JP2002162333A - Near field probe, manufacturing method of near field probe and near field microscope using near field probe - Google Patents

Near field probe, manufacturing method of near field probe and near field microscope using near field probe

Info

Publication number
JP2002162333A
JP2002162333A JP2000361332A JP2000361332A JP2002162333A JP 2002162333 A JP2002162333 A JP 2002162333A JP 2000361332 A JP2000361332 A JP 2000361332A JP 2000361332 A JP2000361332 A JP 2000361332A JP 2002162333 A JP2002162333 A JP 2002162333A
Authority
JP
Japan
Prior art keywords
light
field
measured
probe
measurement surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000361332A
Other languages
Japanese (ja)
Other versions
JP4703841B2 (en
Inventor
Tsutomu Inoue
勉 井上
Takahito Narita
貴人 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2000361332A priority Critical patent/JP4703841B2/en
Publication of JP2002162333A publication Critical patent/JP2002162333A/en
Application granted granted Critical
Publication of JP4703841B2 publication Critical patent/JP4703841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a near field probe which is used for either measurement of a degree of depolarization, polarization and polarization dependence of a spectrum in a region smaller than the value of a wavelength of light. SOLUTION: The feature of the near field probe 14 is to provide these parts; a light guiding part which is made of a transparent material for the excitation light which generates the near field light at a tip of probe 14 and for the measured light from a sample measurement surface, and guides the excitation light and the measured light, a mask 52 which is made of an opaque material for the excitation light and measured light and formed at least in the tip surface of the light guiding part and an ellipsoid or slit opening 26 which is formed in the tip head of the light guiding part where the mask 52 is formed, with which the near field light generated in the tip is irradiated at the sample measurement surface as the linear polarization with a fixed oscillation direction and the measured light from the sample measurement surface obtained by the light irradiation is collected as the linear polarization with a fixed oscillation direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は近接場プローブ及び
その製造方法、並びに、該近接場プロープを用いた近接
場顕微鏡、特に光の波長の値より小さい領域での偏光解
消度、偏光度およびスペクトルの偏光依存性の何れかの
測定を行うための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-field probe and a method for manufacturing the same, and a near-field microscope using the near-field probe, and more particularly, to a degree of depolarization, a degree of polarization, and a spectrum in a region smaller than the wavelength of light. For performing any measurement of the polarization dependence of the light.

【0002】[0002]

【従来の技術】一般的な光学顕微鏡は、光の波長より小
さなものは観察することができず、その分解能には限界
がある。一方、電子顕微鏡等では、分解能は大きく向上
させることができるものの、大気中、または溶液中での
動作は極めて困難であり、電子顕微鏡等の高分解能顕微
鏡は特に生体試料を扱う分野では必ずしも満足のいくも
のではなかった。
2. Description of the Related Art A general optical microscope cannot observe an object smaller than the wavelength of light, and its resolution is limited. On the other hand, although electron microscopes and the like can greatly improve the resolution, operation in the atmosphere or in a solution is extremely difficult, and high-resolution microscopes such as an electron microscope are not always satisfactory, especially in the field of handling biological samples. It didn't work.

【0003】これに対し、近年一般的な光学顕微鏡また
は電子顕微鏡とは異なる原理に基づく近接場顕微鏡が開
発され、その応用が期待されている。この近接場顕微鏡
は、いわゆる近接場光を検出するものである。すなわ
ち、被測定試料に光を照射すると、被測定物表面付近に
は近接場光と呼ばれる表面波が発生する。この表面波は
物体表面に光の波長以内の距離領域に局在している。
On the other hand, in recent years, a near-field microscope based on a principle different from a general optical microscope or electron microscope has been developed, and its application is expected. This near-field microscope detects so-called near-field light. That is, when light is applied to the sample to be measured, a surface wave called near-field light is generated near the surface of the object to be measured. This surface wave is localized on the surface of the object in a distance region within the wavelength of light.

【0004】そこで、光の波長以下の先端寸法をもつ先
鋭化プローブを近接場光の場の中に差し込んで近接場光
を散乱させ、その散乱光強度を測定することによりプロ
ーブ先端と被測定物表面との距離を規定することができ
る。したがって、前記散乱光の強度が一定となるように
しつつプローブの走査を行うことにより、該プローブ先
端位置は被測定物表面の凹凸を的確に反映するものとな
り、しかもプローブ先端は近接場光の場に存在するのみ
であり被測定物そのものには接触していないため、試料
に対して非接触、非破壊でかつ光の波長の値より小さい
ものを観察できる。
Therefore, a sharpened probe having a tip size smaller than the wavelength of light is inserted into a near-field light field to scatter the near-field light, and the intensity of the scattered light is measured. The distance from the surface can be defined. Therefore, by scanning the probe while keeping the intensity of the scattered light constant, the position of the probe tip accurately reflects the irregularities on the surface of the object to be measured, and the probe tip is positioned near the near-field light. , But not in contact with the measured object itself, it is possible to observe a sample that is non-contact, non-destructive and smaller than the light wavelength value.

【0005】ところで、前記先鋭化プローブは、一般
に、略真円形のコアをもつ光ファイバの一端を先鋭化し
て略真円錐状の先鋭化部をつくり、その表面に金属皮膜
などでマスクを形成し、その最先端部に略真円状の微小
開口を作成している。
In general, the sharpened probe is formed by sharpening one end of an optical fiber having a substantially perfect circular core to form a sharpened portion having a substantially true cone shape, and forming a mask on the surface with a metal film or the like. At the foremost part, an almost perfect circular small opening is created.

【0006】[0006]

【発明が解決しようとする課題】ところで、各種有機物
質は直線偏光の偏光面を回転させる性質をもっており、
この偏光特性を測定することにより、同定または光学異
性体の識別などを行うことができるので、一般的な光の
波長より大きいものを観察する光学装置においては、偏
光性の測定がよく行われている。また、試料表面に平行
な面内で異方性を持つ試料では、結晶軸と励起光または
散乱光の偏光軸の相対変化により得られるスペクトルに
差が生じる。これを調べることにより試料の内部構造に
対する有用な情報が得られるので、多用されている。
By the way, various organic substances have the property of rotating the plane of polarization of linearly polarized light.
By measuring this polarization characteristic, identification or identification of optical isomers can be performed, so in an optical device that observes a wavelength larger than the wavelength of general light, the measurement of polarization is often performed. I have. Further, in a sample having anisotropy in a plane parallel to the sample surface, a difference occurs in a spectrum obtained by a relative change between a crystal axis and a polarization axis of excitation light or scattered light. By examining this, useful information on the internal structure of the sample can be obtained, and thus it is frequently used.

【0007】最近、光の波長の値より小さいものを観察
する近接場顕微鏡においても、その偏光性を測定したい
という要望がある。しかしながら、前述のような略真円
状の開口をもつ近接場プローブでは、プローブ先端の極
微小領域に近接場光をしみ出させるものの、この開口よ
りしみ出させた近接場光は偏光とは無関係であるので、
前述のような近接場プローブを用いた近接場顕微鏡で
は、偏光性を測定することは不可能であった。
Recently, there has been a demand for measuring the polarization of a near-field microscope for observing an object smaller than the wavelength of light. However, in the near-field probe having a substantially circular opening as described above, the near-field light exudes to an extremely small area at the tip of the probe, but the near-field light extruded from this opening is unrelated to polarization. So that
With the near-field microscope using the near-field probe as described above, it was impossible to measure the polarization.

