JP2002162212A - Bank body distortion measuring sensor - Google Patents

Bank body distortion measuring sensor

Info

Publication number
JP2002162212A
JP2002162212A JP2000357902A JP2000357902A JP2002162212A JP 2002162212 A JP2002162212 A JP 2002162212A JP 2000357902 A JP2000357902 A JP 2000357902A JP 2000357902 A JP2000357902 A JP 2000357902A JP 2002162212 A JP2002162212 A JP 2002162212A
Authority
JP
Japan
Prior art keywords
sensor
optical cable
weight
longitudinal direction
embankment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000357902A
Other languages
Japanese (ja)
Inventor
Shigeru Ikeda
茂 池田
Takuma Osada
拓馬 長田
Kenichi Saito
健一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Foundation of River and Basin Integrated Communications
Original Assignee
Hitachi Cable Ltd
Foundation of River and Basin Integrated Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Foundation of River and Basin Integrated Communications filed Critical Hitachi Cable Ltd
Priority to JP2000357902A priority Critical patent/JP2002162212A/en
Publication of JP2002162212A publication Critical patent/JP2002162212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bank body distortion measuring sensor easy to follow the movement of earth of the inside of a bank body, capable of grasping the initial phenomenon of bank body collapse which is thought to be produced due to leakage water by large distortion as a preecho, and easily constructing a long bank. SOLUTION: In a bank body measuring sensor comprising an optical cable for a sensor 10 laid along the longitudinal direction on the bank body 30 and a plurality of sensor weight 20 fixed at proper intervals in the longitudinal direction of the optical cable for the sensor 10, the sensor weight 20 is fixed on the optical cable for the sensor 10 away from a vertical straight line passing the centroid of each sensor weight 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、漏水による堤体の
変状(ひずみ)を計測するための堤体ひずみ計測センサ
に係り、特に光ケーブルを用いた堤体ひずみ計測センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an embankment strain measuring sensor for measuring deformation (strain) of an embankment caused by water leakage, and more particularly to an embankment strain measuring sensor using an optical cable.

【0002】[0002]

【従来の技術】図5に従来技術の堤体ひずみ計測センサ
の施工形態の概略図を示す。
2. Description of the Related Art FIG. 5 is a schematic view showing a construction of a conventional embankment strain measuring sensor.

【0003】図5に示すように、従来の堤体ひずみ計測
センサは、センサ用光ケーブル10の長手方向に一定間
隔でセンサ用錘40が取り付けられており、堤体30の
水が流れている側の面(以下、「法面」と称する。)3
1に、長手方向に沿って直線状に布設されている。
As shown in FIG. 5, a conventional embankment strain measuring sensor has sensor weights 40 attached at regular intervals in the longitudinal direction of a sensor optical cable 10, and a side of the embankment 30 on which water flows. (Hereinafter referred to as “slope”) 3
1, it is laid in a straight line along the longitudinal direction.

【0004】このセンサ用錘40は、図6(a)、図6
(b)に示すように、直方体状のセンサ用錘本体41の
一側面の中央に、長手方向に沿って半円溝41gが形成
されており、この半円溝41g内にセンサ用光ケーブル
10が収容され、そのセンサ用光ケーブル10の上から
板状の固定金具43と複数の固定ボルト45により締め
固められて構成されている。
[0006] The sensor weight 40 is shown in FIGS.
As shown in (b), a semicircular groove 41g is formed along the longitudinal direction at the center of one side surface of the sensor weight body 41 having a rectangular parallelepiped shape, and the sensor optical cable 10 is accommodated in the semicircular groove 41g. The sensor optical cable 10 is housed, and is compacted from above the sensor optical cable 10 by a plate-shaped fixing bracket 43 and a plurality of fixing bolts 45.

