 ~
R-Fe-Co containing 5%, Cu: 0.01 to 0.3%, and the balance: a main component of Fe, and unavoidable impurities
-A ring magnet comprising a Cu-B based sintered magnet, wherein the amount of oxygen inevitably contained is 0.3% or less with respect to the total weight of the ring magnet, has polar anisotropy, and has a density of 7.56.
Mg / m 3 (g / cm 3 ) or more, X-ray diffraction peak intensity from the (105) plane observed at the center position between the magnetic poles on the outer surface of the ring: I (105) and (006) planes Of X-ray diffraction peak intensity from I: (I) (006) is I (105) / I (006) = 0.
A ring magnet having a ratio of 5 to 0.8.
【請求項5】 前記リング磁石は、重量%で、Ga:0.
01〜0.2%,Al:0.01〜0.3%,Nb:0.01〜0.8%を
含有する請求項4に記載のリング磁石。
5. The method according to claim 5, wherein the ring magnet has a Ga content of 0.5% by weight.
The ring magnet according to claim 4, wherein the ring magnet contains 01 to 0.2%, Al: 0.01 to 0.3%, and Nb: 0.01 to 0.8%.
【請求項6】 重量%で、R(RはYを含む希土類元素
の少なくとも1種であり、Rに占めるNdが50原子%以
上である):28〜33%,B:0.8〜1.5%,Co:0.5〜
5%,Cu:0.01〜0.3%,及び残部:Feの主要成
分、ならびに不可避的不純物を含有するR−Fe−Co
−Cu−B系焼結磁石からなるリング磁石であって、 前記リング磁石の全重量に対し不可避的に含有される酸
素量が0.3%以下であり、平行異方性を有し、密度が7.5
6 Mg/m(g/cm)以上であり、室温の保磁力iHcが1.1
MA/m(14kOe)以上であり、室温における配向方向の残
留磁束密度(Br//)と配向方向に垂直な長さ方向の残留
磁束密度(Br⊥)とで定義する配向度:[(Br//)/(Br//
+ Br⊥)×100(%)] が85.5%以上であることを特徴と
するリング磁石。
6. In% by weight, R (R is at least one kind of rare earth element including Y, and Nd in R is 50 atomic% or more): 28 to 33%, B: 0.8 to 1.5%, Co: 0.5 ~
R-Fe-Co containing 5%, Cu: 0.01 to 0.3%, and the balance: a main component of Fe, and unavoidable impurities
-A ring magnet comprising a Cu-B based sintered magnet, wherein the amount of oxygen inevitably contained is 0.3% or less with respect to the total weight of the ring magnet, has parallel anisotropy, and has a density of 7.5
6 Mg / m 3 (g / cm 3 ) or more and coercive force iHc at room temperature of 1.1
MA / m (14 kOe) or more, the degree of orientation defined by the residual magnetic flux density (Br //) in the orientation direction at room temperature and the residual magnetic flux density (Br⊥) in the length direction perpendicular to the orientation direction: [(Br //) / (Br //
+ Br⊥) × 100 (%)] is 85.5% or more.
【請求項7】 前記リング磁石は、重量%で、Ga:0.
01〜0.2%,Al:0.01〜0.3%,Nb:0.01〜0.8%を
含有する請求6に記載のリング磁石。
7. The ring magnet has a Ga content of 0.5% by weight.
7. The ring magnet according to claim 6, containing 01 to 0.2%, Al: 0.01 to 0.3%, and Nb: 0.01 to 0.8%.
JP2001279655A 2000-09-14 2001-09-14 Manufacturing method of rare earth sintered magnet and ring magnet Pending JP2002164238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279655A JP2002164238A (en) 2000-09-14 2001-09-14 Manufacturing method of rare earth sintered magnet and ring magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-280104 2000-09-14
JP2000280104 2000-09-14
JP2001279655A JP2002164238A (en) 2000-09-14 2001-09-14 Manufacturing method of rare earth sintered magnet and ring magnet

Publications (2)