【0008】本発明は前記従来技術の課題に鑑みなされ
たものであり、その目的は光の波長の値よりも小さい領
域での偏光解消度、偏光度およびスペクトルの偏光依存
性の何れかの測定に用いられる近接場プローブ及びその
製造方法、並びに、該近接場プロープを用いた近接場顕
微鏡を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to measure any one of the degree of depolarization, the degree of polarization, and the polarization dependence of a spectrum in a region smaller than the wavelength of light. And a method of manufacturing the near-field probe, and a near-field microscope using the near-field probe.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる近接場プローブは、導光部と、マスク
と、開口と、を備えることを特徴とする。ここで、前記
導光部は、プローブ先端に近接場光を発生させる励起光
ないし試料測定面からの被測定光に透明な材質で構成さ
れ、該励起光ないし該被測定光を導光する。
In order to achieve the above object, a near-field probe according to the present invention comprises a light guide, a mask, and an opening. Here, the light guide section is made of a material transparent to excitation light for generating near-field light at the tip of the probe or light to be measured from the sample measurement surface, and guides the excitation light or the light to be measured.

【0010】また、前記マスクは、前記励起光ないし前
記被測定光に不透明な材質で構成され、前記導光部の少
なくとも先端表面に形成されている。前記開口は、前記
マスクが形成された導光部の最先端に作成され、該先端
に発生した近接場光を所定の振動方向の直線偏光として
試料測定面に照射する、ないし光の照射によって得られ
た試料測定面からの被測定光を所定の振動方向の直線偏
光として集光する楕円状またはスリット状である。
The mask is made of a material that is opaque to the excitation light or the light to be measured, and is formed on at least a front end surface of the light guide. The opening is formed at the forefront of the light guide section on which the mask is formed, and the near-field light generated at the tip is irradiated on the sample measurement surface as linearly polarized light in a predetermined vibration direction, or is obtained by light irradiation. It has an elliptical or slit shape that condenses the measured light from the sample measurement surface as linearly polarized light in a predetermined vibration direction.

【0011】なお、本発明において、前記導光部は、楕
円状のコアをもつ光ファイバであり、前記楕円状または
スリット状の開口は、前記楕円状コアをもつ光ファイバ
の一端を略楕円錘状に先鋭化した導光部の最先端に作成
されていることが好適である。また、前記目的を達成す
るために本発明にかかる近接場プローブ製造方法は、先
鋭化工程と、マスク形成工程と、開口作成工程と、を備
えることを特徴とする。
In the present invention, the light guide section is an optical fiber having an elliptical core, and the elliptical or slit-shaped opening is formed by connecting one end of the optical fiber having the elliptical core to a substantially elliptical cone. It is preferable that the light guide portion is formed at the forefront of the light guide portion that is sharpened in a shape. Further, in order to achieve the above object, a near-field probe manufacturing method according to the present invention includes a sharpening step, a mask forming step, and an opening forming step.

【0012】ここで、前記先鋭化工程は、プローブ先端
に近接場光を発生させる励起光ないし試料測定面からの
被測定光に透明な材質で構成され、該励起光ないし該被
測定光を導光する導光部の先端を先鋭化する。また、前
記マスク形成工程は、前記先鋭化工程により先鋭化され
た導光部の少なくとも先端表面に、前記励起光ないし前
記被測定光に不透明な材質で構成されたマスクを形成す
る。
Here, the sharpening step is made of a material transparent to excitation light for generating near-field light at the probe tip or light to be measured from the sample measurement surface, and guides the excitation light or the light to be measured. The tip of the light-guiding section that emits light is sharpened. In the mask forming step, a mask made of a material opaque to the excitation light or the light to be measured is formed on at least the front end surface of the light guide section sharpened in the sharpening step.

【0013】前記開口作成工程は、前記マスク形成工程
によりマスクが形成された導光部の最先端に、該先端に
発生した近接場光を所定の振動方向の直線偏光として試
料測定面に照射する、ないし光の照射によって試料測定
面に発生した被測定光を所定の振動方向の直線偏光とし
て集光する楕円状またはスリット状の開口を作成する。
なお、本発明において、前記先鋭化工程は、前記導光
部としての、楕円状コアをもつ光ファイバの一端を略楕
円錘状に先鋭化し、前記開口作成工程は、前記先鋭化工
程により略楕円錘状に先鋭化された導光部の最先端に、
前記楕円状またはスリット状の開口を形成することが好
適である。
In the opening forming step, near-field light generated at the tip of the light guide section on which a mask has been formed in the mask forming step is irradiated as linearly polarized light in a predetermined vibration direction onto a sample measurement surface. Alternatively, an elliptical or slit-shaped aperture is formed for converging light to be measured generated on the sample measurement surface by light irradiation as linearly polarized light in a predetermined vibration direction.
In the present invention, in the sharpening step, one end of an optical fiber having an elliptical core as the light guide portion is sharpened to a substantially elliptical cone shape, and the opening forming step is substantially elliptical by the sharpening step. At the forefront of the light guide section sharpened in a cone shape,
It is preferable to form the elliptical or slit opening.

【0014】また、前記目的を達成するために本発明に
かかる近接場顕微鏡は、励起光照射手段と、前記近接場
プローブと、検出手段と、を備え、本発明にかかる近接
場プローブを用いて偏光解消度、偏光度、およびスペク
トルの偏光依存性の何れかの測定を行うことを特徴とす
る。ここで、励起光照射手段は、前記近接場プローブ先
端に近接場光を発生させる励起光または試料測定面に近
接場光を発生させる励起光を照射する。
Further, in order to achieve the above object, a near-field microscope according to the present invention includes excitation light irradiation means, the near-field probe, and detection means, and uses the near-field probe according to the present invention. It is characterized in that any one of the degree of depolarization, the degree of polarization, and the polarization dependence of the spectrum is measured. Here, the excitation light irradiating means irradiates excitation light for generating near-field light at the tip of the near-field probe or excitation light for generating near-field light on the sample measurement surface.

【0015】また、前記近接場プローブは、前記励起光
照射手段からの励起光が前記近接場プローブに導入さ
れ、その導光部の最先端に発生した近接場光を、前記楕
円状またはスリット状の開口を介して所定の振動方向の
直線偏光として試料測定面に照射する、ないし光の照射
によって得られた試料測定面からの被測定光を、前記楕
円状またはスリット状の開口を介して所定の振動方向の
直線偏光として集光する。 前記検出手段は、得られた
試料測定面からの被測定光に基づいて偏光解消度、偏光
度およびスペクトルの偏光依存性の何れかを検出する。
The near-field probe may be configured such that the excitation light from the excitation light irradiating means is introduced into the near-field probe, and the near-field light generated at the forefront of the light guide portion is converted into the elliptical or slit shape. Irradiate the sample measurement surface as linearly polarized light in a predetermined vibration direction through the opening of the sample measurement surface, or light to be measured from the sample measurement surface obtained by the irradiation of light is passed through the elliptical or slit-shaped opening. And condensed as linearly polarized light in the vibration direction. The detection means detects any of the degree of depolarization, the degree of polarization, and the polarization dependence of the spectrum based on the obtained light to be measured from the sample measurement surface.

【0016】なお、本発明にかかる近接場プローブは、
イルミネーションモード、コレクションモード、イルミ
ネーション−コレクションモード等のいずれの測定モー
ドでも用いることができる。このため、ここでいう励起
光ないし試料測定面からの被測定光に透明な材質で構成
され、該励起光ないし該被測定光に透明とは、導光部
が、例えばイルミネーションモードでは励起光に透明な
ことをいい、コレクションモードでは被測定光に透明な
ことをいい、イルミネーション−コレクションモードで
は、励起光及び被測定光に透明なこと等をいう。
The near-field probe according to the present invention comprises:
Any measurement mode such as an illumination mode, a collection mode, and an illumination-collection mode can be used. For this reason, the excitation light or the light to be measured from the sample measurement surface is made of a material transparent to the excitation light or the light to be measured is transparent for the light guide section, for example, in the illumination mode, to the excitation light. In the correction mode, it means that the light to be measured is transparent. In the case of the illumination-correction mode, it means that the light to be measured and the light to be measured are transparent.