【0005】そして、このように設置された堤体ひずみ
計測センサは、図5に示したように、堤体30内で漏水
が発生すると、その漏水発生部の土の移動(崩落)に伴
いセンサ用錘40も移動する。この時、移動したセンサ
用錘40の両側に配置されたセンサ用錘40は固定点と
なり、移動したセンサ用錘40により両側の固定点間の
センサ用光ケーブル10が引っ張られる。
[0005] As shown in FIG. 5, when water leakage occurs in the embankment body 30 as shown in FIG. The weight 40 also moves. At this time, the sensor weights 40 arranged on both sides of the moved sensor weight 40 become fixed points, and the sensor optical cable 10 between the fixed points on both sides is pulled by the moved sensor weight 40.

【0006】この際、移動したセンサ用錘40を支持す
る部分(両側の固定点間)のセンサ用光ケーブル10に
伸びひずみが発生し、センサ用光ケーブル10に接続さ
れた遠隔の検知器により、堤体30に発生したひずみと
して検知される。
At this time, an elongation strain occurs in the sensor optical cable 10 at the portion supporting the moved sensor weight 40 (between the fixed points on both sides), and the remote detector connected to the sensor optical cable 10 causes the bank to break. This is detected as strain generated in the body 30.

【0007】このようにして計測されるひずみの感度
は、センサ用錘40の移動量及びセンサ用光ケーブル1
0の伸び特性により決められる。
The sensitivity of the strain measured as described above depends on the amount of movement of the sensor weight 40 and the optical cable 1 for the sensor.
It is determined by an elongation property of 0.

【0008】[0008]

【発明が解決しようとする課題】ところで、堤体30内
に発生したひずみを感度良く計測するためには、微少な
砂の移動量を大きな変化量として捉え、センサ用光ケー
ブル10にできるだけ大きな伸びひずみを与える必要が
ある。
By the way, in order to measure the strain generated in the embankment body 30 with high sensitivity, the amount of movement of minute sand is regarded as a large change amount, and the optical fiber cable 10 for the sensor is required to have as large an elongation strain as possible. Need to give.

【0009】しかしながら、従来の堤体ひずみ計測セン
サは、直線状に布設されたセンサ用光ケーブル10に一
定間隔で固定された多数のセンサ用錘40の一部が、漏
水の発生により、堤体30の長手方向に対して直角方向
に堤体30内の土と一緒に移動して、その移動量に相当
するひずみを計測する原理となっているが、土の移動に
伴って移動したセンサ用錘40と、移動していないセン
サ用錘40との間のセンサ用光ケーブル10を直線状に
伸ばす構造のため、センサ用錘40の移動量に対するひ
ずみ発生量が小さく、感度良くひずみを捉えることがで
きなかった。
However, in the conventional dyke strain measuring sensor, a part of a large number of sensor weights 40 fixed at regular intervals to the sensor optical cable 10 laid in a straight line causes a part of the dyke 30 to break due to the occurrence of water leakage. Moves along with the soil in the embankment body 30 in a direction perpendicular to the longitudinal direction of the body, and measures the strain corresponding to the amount of movement. However, the sensor weight that moves with the movement of the soil Due to the structure in which the sensor optical cable 10 is linearly extended between the sensor weight 40 and the non-moving sensor weight 40, the amount of strain generated with respect to the movement amount of the sensor weight 40 is small, and the strain can be captured with high sensitivity. Did not.

【0010】さらには、漏水初期現象における土壌状態
での予兆計測においても、その施工方法により、センサ
用錘40の移動量のみでのひずみを発生させる機構のた
め、センサ用錘40の自重だけでは十分なひずみ発生が
期待できず、漏水の初期現象を予兆として捉えることが
難しい状況にある。
[0010] Further, in the measurement of signs in the soil state in the early stage of water leakage, a mechanism that generates a strain only by the amount of movement of the sensor weight 40 by the construction method, so that the weight of the sensor weight 40 alone is not sufficient. Sufficient strain generation cannot be expected, and it is difficult to grasp the initial phenomenon of water leakage as a sign.