Publication Number Publication Date
JP2002164238A true JP2002164238A (en) 2002-06-07
JP2002164238A5 JP2002164238A5 (en) 2007-03-01

Family

ID=26600002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279655A Pending JP2002164238A (en) 2000-09-14 2001-09-14 Manufacturing method of rare earth sintered magnet and ring magnet

Country Status (1)

Country Link
JP (1) JP2002164238A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
KR100826661B1 (en) * 2004-03-23 2008-05-02 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JP2008163466A (en) * 2002-10-08 2008-07-17 Hitachi Metals Ltd Method for producing sintered permanent magnet, and die
CN100431062C (en) * 2002-10-08 2008-11-05 日立金属株会社 Sintered R-Fe-B series permanent magnet and its manufacturing method
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
CN112919895A (en) * 2020-12-28 2021-06-08 横店集团东磁股份有限公司 Preparation method of magnet applying anisotropic dry-pressed ferrite fine powder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163466A (en) * 2002-10-08 2008-07-17 Hitachi Metals Ltd Method for producing sintered permanent magnet, and die
CN100431062C (en) * 2002-10-08 2008-11-05 日立金属株会社 Sintered R-Fe-B series permanent magnet and its manufacturing method
JP4706872B2 (en) * 2002-10-08 2011-06-22 日立金属株式会社 Method for producing sintered permanent magnet and mold
WO2005091315A1 (en) * 2004-03-23 2005-09-29 Japan Science And Technology Agency R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
KR100826661B1 (en) * 2004-03-23 2008-05-02 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 R-Fe-B BASED THIN FILM MAGNET AND METHOD FOR PREPARATION THEREOF
JPWO2005091315A1 (en) * 2004-03-23 2008-05-22 独立行政法人科学技術振興機構 R-Fe-B system thin film magnet and method for manufacturing the same
US7790300B2 (en) 2004-03-23 2010-09-07 Japan Science And Technology Agency R-Fe-B based thin film magnet and method for preparation thereof
JP4698581B2 (en) * 2004-03-23 2011-06-08 独立行政法人科学技術振興機構 R-Fe-B thin film magnet and method for producing the same
JP2009200186A (en) * 2008-02-20 2009-09-03 Tdk Corp Method of manufacturing sintered magnet
JP4716051B2 (en) * 2008-02-20 2011-07-06 Tdk株式会社 Manufacturing method of sintered magnet
CN112919895A (en) * 2020-12-28 2021-06-08 横店集团东磁股份有限公司 Preparation method of magnet applying anisotropic dry-pressed ferrite fine powder
CN112919895B (en) * 2020-12-28 2022-02-18 横店集团东磁股份有限公司 Preparation method of magnet applying anisotropic dry-pressed ferrite fine powder

Similar Documents

Publication Publication Date Title
JP6274216B2 (en) R-T-B system sintered magnet and motor
JP5196080B2 (en) Rare earth magnet manufacturing method
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP5561170B2 (en) Method for producing RTB-based sintered magnet
WO2012161355A1 (en) Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6536816B2 (en) RTB based sintered magnet and motor
JP5288277B2 (en) Manufacturing method of RTB-based permanent magnet
WO2013027592A1 (en) Method for producing powder compact for magnet, powder compact for magnet, and sintered body
US6635120B2 (en) Method for producing sintered rare earth magnet and sintered ring magnet
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
US6312494B1 (en) Arc segment magnet, ring magnet and method for producing such magnets
JP2002164239A (en) Manufacturing method of rare earth sintered magnet, ring magnet, and arc segment magnet
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
EP1557850A2 (en) Method for compacting magnetic powder in magnetic field, and method for producing rare-earth sintered magnet
JP2020155634A (en) R-t-b based permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2002164239A5 (en)
JP2018160669A (en) R-t-b based rare earth magnet
JP2002164238A (en) Manufacturing method of rare earth sintered magnet and ring magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2002164238A5 (en)
JP6691667B2 (en) Method for manufacturing RTB magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100106