【0017】また、ここでいう励起光ないし被測定光に
不透明な材質で構成されたマスクとは、マスクが、例え
ばイルミネーションモードでは励起光に不透明なものを
いい、コレクションモードでは被測定光に不透明なもの
をいい、イルミネーション−コレクションモードでは、
励起光及び被測定光に不透明なもの等をいう。
The mask made of a material that is opaque to the excitation light or the light to be measured as used herein means that the mask is opaque to the excitation light in the illumination mode, for example, and opaque to the light to be measured in the collection mode. In the illumination-collection mode,
The light that is opaque to the excitation light and the light to be measured.

【0018】さらに、ここでいう導光部の最先端に、該
先端に発生した近接場光を所定の振動方向の直線偏光と
して試料測定面に照射する、ないし光の照射によって試
料測定面に発生した被測定光を所定の振動方向の直線偏
光として集光する楕円状またはスリット状の開口とは、
楕円状またはスリット状の開口が、例えばイルミネーシ
ョンモードではプローブ先端に発生した近接場光を所定
の振動方向の直線偏光としてしみ出せるものをいう。コ
レクションモードでは測定試料面に発生した近接場光を
プローブ先端で散乱させた被測定光を所定の振動方向の
直線偏光して集光するものをいう。イルミネーション−
コレクションモードでは、プローブ先端に発生した近接
場光を所定の振動方向の直線偏光としてしみ出させ、か
つ測定試料面にて散乱された近接場光のうち、前記試料
測定面に照射した近接場光と同じ偏光面をもつ光を集光
するもの等をいう。
Further, the near-field light generated at the tip of the light guide section is radiated to the sample measurement surface as linearly polarized light in a predetermined vibration direction, or is generated on the sample measurement surface by light irradiation. An elliptical or slit-shaped aperture that collects the measured light as linearly polarized light in a predetermined vibration direction,
An elliptical or slit-shaped opening means that, for example, in the illumination mode, near-field light generated at the tip of the probe can seep out as linearly polarized light in a predetermined vibration direction. In the collection mode, the near-field light generated on the measurement sample surface is scattered at the tip of the probe, and the light to be measured is linearly polarized in a predetermined vibration direction and collected. Illumination-
In the collection mode, the near-field light generated at the probe tip exudes as linearly polarized light in a predetermined vibration direction, and of the near-field light scattered on the measurement sample surface, the near-field light applied to the sample measurement surface is irradiated. And condensing light having the same polarization plane.

【0019】[0019]

【発明の実施の形態】以下、図面に基づき本発明の好適
な一実施形態について説明する。図1には本発明の一実
施形態にかかる近接場プローブを用いた近接場顕微鏡の
概略構成が示されている。同図に示す近接場顕微鏡10
は、励起光照射手段12と、波長以下の先端寸法をもつ
近接場プローブ14と、検出手段16を備える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of a near-field microscope using a near-field probe according to one embodiment of the present invention. Near-field microscope 10 shown in FIG.
Comprises an excitation light irradiating means 12, a near-field probe 14 having a tip size equal to or smaller than a wavelength, and a detecting means 16.

【0020】ここで、前記励起光照射手段12は、光源
18と、反射鏡20を含み、前記光源18は、近接場プ
ローブ14の先端に近接場光を発生させる励起光22を
出射し、その励起光22は、反射鏡20を介してプロー
ブ14にその後端より導入される。
Here, the excitation light irradiating means 12 includes a light source 18 and a reflecting mirror 20. The light source 18 emits excitation light 22 for generating near-field light at the tip of the near-field probe 14, The excitation light 22 is introduced into the probe 14 via the reflecting mirror 20 from the rear end.

【0021】また、前記プローブ14は、光源18から
の励起光22が反射鏡20を介して導入されると、その
先鋭化先端に近接場光が発生し、開口よりしみ出す。こ
のとき、近接場光は、楕円状またはスリット状の開口2
6より所定の振動方向の直線偏光となってしみ出し、該
プローブ14先端と試料測定面28との距離を近づける
ことにより、この偏光した近接場光24が散乱される。
When the excitation light 22 from the light source 18 is introduced through the reflecting mirror 20, the probe 14 generates near-field light at its sharpened tip and exudes from the opening. At this time, the near-field light is transmitted through the elliptical or slit-shaped opening 2.
6, the polarized near-field light 24 is scattered by linearly polarized light having a predetermined vibration direction and exuding, and the distance between the tip of the probe 14 and the sample measurement surface 28 is reduced.

【0022】前記検出手段16は、この散乱光を被測定
光30として集光する集光レンズ32と、検光子34
と、角度変更手段36と、光検出器38と、コンピュー
タ40を含み、試料測定面28に照射された近接場光2
4に対する試料測定面28からの被測定光30の偏光方
向及びその角度を検出する。
The detecting means 16 includes a condenser lens 32 for condensing the scattered light as the light to be measured 30, and an analyzer 34.
, An angle changing means 36, a photodetector 38, and a computer 40, and the near-field light 2 applied to the sample measurement surface 28.
The polarization direction and the angle of the measured light 30 from the sample measurement surface 28 with respect to 4 are detected.

【0023】ここで、前記検光子34は、プローブ14
の開口26の偏光面に対して所定の角度で配置され、集
光レンズ28により集光された試料測定面28からの被
測定光30のうち、所定角度の偏光面をもつ直線偏光4
2(44)を通過させる。また、前記角度変更手段36
は、試料測定面28からの被測定光30のうち、その光
の進行方向に垂直な平面内で、近接場光24の偏光方向
に対して平行成分42と垂直成分44を交互に通過させ
るように検光子34を回転させる。前記光検出器38
は、前記検光子34を通過した光42(44)の光量を
検出する。
Here, the analyzer 34 includes the probe 14
Of the light 30 to be measured from the sample measurement surface 28 condensed by the condenser lens 28 at a predetermined angle with respect to the polarization plane of the opening 26,
2 (44). The angle changing means 36
In the measured light 30 from the sample measurement surface 28, a parallel component 42 and a vertical component 44 are alternately transmitted with respect to the polarization direction of the near-field light 24 in a plane perpendicular to the traveling direction of the light. Then, the analyzer 34 is rotated. The photodetector 38
Detects the amount of light 42 (44) passing through the analyzer 34.

【0024】前記コンピュータ40は、前記光検出器3
4で得た電気信号に基づいて被測定光30の、直線偏光
した近接場光24に対する偏光方向及びその角度を求
め、外部出力する。本発明において特徴的なことは、光
の波長以下の値のものの偏光解消度あるいは偏光度の測
定を可能にしたことであり、このために本実施形態にか
かる近接場顕微鏡10においては、図2に示すような近
接場プローブを用いている。
The computer 40 includes the light detector 3
Based on the electric signal obtained in step 4, the polarization direction and the angle of the measured light 30 with respect to the linearly polarized near-field light 24 are obtained and output to the outside. A feature of the present invention is that it is possible to measure the degree of depolarization or the degree of polarization of light having a value equal to or less than the wavelength of light. For this reason, in the near-field microscope 10 according to the present embodiment, FIG. A near-field probe as shown in FIG.