【0011】また、従来の堤体ひずみ計測センサの構成
では、確実なひずみ検知を確保するためにセンサ用光ケ
ーブル10が弛まないように直線状に配置させる必要が
あり、センサ用錘40のレベル出しなど設置工事に多く
の時間を要していた。
Further, in the configuration of the conventional embankment strain measuring sensor, it is necessary to arrange the sensor optical cable 10 in a straight line so as not to be loosened in order to ensure reliable strain detection. It took a lot of time for installation work.

【0012】そこで、本発明の目的は、上述した従来技
術の欠点を解消し、堤体内の土の動きに追従しやすく、
かつ漏水によって引き起こされると考えられている堤体
崩壊の初期現象を大きなひずみで予兆として捉えること
ができると共に、長大な堤防に容易に施工可能な堤体ひ
ずみ計測センサを提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned disadvantages of the prior art, to easily follow the movement of the soil in the embankment,
Another object of the present invention is to provide an embankment strain measurement sensor which can be regarded as a sign of an initial phenomenon of embankment collapse considered to be caused by water leakage with a large strain and can be easily constructed on a long embankment.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、堤体に長手方向に沿って布設され
るセンサ用光ケーブルと、このセンサ用光ケーブルの長
手方向に適宜間隔を隔てて固定された複数のセンサ用錘
とからなる堤体ひずみ計測センサにおいて、上記センサ
用錘は各センサ用錘の重心を通る鉛直線から離れて上記
センサ用光ケーブルに固定されているものである。
According to a first aspect of the present invention, there is provided a sensor optical cable laid along a longitudinal direction on a bank, and an appropriate distance between the sensor optical cable in the longitudinal direction of the sensor optical cable. In the embankment strain measurement sensor comprising a plurality of sensor weights fixed apart, the sensor weight is fixed to the sensor optical cable away from a vertical line passing through the center of gravity of each sensor weight. .

【0014】請求項2の発明は、上記センサ用錘は、直
方体状に形成されていると共にその直方体の長手方向が
上記センサ用光ケーブルの長手方向に一致するようにか
つ一方の端部に上記センサ用光ケーブルが固定されてい
るものである。
According to a second aspect of the present invention, the sensor weight is formed in a rectangular parallelepiped shape and the longitudinal direction of the rectangular parallelepiped coincides with the longitudinal direction of the sensor optical cable, and the sensor weight is provided at one end. The optical cable is fixed.

【0015】上記構成によれば、設置時、センサ用錘
は、センサ用光ケーブルとの固定部が偏重心されて堤体
に支持されているため、常に不安定な状態にあるので、
微少な土の動きでもそのバランスが崩れる。これによ
り、少量の土の移動又は土の高湿潤度状態による軟弱化
により、センサ用錘の自重による移動が発生し、高感度
で土の移動を検出できる。さらに、堤体の崩壊時、セン
サ用錘は、固定部を中心にして回転力が働き、そのセン
サ用錘の両側に位置するセンサ用錘間に固定されたセン
サ用光ケーブルを引き寄せながら移動する。これによ
り、センサ用光ケーブルの伸びひずみが増大する。
According to the above configuration, at the time of installation, the weight for the sensor is always in an unstable state because the fixed portion with the optical cable for the sensor is supported by the embankment with the eccentricity.
Even small movements of the soil can disrupt the balance. Accordingly, the movement of the sensor weight due to its own weight occurs due to the movement of a small amount of soil or the softening due to the state of high wetness of the soil, and the movement of the soil can be detected with high sensitivity. Further, when the levee body collapses, the sensor weight moves around the fixed portion, and moves while pulling the sensor optical cable fixed between the sensor weights located on both sides of the sensor weight. Thereby, the elongation strain of the optical cable for the sensor increases.

【0016】[0016]

【発明の実施の形態】次に、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

【0017】図3に本発明にかかる堤体ひずみ計測セン
サの施工形態の概略図を示す。
FIG. 3 is a schematic view showing the construction of the embankment strain measuring sensor according to the present invention.