【0025】なお、同図(A)は本発明の第一実施形態
にかかる近接場プローブの先端近傍を拡大した斜視図、
同図(B)は同様の上面図である。同図に示す近接場プ
ローブ14は、楕円状のコアをもつ光ファイバの一端を
略円錐状に先鋭化し、先鋭化部50を構成している。プ
ローブ14の表面にはマスク52として金(Au)皮膜
が形成されている。この略円錐状の先鋭化部50の最先
端には、所定の振動方向の直線偏光を得るための楕円状
の開口26が作成されている。
FIG. 3A is an enlarged perspective view of the vicinity of the tip of the near-field probe according to the first embodiment of the present invention.
FIG. 1B is a similar top view. In the near-field probe 14 shown in the figure, one end of an optical fiber having an elliptical core is sharpened in a substantially conical shape to form a sharpened portion 50. A gold (Au) film is formed as a mask 52 on the surface of the probe 14. An elliptical opening 26 for obtaining linearly polarized light in a predetermined vibration direction is formed at the tip of the sharpened portion 50 having a substantially conical shape.

【0026】このため、本実施形態では、プローブ先端
に近接場光を発生させる励起光がプローブ他端に導入さ
れると、プローブ先端には近接場光が発生し、近接場光
は楕円状の開口52より、所定の振動方向の直線偏光と
される。つまり、プローブ先端の楕円状開口52より、
該楕円状開口52の長軸方向と平行な偏光面をもつ近接
場光がしみ出す。そして、プローブ先端と試料測定面と
の距離を近づけると、この直線偏光した近接場光が試料
測定面により散乱される。この散乱光は、試料測定面に
対し所定の角度で配置された集光レンズにより集光さ
れ、前述のようにして被測定光の、試料測定面に照射し
た近接場光の偏光面に対する回転方向及びその角度が求
められる。
For this reason, in this embodiment, when excitation light for generating near-field light at the probe tip is introduced into the other end of the probe, near-field light is generated at the probe tip, and the near-field light is in an elliptical shape. The light is linearly polarized in a predetermined vibration direction from the opening 52. That is, from the elliptical opening 52 at the tip of the probe,
Near-field light having a polarization plane parallel to the major axis direction of the elliptical aperture 52 exudes. When the distance between the probe tip and the sample measurement surface is reduced, the linearly polarized near-field light is scattered by the sample measurement surface. The scattered light is condensed by a condenser lens arranged at a predetermined angle with respect to the sample measurement surface, and the direction of rotation of the measured light with respect to the polarization plane of the near-field light irradiated on the sample measurement surface as described above. And its angle.

【0027】以上のように本実施形態にかかる近接場顕
微鏡10によれば、最先端に楕円状の開口52が作成さ
れた本実施形態にかかる近接場プローブ14により、所
定の振動方向に直線偏光した近接場光24を発生させる
ことができる。本実施形態では、このように所定の振動
方向に直線偏光した近接場光24は、プローブ14先端
と試料測定面28との距離を近づけることにより該試料
測定面28で散乱され、その散乱光である被測定光30
の近接場光24の偏光面に対する回転方向及びその角度
が、後段の検出手段16により検出されるので、従来極
めて困難であった、光の波長の値より小さいものの偏光
解消度等の偏光性を容易に測定することができる。
As described above, according to the near-field microscope 10 according to the present embodiment, the near-field probe 14 according to the present embodiment, in which the elliptical opening 52 is formed at the forefront, causes linearly polarized light in a predetermined vibration direction. The generated near-field light 24 can be generated. In the present embodiment, the near-field light 24 linearly polarized in the predetermined vibration direction is scattered on the sample measurement surface 28 by shortening the distance between the tip of the probe 14 and the sample measurement surface 28, and the scattered light Some light under measurement 30
Since the rotation direction and the angle of the near-field light 24 with respect to the polarization plane are detected by the detection means 16 at the subsequent stage, the polarization property such as the degree of depolarization of a light smaller than the value of the wavelength of light, which has been extremely difficult in the past, is reduced. It can be easily measured.

【0028】第二実施形態 前記図2に示した楕円状の開口が作成されている近接場
プローブに代えて、図3に示すような近接場プローブを
用いることができる。なお、同図(A)は本実施形態に
かかる近接場プローブの先端近傍を拡大した斜視図、同
図(B)は上面図であり、前記第一実施形態と対応する
部分には符号100を加えて示し説明を省略する。同図
に示す近接場プローブ114では、略円錘状の先鋭化部
150の最先端に作成される開口126を、第一実施形
態のような楕円状に代えて、スリット状としている。
[0028]Second embodiment  Near field in which the elliptical opening shown in FIG. 2 is created
Instead of a probe, use a near-field probe as shown in FIG.
Can be used. FIG. 2A shows the embodiment.
A perspective view in which the vicinity of the tip of the near-field probe is enlarged, FIG.
FIG. 8B is a top view, corresponding to the first embodiment.
Parts are denoted by reference numeral 100, and description thereof is omitted. Same figure
The near-field probe 114 shown in FIG.
150 state-of-the-art openings 126 are provided in the first embodiment
Instead of the elliptical shape as in the embodiment, the shape is a slit shape.

【0029】この結果、本実施形態では、励起光がプロ
ーブ後端に導入されると、プローブ先端には近接場光が
発生し、近接場光はスリット状の開口により、前記第一
実施形態と同様、所定の振動方向の直線偏光が得られ
る。つまり、プローブ先端のスリット状開口152よ
り、スリット状開口152の長手方向と平行な偏光面を
もつ近接場光がしみ出す。
As a result, in this embodiment, when the excitation light is introduced into the rear end of the probe, near-field light is generated at the tip of the probe, and the near-field light is transmitted through the slit-like opening to the first embodiment. Similarly, linearly polarized light in a predetermined vibration direction is obtained. That is, near-field light having a polarization plane parallel to the longitudinal direction of the slit-shaped opening 152 exudes from the slit-shaped opening 152 at the tip of the probe.

【0030】そして、この直線偏光した近接場光は、プ
ローブ先端と試料測定面との距離を近づけると、試料測
定面により散乱され、その散乱光は集光レンズにより集
光され、後段の検出手段により被測定光の、試料測定面
に照射した近接場光の偏光面に対する回転方向及びその
角度が検出されるので、第一実施形態と同様、従来極め
て困難であった、光の波長の値より小さいものの偏光解
消度等の偏光性を容易に測定することができる。
The linearly polarized near-field light is scattered by the sample measurement surface when the distance between the probe tip and the sample measurement surface is reduced, and the scattered light is condensed by a condenser lens. Since the rotation direction and the angle of the measured light with respect to the polarization plane of the near-field light irradiated on the sample measurement surface are detected, as in the first embodiment, the value of the wavelength of the light, which was conventionally extremely difficult, Although small, it is possible to easily measure the polarization properties such as the degree of depolarization.

【0031】なお、前記構成では、イルミネーションモ
ードを用いて偏光解消度を測定した例について説明した
が、本発明はこれに限定されるものではなく、コレクシ
ョンモード、イルミネーション−コレクションモード等
の測定モード、偏光度、スペクトルの偏光依存性等の測
定に適用することができる。
In the above-described configuration, an example in which the degree of depolarization is measured using the illumination mode has been described. However, the present invention is not limited to this, and measurement modes such as a collection mode and an illumination-collection mode can be used. The present invention can be applied to the measurement of the degree of polarization, the polarization dependence of a spectrum, and the like.

【0032】例えば、コレクションモードでは、試料測
定面に対し所定の角度に励起光照射手段、偏光子を配置
し、試料測定面に近接場光を発生させる励起光を偏光子
を通して試料測定面に照射し、その励起光によって試料
測定面に発生した近接場光をプローブ先端で散乱させ、
その散乱光のうち、所定の振動方向の直線偏光成分を前
記プローブ先端開口を通して集光し、偏光解消度、スペ
クトルの偏光依存性等を測定すること、あるいは単に光
源からの光をそのまま試料測定面に照射し、試料測定面
からの被測定光のうち所定の振動方向の直線偏光をプロ
ーブにより取出し、偏光度等を測定すること等が一例と
して挙げられる。
For example, in the collection mode, excitation light irradiating means and a polarizer are arranged at a predetermined angle with respect to the sample measurement surface, and excitation light for generating near-field light on the sample measurement surface is irradiated on the sample measurement surface through the polarizer. Then, the near-field light generated on the sample measurement surface by the excitation light is scattered at the probe tip,
Of the scattered light, a linearly polarized light component in a predetermined vibration direction is condensed through the probe tip opening, and the degree of depolarization, the polarization dependence of the spectrum, etc., is measured, or the light from the light source is simply used as it is on the sample measurement surface. Irradiating the sample with light, taking out linearly polarized light in a predetermined vibration direction from the measured light from the sample measurement surface with a probe, and measuring the degree of polarization and the like.

【0033】また、イルミネーション−コレクションモ
ードでは、プローブ先端に近接場光を発生させる励起光
がプローブに導入され、プローブ先端に発生した近接場
光を開口を通して所定の振動方向の直線偏光として試料
測定面に照射し、その透過または反射した被測定光のう
ち、入射光と同一の振動方向の直線偏光成分を集光する
偏光度等を測定することが一例として挙げられる。これ
により、ファイバを伝播する偏光方向と開口部から取出
される偏光の方向が常に同じになるので、偏光子に対す
る検光子の角度調整を行う必要がないので、そのような
作業の手間と時間が省ける。
In the illumination-correction mode, excitation light for generating near-field light at the tip of the probe is introduced into the probe, and the near-field light generated at the tip of the probe is converted into linearly polarized light in a predetermined vibration direction through an opening on the sample measurement surface. And measuring the degree of polarization or the like of condensing a linearly polarized light component in the same vibration direction as the incident light, out of the measured light transmitted or reflected. As a result, the direction of polarization propagating through the fiber and the direction of polarized light extracted from the aperture are always the same, so that it is not necessary to adjust the angle of the analyzer with respect to the polarizer. Can be omitted.

【0034】さらに、前記図1に示した構成では、光検
出器38の前段に分光器を設置し、偏光解消度、偏光度
等の測定に加えて、分光スペクトル測定を行なうことが
可能であり、本発明にかかるプローブを用いてスペクト
ルの偏光依存性を測定することにより、光の波長より小
さな試料表面に平行な面内で異方性を持つ試料等の内部
構造に対する有用な情報が確実に得られる。
Further, in the configuration shown in FIG. 1, it is possible to install a spectroscope in front of the photodetector 38 and to measure the spectral spectrum in addition to the measurement of the degree of depolarization and the degree of polarization. By measuring the polarization dependence of the spectrum using the probe according to the present invention, it is possible to ensure useful information on the internal structure of a sample or the like having anisotropy in a plane parallel to the sample surface smaller than the wavelength of light. can get.

【0035】[0035]

【実施例】図4〜5には本発明の一実施例にかかる近接
場プローブの製造過程が示されている。なお、図4は本
実施例にかかる先鋭化工程からマスク形成工程までの過
程を示し、図5は図4に示したマスク形成工程により得
られたプローブの開口作成工程を示す。本実施例におい
ては、まず光ファイバ先端の化学エッチング法による先
鋭化工程を行う。
4 and 5 show a manufacturing process of a near-field probe according to an embodiment of the present invention. FIG. 4 shows a process from the sharpening process to the mask forming process according to this embodiment, and FIG. 5 shows a process of forming a probe opening obtained by the mask forming process shown in FIG. In this embodiment, first, a sharpening step of the tip of the optical fiber by a chemical etching method is performed.

【0036】すなわち、本実施例においては、図4
(A)に示すようなコア260が楕円状で、クラッド2
62が略真円状の光ファイバ(導光部)264の一端を
カットして緩衝溶液に浸し、先端寸法が光の波長以下と
なるように先鋭化する。この結果、先鋭化工程後の光フ
ァイバの一端には、同図(B)に示すような楕円錐状の
先鋭化部250(例えば根元径が長軸方向5μm×短軸
方向1μm、略最先端部の短軸方向250nm、根元か
ら最先端部までの高さ1.9μm)が形成され、つぎに
マスク形成工程を行う。
That is, in this embodiment, FIG.
The core 260 as shown in FIG.
One end of an optical fiber (light guide portion) 264 having a substantially perfect circular shape is cut and immersed in a buffer solution, and the tip is sharpened so as to be smaller than the wavelength of light. As a result, at one end of the optical fiber after the sharpening step, an elliptical cone-shaped sharpened portion 250 (for example, the base diameter is 5 μm in the major axis direction × 1 μm in the minor axis direction, substantially at the extreme The portion is formed in a minor axis direction of 250 nm and the height from the root to the foremost portion is 1.9 μm), and then a mask forming step is performed.

【0037】すなわち、光ファイバ264を回転させつ
つその表面に金の真空蒸着を行うことにより、同図
(C)に示すような遮光性の金属膜でマスク252を形
成することができる。そして、マスク形成後、開口作成
工程を行う。
That is, by performing vacuum evaporation of gold on the surface of the optical fiber 264 while rotating the optical fiber 264, the mask 252 can be formed of a light-shielding metal film as shown in FIG. After forming the mask, an opening forming step is performed.

【0038】すなわち、図5(A)に示すように光ファ
イバ264の先鋭化部250を硬い平板266等に所定
圧で押し付けることにより、先鋭化部250から金属膜
が剥がれ、開口が作成される。このとき、先鋭化部25
0の平板266への押付け量、あるいは平板266の先
鋭化部250への押付け量を所望の開口径に応じて制御
することにより、同図(B)に示すように先鋭化部25
0の最先端には楕円状の開口262が所望の大きさ(例
えば長軸方向900nm×短軸方向150nm)で作成
される。
That is, as shown in FIG. 5A, by pressing the sharpened portion 250 of the optical fiber 264 against a hard flat plate 266 or the like with a predetermined pressure, the metal film is peeled from the sharpened portion 250 and an opening is created. . At this time, the sharpening portion 25
By controlling the amount of pressing of the flat plate 266 on the flat plate 266 or the amount of pressing of the flat plate 266 on the sharpened portion 250 in accordance with a desired opening diameter, the sharpened portion 25 as shown in FIG.
An oval opening 262 having a desired size (for example, 900 nm in the major axis direction × 150 nm in the minor axis direction) is formed at the forefront of 0.

【0039】ここで、通常、近接場プローブは、略真円
状のコアをもつ光ファイバが用いられ、該光ファイバの
一端を略円錐状に先鋭化している。しかしながら、この
円錐状先鋭化部を前述のような押付け法により硬い平板
等に押し付けても、略真円状の開口が作成されてしま
い、所定の振動方向の直線偏光を得るための楕円状等の
開口を作成するのは非常に困難である。
Here, an optical fiber having a substantially circular core is generally used as the near-field probe, and one end of the optical fiber is sharpened to a substantially conical shape. However, even when the conical sharpened portion is pressed against a hard flat plate or the like by the above-described pressing method, a substantially circular opening is created, and an elliptical shape or the like for obtaining linearly polarized light in a predetermined vibration direction is obtained. It is very difficult to create an opening.

【0040】そこで、本実施例では、先鋭化部の最先端
に所定の振動方向の直線偏光を得るための楕円状等の開
口を作成するため、一般的な略真円状のコアをもつ光フ
ァイバに代えて、楕円状のコアをもつ光ファイバを用い
ることとした。これによりエッチング等の先鋭化工程に
より略楕円錘状の先鋭化部を容易につくり、このような
略楕円錘状の先鋭化部に前記押付け法を用いることによ
り、所定の振動方向の直線偏光を得るための楕円状等の
開口を容易に作成することができる。
Therefore, in this embodiment, an elliptical opening or the like for obtaining linearly polarized light in a predetermined vibration direction is formed at the forefront of the sharpened portion. Instead of the fiber, an optical fiber having an elliptical core was used. This makes it possible to easily form a substantially elliptical cone-shaped sharpened portion by a sharpening process such as etching, and to apply linearly polarized light in a predetermined vibration direction by using the pressing method on such a substantially elliptical cone-shaped sharpened portion. An elliptical opening or the like can be easily created.