【0018】図3に示すように、この堤体ひずみ計測セ
ンサは、堤体30の法面31に、長手方向に沿って直線
状に布設されたセンサ用光ケーブル10と、このセンサ
用光ケーブル10の長手方向に一定間隔で取り付けられ
た多数のセンサ用錘20とから構成されている。
As shown in FIG. 3, this embankment strain measuring sensor comprises a sensor optical cable 10 laid linearly along a longitudinal direction on a slope 31 of an embankment body 30; And a large number of sensor weights 20 attached at regular intervals in the longitudinal direction.

【0019】図1にセンサ用錘20の拡大図を、図2に
その側面図を示す。
FIG. 1 is an enlarged view of the sensor weight 20, and FIG. 2 is a side view thereof.

【0020】図1に示すように、センサ用錘20は、直
方体状に形成された錘本体21と、この錘本体21にセ
ンサ用光ケーブル10を固定するための固定金具23及
び一対の固定ボルト25とから構成されており、固定金
具23は、幅が錘本体21の長手方向の長さの1/4か
ら1/5程度の長さの長方形で形成されている。
As shown in FIG. 1, the sensor weight 20 includes a weight body 21 formed in a rectangular parallelepiped shape, a fixture 23 for fixing the sensor optical cable 10 to the weight body 21, and a pair of fixing bolts 25. The fixing bracket 23 is formed in a rectangular shape having a width of about 1 / to 1 / of the length of the weight body 21 in the longitudinal direction.

【0021】そして、図2に示すように、センサ用光ケ
ーブル10は、錘本体21の面積が広い一側面の角部近
傍に、長手方向に沿って形成された断面半円形状の半円
溝21gに収容されていると共に、その上から固定金具
23と固定ボルト25とによりセンサ用錘20に締め固
められて固定されている。
As shown in FIG. 2, the sensor optical cable 10 has a semicircular groove 21g having a semicircular cross section formed along the longitudinal direction near a corner of one side surface of the weight body 21 having a large area. And is fixed to the sensor weight 20 by a fixing bracket 23 and a fixing bolt 25 from above.

【0022】すなわち、センサ用錘20とセンサ用光ケ
ーブル10とが固定される固定部15は、錘本体21の
面積の広い側面の一端部に形成されていると共に、セン
サ用錘20の重心を通る鉛直線と離れて形成されてお
り、センサ用錘20は偏重心されて設けられている。
That is, the fixing portion 15 to which the sensor weight 20 and the sensor optical cable 10 are fixed is formed at one end of a wide side surface of the weight main body 21 and passes through the center of gravity of the sensor weight 20. The sensor weight 20 is formed apart from the vertical line, and is provided with an eccentric center of gravity.

【0023】次に、作用を説明する。Next, the operation will be described.

【0024】この堤体ひずみ計測センサを堤体に設置す
るに際しては、図3に示したように、各センサ用錘20
は、長手方向がセンサ用光ケーブル10の長手方向に一
致するように偏重心状態で設置される。すなわち、通常
時(乾燥期等)は、センサ用錘20は周辺の土により支
持され、不安定な状態で水平にバランスがとられてい
る。
When installing the embankment strain measuring sensor on the embankment, as shown in FIG.
Is installed in an eccentric state so that the longitudinal direction coincides with the longitudinal direction of the sensor optical cable 10. That is, during normal times (such as during the dry season), the sensor weight 20 is supported by the surrounding soil, and is horizontally balanced in an unstable state.

【0025】そして、漏水現象の発生や周辺土質が高湿
潤度状態となると、図4に示すように、センサ用錘20
は、土質の不安定化に伴い同様に不安定な状態となり、
少量の土の動きによりバランスが崩れ、センサ用錘20
の重心がずれていることやその自重自体が影響し、土の
動きに伴って固定部15を中心に回転するように移動し
た後、そのセンサ用錘20の両側に位置するセンサ用錘
20間に支持されたセンサ用光ケーブル10を引き寄せ
ながら下方に移動する。
When the occurrence of a water leakage phenomenon or the surrounding soil becomes in a highly wet state, as shown in FIG.
Is also unstable due to soil instability,
The balance is lost due to a small amount of soil movement and the sensor weight 20
The center of gravity of the sensor 20 is shifted and its own weight itself is affected, and after moving so as to rotate around the fixed portion 15 with the movement of the soil, the sensor weight 20 between the sensor weights 20 located on both sides of the sensor weight 20 is moved. Move downward while pulling the sensor optical cable 10 supported by the sensor.