【0041】図6には前述のようにして製造された本実
施例にかかる近接場プローブと、従来の近接場プローブ
等の被検体の偏光特性の比較結果が示されているなお、
同図では、まず透過光の進行方向に垂直な平面内に基準
方向を設け、該透過光の基準方向に対する回転角度を横
軸に取り、縦軸に各対応角度での強度を取っている。
FIG. 6 shows a comparison result of the polarization characteristics of the near-field probe according to the present embodiment manufactured as described above and a conventional near-field probe or the like.
In the figure, first, a reference direction is provided in a plane perpendicular to the traveling direction of transmitted light, the rotation angle of the transmitted light with respect to the reference direction is plotted on the horizontal axis, and the vertical axis shows the intensity at each corresponding angle.

【0042】同図Iは一般的な略真円状コアをもつ光フ
ァイバ、同図II及び同図IIIは、一般的な略円状のコア
をもち、略真円状の開口が作成された一般的な近接場プ
ローブ、同図IVは楕円状コアをもつ光ファイバ、同図V
は本実施例にかかる近接場プローブの偏光特性である。
各被検体を示す符号の横に示したカッコ書きは、被検体
の一端より光を入れ、その他端よりの透過光の基準方向
と平行(図中0度)な成分の光強度と、消光位、つまり
直交(図中90度)する成分の光強度の比である。
FIG. I shows an optical fiber having a general substantially circular core, and FIGS. II and III have a general substantially circular core and a substantially circular opening is formed. A general near-field probe, Fig. IV is an optical fiber with an elliptical core, Fig. V
Is the polarization characteristic of the near-field probe according to the present embodiment.
The brackets next to the reference numerals indicating the respective subjects indicate that light enters from one end of the subject, the light intensity of a component parallel to the reference direction of transmitted light from the other end (0 ° in the figure), and the extinction position. That is, it is the ratio of the light intensity of the components that are orthogonal (90 degrees in the figure).

【0043】本試験例では、本実施例にかかる近接場プ
ローブに関しては、前記基準方向に平行となるように楕
円状開口の偏光方向を一致させる条件としている。同図
IVに示す楕円状コアをもつ光ファイバに関しては、この
基準方向に平行となるように楕円状コアの長軸方向を一
致させる条件としている。その他の上記被検体に関して
は、基準方向に任意の角度で被検体の端面を配置する条
件としている。
In this test example, the conditions for the near-field probe according to this embodiment are such that the polarization directions of the elliptical apertures coincide with each other so as to be parallel to the reference direction. Same figure
For the optical fiber having an elliptical core shown in IV, the condition is such that the major axis direction of the elliptical core coincides with the reference direction. For the other objects, the condition is such that the end face of the object is arranged at an arbitrary angle in the reference direction.

【0044】この結果、略真円状のコアをもつ光ファイ
バを示す同図Iと楕円状のコアをもつ光ファイバを示す
同図IVの偏光特性が、つまり透過光の基準方向に対して
平行成分と直交成分の強度の比が、略同一の2:1であ
る。また一般的な略真円状のコアをもつ光ファイバに対
して略真円状の開口が作成された近接場プローブを示す
同図II及び同図IIIでは、それぞれ5:1、8:1であ
るのに対し、本実施例を示す同図Vは、15:1という
優れた偏光特性を示している。
As a result, the polarization characteristics of FIG. I showing an optical fiber having a substantially perfect circular core and FIG. IV showing an optical fiber having an elliptical core are parallel to the reference direction of transmitted light. The ratio between the intensity of the component and the intensity of the orthogonal component is approximately the same, 2: 1. In FIGS. II and III, which show a near-field probe in which a substantially circular opening is formed for a general optical fiber having a substantially circular core, the ratio is 5: 1 and 8: 1, respectively. On the other hand, FIG. V showing the present example shows an excellent polarization characteristic of 15: 1.

【0045】したがって、本実施例にかかる近接場プロ
ーブの優れた偏光特性は、単に楕円状コアをもつ光ファ
イバを用いただけでは得られず、前述のようにして楕円
状コアをもつ光ファイバの一端に形成された略楕円錘状
の先鋭化部の最先端に、楕円状またはスリット状に開口
を作成してはじめて得られることが理解される。
Therefore, the excellent polarization characteristics of the near-field probe according to this embodiment cannot be obtained only by using an optical fiber having an elliptical core. It can be understood that an elliptical or slit-shaped opening is formed at the forefront of the substantially elliptical cone-shaped sharpened portion formed in the above.

【0046】[0046]

【発明の効果】以上説明したように本発明にかかる近接
場プローブによれば、先鋭化された導光部の最先端に形
成された楕円状またはスリット状の開口を介して、直線
偏光した近接場光を試料測定面に照射する、ないし試料
測定面からの被測定光の所定の振動方向の直線偏光を取
り出すこととしたので、光の波長の値より小さい領域で
の直線偏光を得ることができる。なお、本発明におい
て、前記導光部に楕円状のコアをもつ光ファイバを用い
ることにより、先鋭化された導光部の最先端に前記偏光
測定用の楕円状またはスリット状の開口を容易に作成す
ることができる。また、本発明にかかる近接場プローブ
製造方法によれば、開口作成工程により、先鋭化された
導光部の最先端に、該先端に発生した近接場光を所定の
振動方向の直線偏光として試料測定面に照射する、ない
し光の照射によって得られた試料測定面からの被測定光
を所定の振動方向の直線偏光として集光する楕円状また
はスリット状の開口を作成することとしたので、前記近
接場プローブを容易に製造することができる。なお、本
発明において、前記開口作成工程で用いる導光部に楕円
状のコアをもつ光ファイバを用いることにより、先鋭化
された導光部の最先端に前記偏光測定用の楕円状または
スリット状の開口を容易に作成することができる。ま
た、本発明にかかる近接場顕微鏡によれば、本発明にか
かる近接場プローブを用いることとしたので、光の波長
よりも小さい領域での偏光解消度、偏光度およびスペク
トルの偏光依存性の何れかの測定を容易に行うことがで
きる。
As described above, according to the near-field probe according to the present invention, a near-polarized near-field probe is formed through an elliptical or slit-shaped opening formed at the forefront of a sharpened light guide. Since field light is applied to the sample measurement surface, or linearly polarized light in the predetermined vibration direction of the measured light from the sample measurement surface is extracted, it is possible to obtain linearly polarized light in a region smaller than the light wavelength value. it can. In the present invention, by using an optical fiber having an elliptical core in the light guide section, the elliptical or slit opening for polarization measurement can be easily formed at the forefront of the sharpened light guide section. Can be created. Further, according to the method for manufacturing a near-field probe according to the present invention, the near-field light generated at the tip of the sample is converted into linearly polarized light having a predetermined vibration direction at the forefront of the light guide portion sharpened by the opening forming step. Irradiate the measurement surface, or to create an elliptical or slit-shaped aperture to condense the measured light from the sample measurement surface obtained by light irradiation as linearly polarized light in a predetermined vibration direction, Near-field probes can be easily manufactured. In the present invention, by using an optical fiber having an elliptical core for the light guide used in the opening forming step, the ellipse or slit for polarization measurement is provided at the forefront of the sharpened light guide. Opening can be easily created. Further, according to the near-field microscope according to the present invention, since the near-field probe according to the present invention is used, any of the degree of depolarization in a region smaller than the wavelength of light, the degree of polarization, and the polarization dependence of the spectrum. Can easily be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかる近接場顕微鏡の概
略構成の説明図である。
FIG. 1 is an explanatory diagram of a schematic configuration of a near-field microscope according to an embodiment of the present invention.