【0026】これにより、移動したセンサ用錘20の両
側のセンサ用錘20の固定部15に支持されたセンサ用
光ケーブル10に、センサ用錘20の移動量に対するひ
ずみ量と移動の際に発生する回転動作に伴うひずみ量
(荷重によるひずみと引っ張りによるひずみ)とを同時
に確保することが可能となり、従来より感度の高い計測
が可能となる。
As a result, distortion occurs with respect to the amount of movement of the sensor weight 20 and occurs when the sensor weight 20 is moved in the sensor optical cable 10 supported by the fixed portions 15 of the sensor weight 20 on both sides of the moved sensor weight 20. It is possible to simultaneously secure the amount of strain (strain due to load and strain due to tension) due to the rotation operation, and it is possible to perform measurement with higher sensitivity than before.

【0027】さらに、本発明により、堤体崩壊の初期現
象といわれている漏水の発生を感度良く捉えることが可
能になる。
Further, according to the present invention, it is possible to detect the occurrence of water leakage, which is said to be an initial phenomenon of levee body collapse, with high sensitivity.

【0028】また、本発明は、センサ用光ケーブル10
を引き寄せながら移動するので、設置した際にセンサ用
光ケーブル10に若干の弛みがあってもこれを許容で
き、長大な堤体30に容易に施工することができる。
The present invention also relates to an optical cable 10 for a sensor.
When the optical cable for sensor 10 is installed, even if it is slightly loosened, it can be tolerated, and can be easily constructed on the long embankment body 30.

【0029】次に、本実施の形態の変形例を説明する。Next, a modified example of this embodiment will be described.

【0030】本実施の形態では、錘本体21は直方体状
に形成されているが、錘本体21は直方体に限定され
ず、球状や円柱状でも良い。しかし、球状や円柱状では
土との設置抵抗が小さくなり、堤体30の土の移動時に
は重力による地下方向(鉛直方向)の力が増大し、法面
31に特有の滑り崩壊ではその効果が半減する。従っ
て、土の動きに伴う回転動作を促進する形状、つまり土
との設置面の抵抗が大きい直方体状のものが望ましい。
In the present embodiment, the weight main body 21 is formed in a rectangular parallelepiped shape, but the weight main body 21 is not limited to a rectangular parallelepiped and may be spherical or cylindrical. However, in the case of a spherical or cylindrical shape, the resistance to installation with the soil is reduced, and when the soil moves on the embankment 30, the force in the underground direction (vertical direction) due to gravity increases. Halve. Therefore, a shape that promotes a rotation operation accompanying the movement of the soil, that is, a rectangular parallelepiped having a large resistance on the installation surface with the soil is desirable.

【0031】また、本実施の形態は、固定金具23の長
手方向の幅が錘本体21の長手方向の長さの1/4から
1/5程度の長さの長方形に形成されているが、固定金
具23とセンサ用光ケーブル10との接触面の長さが長
いほどセンサ用光ケーブル10を引き込む長さが長くな
り、また短いほど移動時に回転しやすくなるので、これ
らを考慮して最もひずみ量が大きくなるように、適宜変
更しても良い。
In the present embodiment, the width of the fixing member 23 in the longitudinal direction is formed to be a rectangle having a length of about 1/4 to 1/5 of the length of the weight body 21 in the longitudinal direction. The longer the length of the contact surface between the fixture 23 and the sensor optical cable 10, the longer the sensor optical cable 10 is pulled in, and the shorter the length, the easier it is to rotate during movement. It may be changed appropriately so as to increase the size.