【図2】図1に示した近接場顕微鏡に用いられる、本発
明の第一実施形態にかかる近接場プローブの概略構成の
説明図である。
FIG. 2 is an explanatory diagram of a schematic configuration of a near-field probe according to a first embodiment of the present invention, which is used in the near-field microscope shown in FIG.

【図3】図1に示した近接場顕微鏡に用いられる、本発
明の第二実施形態にかかる近接場プローブの概略構成の
説明図である。
FIG. 3 is an explanatory diagram of a schematic configuration of a near-field probe according to a second embodiment of the present invention, which is used in the near-field microscope shown in FIG.

【図4】,FIG.

【図5】本発明の一実施例にかかる近接場プローブの製
造過程の説明図である。
FIG. 5 is an explanatory diagram of a manufacturing process of the near-field probe according to one embodiment of the present invention.

【図6】本実施例にかかる近接場プローブ及び従来の近
接場プローブ等の被検体の偏光特性の比較説明図であ
る。
FIG. 6 is a comparative explanatory diagram of polarization characteristics of a subject such as a near-field probe according to the present embodiment and a conventional near-field probe.

【符号の説明】[Explanation of symbols]

10 近接場顕微鏡 12 励起光照射手段 14,114,214 近接場プローブ 16 検出手段 24 所定の振動方向に直線偏光した近接場光 26,126,226 楕円状またはスリット状開口 264 楕円状コアをもつ光ファイバ(導光部) Reference Signs List 10 near-field microscope 12 excitation light irradiation means 14, 114, 214 near-field probe 16 detection means 24 near-field light linearly polarized in a predetermined vibration direction 26, 126, 226 light having an elliptical or slit-shaped opening 264 elliptical core Fiber (light guide)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 21/06 G01B 11/24 A G12B 21/06 G12B 1/00 601C Fターム(参考) 2F065 AA04 AA33 AA49 AA53 DD00 FF41 FF49 LL00 LL02 LL04 LL12 LL28 LL34 LL67 PP22 PP24 UU01 UU07 2G059 AA02 AA05 BB08 EE01 EE02 EE05 EE12 FF03 GG00 GG04 JJ01 JJ11 JJ13 JJ17 JJ19 KK01 LL04 MM05 2H038 AA02 AA12 BA01 2H050 AC83 AC87 AC90 AD06 2H052 AA01 AA09 AC00 AC26 AF02──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 21/06 G01B 11/24 A G12B 21/06 G12B 1/00 601C F-term (Reference) 2F065 AA04 AA33 AA49 AA53 DD00 FF41 FF49 LL00 LL02 LL04 LL12 LL28 LL34 LL67 PP22 PP24 UU01 UU07 2G059 AA02 AA05 BB08 EE01 EE02 EE05 EE12 FF03 GG00 GG04 JJ01 JJ11 JJ13 JJ17 JJ19 A02 A01 AC2 A01 AC2 A02 A05 AC2

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 プローブ先端に近接場光を発生させる励
起光ないし試料測定面からの被測定光に透明な材質で構
成され、該励起光ないし該被測定光を導光する導光部
と、 前記励起光ないし前記被測定光に不透明な材質で構成さ
れ、前記導光部の少なくとも先端表面に形成されたマス
クと、 前記マスクが形成された導光部の最先端に作成され、該
先端に発生した近接場光を所定の振動方向の直線偏光と
して試料測定面に照射する、ないし光の照射によって得
られた試料測定面からの被測定光を所定の振動方向の直
線偏光として集光する楕円状またはスリット状の開口
と、 を備えたことを特徴とする近接場プローブ。
1. A light guide section made of a material transparent to excitation light for generating near-field light at a probe tip or light to be measured from a sample measurement surface, and guiding the excitation light or the light to be measured; A mask formed of a material opaque to the excitation light or the light to be measured, formed on at least the front surface of the light guide, and formed at the forefront of the light guide on which the mask is formed. An ellipse that irradiates the generated near-field light to the sample measurement surface as linearly polarized light in a predetermined vibration direction, or condenses measured light from the sample measurement surface obtained by light irradiation as linearly polarized light in a predetermined vibration direction. A near-field probe comprising: a slit-shaped or slit-shaped opening;
【請求項2】 請求項1記載の近接場プローブにおい
て、 前記導光部は、楕円状のコアをもつ光ファイバであり、 前記楕円状またはスリット状の開口は、前記楕円状コア
をもつ光ファイバの一端を略楕円錘状に先鋭化した導光
部の最先端に作成されていることを特徴とする近接場プ
ローブ。
2. The near-field probe according to claim 1, wherein the light guide is an optical fiber having an elliptical core, and the elliptical or slit opening is an optical fiber having the elliptical core. A near-field probe formed at the forefront of a light guide section in which one end of the light guide section is sharpened into a substantially elliptical cone shape.
【請求項3】 プローブ先端に近接場光を発生させる励
起光ないし試料測定面からの被測定光に透明な材質で構
成され、該励起光ないし該被測定光を導光する導光部の
先端を先鋭化する先鋭化工程と、 前記先鋭化工程により先鋭化された導光部の少なくとも
先端表面に、前記励起光ないし前記被測定光に不透明な
材質で構成されたマスクを形成するマスク形成工程と、 前記マスク形成工程によりマスクが形成された導光部の
最先端に、該先端に発生した近接場光を所定の振動方向
の直線偏光として試料測定面に照射する、ないし光の照
射によって試料測定面に発生した被測定光を所定の振動
方向の直線偏光として集光する楕円状またはスリット状
の開口を作成する開口作成工程と、 を備えたことを特徴とする近接場プローブ製造方法。
3. A tip of a light guide section made of a material transparent to excitation light for generating near-field light at the probe tip or light to be measured from a sample measurement surface, and guiding the excitation light or the light to be measured. And a mask forming step of forming a mask made of a material opaque to the excitation light or the light to be measured on at least the distal end surface of the light guide section sharpened by the sharpening step. And irradiating the sample measurement surface with near-field light generated at the tip as linearly polarized light in a predetermined vibration direction at the forefront of the light guide portion on which the mask is formed in the mask forming step, or irradiating the sample with light. An aperture forming step of forming an elliptical or slit-shaped aperture for converging light to be measured generated on the measurement surface as linearly polarized light in a predetermined vibration direction.
【請求項4】 請求項3記載の近接場プローブ製造方法
において、前記先鋭化工程は、前記導光部としての、楕
円状コアをもつ光ファイバの一端を略楕円錘状に先鋭化
し、 前記開口作成工程は、前記先鋭化工程により略楕円錘状
に先鋭化された導光部の最先端に、前記楕円状またはス
リット状の開口を形成したことを特徴とする近接場プロ
ーブ製造方法。
4. The method of manufacturing a near-field probe according to claim 3, wherein the sharpening step sharpens one end of an optical fiber having an elliptical core as the light guide portion into a substantially elliptical cone shape. The method of manufacturing a near-field probe, wherein in the forming step, the elliptical or slit-shaped opening is formed at the forefront of the light guide portion sharpened to a substantially elliptical cone shape by the sharpening step.
【請求項5】 前記近接場プローブ先端に近接場光を発
生させる励起光または試料測定面に近接場光を発生させ
る励起光を照射する励起光照射手段と、 前記励起光照射手段からの励起光が前記近接場プローブ
に導入され、その導光部の最先端に発生した近接場光
を、前記楕円状またはスリット状の開口を介して所定の
振動方向の直線偏光として試料測定面に照射する、ない
し光の照射によって得られた試料測定面からの被測定光
を、前記楕円状またはスリット状の開口を介して所定の
振動方向の直線偏光として集光する前記近接場プローブ
と、 得られた試料測定面からの被測定光に基づいて偏光解消
度、偏光度およびスペクトルの偏光依存性の何れかを検
出する検出手段と、 を備え、前記近接場プローブを用いて偏光解消度、偏光
度およびスペクトルの偏光依存性の何れかの測定を行う
ことを特徴とする近接場顕微鏡。
5. Excitation light irradiating means for irradiating excitation light for generating near-field light at the tip of the near-field probe or excitation light for generating near-field light on the sample measurement surface; and excitation light from the excitation light irradiating means. Is introduced into the near-field probe, the near-field light generated at the forefront of the light guide portion, irradiating the sample measurement surface as linearly polarized light in a predetermined vibration direction through the elliptical or slit-shaped opening, Or the near-field probe for condensing light to be measured from the sample measurement surface obtained by light irradiation as linearly polarized light in a predetermined vibration direction through the elliptical or slit-shaped opening; and the obtained sample. Detecting means for detecting any one of the degree of depolarization, the degree of polarization, and the polarization dependence of the spectrum based on the light to be measured from the measurement surface, and using the near-field probe, the degree of depolarization, the degree of polarization, and the degree of polarization. A near-field microscope for performing any measurement of the polarization dependence of a spectrum.
JP2000361332A 2000-11-28 2000-11-28 Near-field probe, manufacturing method thereof, and near-field microscope using the near-field probe Expired - Fee Related JP4703841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000361332A JP4703841B2 (en) 2000-11-28 2000-11-28 Near-field probe, manufacturing method thereof, and near-field microscope using the near-field probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000361332A JP4703841B2 (en) 2000-11-28 2000-11-28 Near-field probe, manufacturing method thereof, and near-field microscope using the near-field probe