【0032】また、本実施の形態では、センサ用錘20
の取付間隔を一定にしたが、例えば崩壊しやすいと考え
られる部分では取付間隔を短くするなど、計測対象の区
域の特性で、検知感度、検知距離精度を変化させること
ができる。
In this embodiment, the sensor weight 20
Although the attachment intervals are fixed, the detection sensitivity and the detection distance accuracy can be changed depending on the characteristics of the area to be measured, for example, by shortening the attachment interval in a portion considered to be easily broken.

【0033】[0033]

【発明の効果】以上要するに本発明によれば、センサ用
錘とセンサ用光ケーブルとが固定された固定部をセンサ
用錘の表面下方端部に設けることで、センサ用錘が偏重
心となり、堤体内の少量の土の動きでも高感度で捉える
ことができる。
In summary, according to the present invention, the fixed portion to which the sensor weight and the sensor optical cable are fixed is provided at the lower end of the surface of the sensor weight, whereby the sensor weight becomes eccentric and Even small amounts of soil movement in the body can be captured with high sensitivity.

【0034】また、センサ用錘の移動量に対するひずみ
値だけではなく、そのセンサ用錘の回転動作に伴うセン
サ用光ケーブルの引込み動作によるひずみ値を同時計測
することができ、その結果、計測感度を向上することが
可能になる。
Further, not only the strain value with respect to the movement amount of the sensor weight but also the strain value due to the drawing operation of the optical cable for the sensor accompanying the rotation operation of the sensor weight can be measured simultaneously. As a result, the measurement sensitivity can be reduced. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す堤体ひずみ計測セ
ンサの拡大図である。
FIG. 1 is an enlarged view of an embankment strain measuring sensor showing one embodiment of the present invention.

【図2】図1の堤体ひずみ計測センサの側面図である。FIG. 2 is a side view of the embankment strain measuring sensor of FIG. 1;

【図3】図1の堤体ひずみ計測センサの施工形態を示す
概略図である。
FIG. 3 is a schematic diagram showing a construction form of the embankment strain measurement sensor of FIG. 1;

【図4】堤体の崩壊時の堤体ひずみ計測センサの説明図
である。
FIG. 4 is an explanatory diagram of a levee body strain measurement sensor when the levee body collapses.

【図5】従来の堤体ひずみ計測センサの施工形態を示す
概略図である。
FIG. 5 is a schematic view showing a construction form of a conventional embankment strain measuring sensor.

【図6】従来の堤体ひずみ計測センサを示し、(a)は
平面図、(b)は側面図である。
6A and 6B show a conventional embankment strain measuring sensor, in which FIG. 6A is a plan view and FIG. 6B is a side view.

【符号の説明】[Explanation of symbols]

10 センサ用光ケーブル 15 固定部 20 センサ用錘 30 堤体 Reference Signs List 10 optical cable for sensor 15 fixing part 20 weight for sensor 30 embankment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長田 拓馬 茨城県日立市砂沢町880番地 日立電線株 式会社高砂工場内 (72)発明者 斎藤 健一 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 2D018 AA00 AA03 2F065 AA65 CC00 LL02 2F073 AA21 AB06 AB20 BB06 BC04 CC02 CD05 GG04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Takuma Nagata 880 Sunazawa-cho, Hitachi City, Ibaraki Prefecture Inside the Takasago Plant of Hitachi Cable Co., Ltd. (72) Kenichi Saito 1-6-1, Otemachi, Chiyoda-ku, Tokyo Sun F-term (reference) in Vertical Cable Co., Ltd. 2D018 AA00 AA03 2F065 AA65 CC00 LL02 2F073 AA21 AB06 AB20 BB06 BC04 CC02 CD05 GG04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 堤体に長手方向に沿って布設されるセン
サ用光ケーブルと、該センサ用光ケーブルの長手方向に
適宜間隔を隔てて固定された複数のセンサ用錘とからな
る堤体ひずみ計測センサにおいて、上記センサ用錘は各
センサ用錘の重心を通る鉛直線から離れて上記センサ用
光ケーブルに固定されていることを特徴とする堤体ひず
み計測センサ。
1. An embankment strain measuring sensor comprising: a sensor optical cable laid along a longitudinal direction on a bank body; and a plurality of sensor weights fixed at appropriate intervals in the longitudinal direction of the sensor optical cable. In the above, the sensor weight is fixed to the sensor optical cable away from a vertical line passing through the center of gravity of each sensor weight.
【請求項2】 上記センサ用錘は、略直方体状に形成さ
れていると共にその直方体の長手方向が上記センサ用光
ケーブルの長手方向に一致するようにかつ一方の端部に
上記センサ用光ケーブルが固定されている請求項1に記
載の堤体ひずみ計測センサ。
2. The sensor weight is formed in a substantially rectangular parallelepiped shape, and the sensor optical cable is fixed to one end so that the longitudinal direction of the rectangular parallelepiped coincides with the longitudinal direction of the sensor optical cable. The embankment strain measuring sensor according to claim 1, wherein:
JP2000357902A 2000-11-24 2000-11-24 Bank body distortion measuring sensor Pending JP2002162212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357902A JP2002162212A (en) 2000-11-24 2000-11-24 Bank body distortion measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357902A JP2002162212A (en) 2000-11-24 2000-11-24 Bank body distortion measuring sensor

Publications (1)

Publication Number Publication Date
JP2002162212A true JP2002162212A (en) 2002-06-07

Family

ID=18829895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357902A Pending JP2002162212A (en) 2000-11-24 2000-11-24 Bank body distortion measuring sensor

Country Status (1)

Country Link
JP (1) JP2002162212A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292530A (en) * 2006-04-24 2007-11-08 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport Fiber-optic scour detection apparatus and system
JP2010535427A (en) * 2007-07-31 2010-11-18 テッセラ,インコーポレイテッド Semiconductor packaging process using through silicon vias
US8587126B2 (en) 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8610264B2 (en) 2010-12-08 2013-12-17 Tessera, Inc. Compliant interconnects in wafers
US8610259B2 (en) 2010-09-17 2013-12-17 Tessera, Inc. Multi-function and shielded 3D interconnects
US8637968B2 (en) 2010-12-02 2014-01-28 Tessera, Inc. Stacked microelectronic assembly having interposer connecting active chips
US8704347B2 (en) 2006-11-22 2014-04-22 Tessera, Inc. Packaged semiconductor chips
US8735205B2 (en) 2007-03-05 2014-05-27 Invensas Corporation Chips having rear contacts connected by through vias to front contacts
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US8796135B2 (en) 2010-07-23 2014-08-05 Tessera, Inc. Microelectronic elements with rear contacts connected with via first or via middle structures
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9070678B2 (en) 2006-11-22 2015-06-30 Tessera, Inc. Packaged semiconductor chips with array
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
CN108303072A (en) * 2018-04-10 2018-07-20 成都阿朗科技有限责任公司 A kind of measuring device and measurement method in gate recess installation process
CN109489554A (en) * 2018-12-29 2019-03-19 浙江科技学院 A kind of each layer parameter intelligent detecting method of full automatic cable and device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292530A (en) * 2006-04-24 2007-11-08 Hokuriku Regional Development Bureau Ministry Land Infrastructure & Transport Fiber-optic scour detection apparatus and system
US9548254B2 (en) 2006-11-22 2017-01-17 Tessera, Inc. Packaged semiconductor chips with array
US9070678B2 (en) 2006-11-22 2015-06-30 Tessera, Inc. Packaged semiconductor chips with array
US8704347B2 (en) 2006-11-22 2014-04-22 Tessera, Inc. Packaged semiconductor chips
US8735205B2 (en) 2007-03-05 2014-05-27 Invensas Corporation Chips having rear contacts connected by through vias to front contacts
JP2010535427A (en) * 2007-07-31 2010-11-18 テッセラ,インコーポレイテッド Semiconductor packaging process using through silicon vias
US8735287B2 (en) 2007-07-31 2014-05-27 Invensas Corp. Semiconductor packaging process using through silicon vias
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8796135B2 (en) 2010-07-23 2014-08-05 Tessera, Inc. Microelectronic elements with rear contacts connected with via first or via middle structures
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US10354942B2 (en) 2010-09-17 2019-07-16 Tessera, Inc. Staged via formation from both sides of chip
US8809190B2 (en) 2010-09-17 2014-08-19 Tessera, Inc. Multi-function and shielded 3D interconnects
US9847277B2 (en) 2010-09-17 2017-12-19 Tessera, Inc. Staged via formation from both sides of chip
US8610259B2 (en) 2010-09-17 2013-12-17 Tessera, Inc. Multi-function and shielded 3D interconnects
US9362203B2 (en) 2010-09-17 2016-06-07 Tessera, Inc. Staged via formation from both sides of chip
US9368476B2 (en) 2010-12-02 2016-06-14 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8587126B2 (en) 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US8637968B2 (en) 2010-12-02 2014-01-28 Tessera, Inc. Stacked microelectronic assembly having interposer connecting active chips
US9620437B2 (en) 2010-12-02 2017-04-11 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US8796828B2 (en) 2010-12-08 2014-08-05 Tessera, Inc. Compliant interconnects in wafers
US8610264B2 (en) 2010-12-08 2013-12-17 Tessera, Inc. Compliant interconnects in wafers
US9224649B2 (en) 2010-12-08 2015-12-29 Tessera, Inc. Compliant interconnects in wafers
CN108303072A (en) * 2018-04-10 2018-07-20 成都阿朗科技有限责任公司 A kind of measuring device and measurement method in gate recess installation process
CN108303072B (en) * 2018-04-10 2024-04-19 华电金沙江上游水电开发有限公司叶巴滩分公司 Measuring device and measuring method for gate slot installation process
CN109489554A (en) * 2018-12-29 2019-03-19 浙江科技学院 A kind of each layer parameter intelligent detecting method of full automatic cable and device
CN109489554B (en) * 2018-12-29 2024-02-02 浙江科技学院 Intelligent detection method and device for parameters of all layers of full-automatic cable

Similar Documents

Publication Publication Date Title
JP2002162212A (en) Bank body distortion measuring sensor
US7751657B2 (en) Inclinometer system
CN103485811B (en) The detection method of anchor axial force and moment of flexure and detection anchor pole thereof
CN201517920U (en) Fiber Bragg grating string type multi-point displacement sensor
JP2010071974A (en) Device for measuring soil displacement
CN105865690B (en) A kind of steel strand prestress detection device and assay method based on reverse drawing method
CN108020167A (en) A kind of stationary slope level device based on fiber grating
JP2016109611A (en) Displacement measuring device
KR20130072944A (en) Loading experment device for earthquake resistant performance test of column member considering long-term deformation
JP2014141779A (en) Slope variation detection structure in method for stabilizing slope
WO2020199656A1 (en) Foundation pile bearing capacity test and displacement test integrated device and test method
CN207114575U (en) A kind of fiber grating accelerometer
KR102043702B1 (en) Apparatus for measuring tunnel convergence displacements
KR101514437B1 (en) Inclinometer
CN109139067A (en) A kind of underground chamber supporting construction of settlement monitoring early warning
WO2014054642A1 (en) Steel pipe insertion work steel pipe strain detection structure
JP2007292530A (en) Fiber-optic scour detection apparatus and system
JP2002048518A (en) Method of measuring displacement using optical fiber sensor
KR200185184Y1 (en) Measuring type jack support
WO2006017974A1 (en) Fiber greating or fiber strain sensor head and strain measurement system thereof
CN216339497U (en) Highway bridge pile foundation reinforcing apparatus
Bell et al. The role of fibre optic instrumentation in the re-use of deep foundations
JP2002340522A (en) Displacement measuring method using optical fiber sensor
JP3986187B2 (en) Displacement meter
KR100413007B1 (en) Soil Pressure Gauge of Strain Gauge Type