Publications (2)

Publication Number Publication Date
JP2002162333A true JP2002162333A (en) 2002-06-07
JP4703841B2 JP4703841B2 (en) 2011-06-15

Family

ID=18832783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000361332A Expired - Fee Related JP4703841B2 (en) 2000-11-28 2000-11-28 Near-field probe, manufacturing method thereof, and near-field microscope using the near-field probe

Country Status (1)

Country Link
JP (1) JP4703841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715322A2 (en) 2005-04-20 2006-10-25 Jasco Corporation Near-field polarized-light measurement apparatus
JP2020096159A (en) * 2018-12-05 2020-06-18 株式会社テクノホロン Damage detection mechanism
CN113029898A (en) * 2021-02-22 2021-06-25 西南石油大学 Device and method for testing dynamic flow conductivity of crack and gas supply capacity of bedrock

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713082A (en) * 1993-06-28 1995-01-17 Matsushita Electric Ind Co Ltd Micropolarizing light source
JPH087323A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Optical head and optical information recording/ reproducing apparatus
JPH11326346A (en) * 1998-05-15 1999-11-26 Minolta Co Ltd Optical probe, near-field scan type optical microscope and optical apparatus
JP2000019091A (en) * 1998-07-03 2000-01-21 Kanagawa Acad Of Sci & Technol Optical fiber probe and its manufacturing method
JP2000501546A (en) * 1996-08-13 2000-02-08 ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Magneto-optical recording system using near-field optics
JP2000039389A (en) * 1998-07-21 2000-02-08 Kanagawa Acad Of Sci & Technol Optical fiber probe and its manufacture
JP2000171380A (en) * 1998-12-04 2000-06-23 Kanagawa Acad Of Sci & Technol Optical probe and manufacture thereof
JP2000199736A (en) * 1998-11-06 2000-07-18 Seiko Instruments Inc Scanning near-field microscope
JP2000223767A (en) * 1999-02-01 2000-08-11 Agency Of Ind Science & Technol Proximity field light generating element and optical head
JP2001189030A (en) * 1999-12-28 2001-07-10 Toshiba Corp Proximity field light irradiation head, and information recording/reproduding device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713082A (en) * 1993-06-28 1995-01-17 Matsushita Electric Ind Co Ltd Micropolarizing light source
JPH087323A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Optical head and optical information recording/ reproducing apparatus
JP2000501546A (en) * 1996-08-13 2000-02-08 ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Magneto-optical recording system using near-field optics
JPH11326346A (en) * 1998-05-15 1999-11-26 Minolta Co Ltd Optical probe, near-field scan type optical microscope and optical apparatus
JP2000019091A (en) * 1998-07-03 2000-01-21 Kanagawa Acad Of Sci & Technol Optical fiber probe and its manufacturing method
JP2000039389A (en) * 1998-07-21 2000-02-08 Kanagawa Acad Of Sci & Technol Optical fiber probe and its manufacture
JP2000199736A (en) * 1998-11-06 2000-07-18 Seiko Instruments Inc Scanning near-field microscope
JP2000171380A (en) * 1998-12-04 2000-06-23 Kanagawa Acad Of Sci & Technol Optical probe and manufacture thereof
JP2000223767A (en) * 1999-02-01 2000-08-11 Agency Of Ind Science & Technol Proximity field light generating element and optical head
JP2001189030A (en) * 1999-12-28 2001-07-10 Toshiba Corp Proximity field light irradiation head, and information recording/reproduding device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715322A2 (en) 2005-04-20 2006-10-25 Jasco Corporation Near-field polarized-light measurement apparatus
JP2006300708A (en) * 2005-04-20 2006-11-02 Jasco Corp Near field polarization measuring instrument
EP1715322A3 (en) * 2005-04-20 2007-04-11 Jasco Corporation Near-field polarized-light measurement apparatus
JP2020096159A (en) * 2018-12-05 2020-06-18 株式会社テクノホロン Damage detection mechanism
CN112123208A (en) * 2018-12-05 2020-12-25 泰克霍隆株式会社 Breakage detection mechanism
CN113029898A (en) * 2021-02-22 2021-06-25 西南石油大学 Device and method for testing dynamic flow conductivity of crack and gas supply capacity of bedrock

Also Published As

Publication number Publication date
JP4703841B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US6643012B2 (en) Apertureless near-field scanning raman microscopy using reflection scattering geometry
US5894122A (en) Scanning near field optical microscope
JP5216509B2 (en) Scanning probe microscope and sample observation method using the same
JP5519711B2 (en) Optical probe for in vivo measurement of optical signals
JP3002977B1 (en) Scanning probe and scanning probe microscope
JP2010197208A (en) Scanning probe microscope and sample observation method using same
EP1160611B1 (en) Probe opening forming apparatus and near-field optical microscope using the same
US7586606B2 (en) Near-field polarized-light measurement apparatus
JP2002148172A (en) Near field microscope
JP3196945B2 (en) Scanning optical microscope
JP4498081B2 (en) Scattering near-field microscope and measuring method thereof
JP2002162333A (en) Near field probe, manufacturing method of near field probe and near field microscope using near field probe
JP4585053B2 (en) Scattering near-field microscope
JPH10267945A (en) Scanning optical microscope
JP2006329699A (en) Micromachined cantilever and near field spectroscope using it
JP3949831B2 (en) Optical cantilever and manufacturing method thereof
JP4694736B2 (en) Probe aperture manufacturing apparatus and near-field optical microscope using the same
JP3589819B2 (en) Optical fiber probe and near-field optical microscope using the same
JP2009058473A (en) Methods of measuring probe shape and sample shape, and probe microscope
JP3309355B2 (en) Micro aperture evaluation system
JP4377044B2 (en) Probe and near-field microscope using the probe
JPH1151945A (en) Interatomic force microscope with spectral analysis mechanism
JP3669466B2 (en) Thermal spectrometer
US7184928B2 (en) Extended defect sizing
JP3242787B2 (en) Photon scanning tunneling microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4703841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees