JP2002161648A - Seismic control building - Google Patents

Seismic control building

Info

Publication number
JP2002161648A
JP2002161648A JP2000356436A JP2000356436A JP2002161648A JP 2002161648 A JP2002161648 A JP 2002161648A JP 2000356436 A JP2000356436 A JP 2000356436A JP 2000356436 A JP2000356436 A JP 2000356436A JP 2002161648 A JP2002161648 A JP 2002161648A
Authority
JP
Japan
Prior art keywords
layer
deformation
damper
building
immediately above
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000356436A
Other languages
Japanese (ja)
Other versions
JP3845834B2 (en
Inventor
Takehito Tezuka
武仁 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2000356436A priority Critical patent/JP3845834B2/en
Publication of JP2002161648A publication Critical patent/JP2002161648A/en
Application granted granted Critical
Publication of JP3845834B2 publication Critical patent/JP3845834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seismic control building which allows the entire building to have excellent seismic control effect, and provides easy recovery of the building after being hit by a disaster. SOLUTION: According to the seismic control building, all columns 1 in a specific intermediate layer are vertically cut, and rubber laminates 2 are interposed between upper and lower cut column portions of the respective cut columns, whereby the horizontal rigidity of the intermediate layer is lowered relative to the other layers. Thus, the intermediate layer is set as a deformation concentration layer 3 in which a large deformation is produced due to concentration of deformations at the time of an earthquake. Then, seismic control dampers such as unbond brace dampers 5 or the like are interposed between the deformation concentration layer and a layer 4 immediately above the same. The seismic control damper should be a hysteretic damper which uses hysteretic absorbing energy generated when a steel product such as a low-yield point steel is yielded, and then the employed dampers are set in a plane of structure in the deformation concentration layer. Alternatively, a highly rigid frame body formed like a rectangular frame is arranged outside an external peripheral surface of the deformation concentration layer so as to reach the layer immediately above the same, and the vibration dampers are interposed between the frame body and at least one of the deformation concentration layer and the layer immediately above the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は優れた耐震性能を有
し被災後の復旧も容易な制震構造建物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic control building having excellent seismic resistance and easy recovery after a disaster.

【0002】[0002]

【従来の技術】従来一般の耐震設計法では、建物の各層
の地震損傷が均等になるようにすることを目的として、
地震被害の実績等に基づいて設計地震力を決定してい
る。建物の耐力分布は設計地震力に比例したものとなる
が、鉄筋コンクリート造では最小配筋規定等の構造規定
があり、建物の最上層近くでは設計で仮定した耐力より
も余裕を持つ場合が多い。この結果、通常の耐震構造で
は建物の中間層に地震被害が生じやすいという傾向があ
る。
2. Description of the Related Art Conventionally, a general seismic design method aims at equalizing seismic damage of each floor of a building.
The design seismic force is determined based on the results of earthquake damage. Although the strength distribution of a building is proportional to the design seismic force, reinforced concrete structures have structural rules such as minimum bar arrangements, and there are many cases where there is a margin near the top layer of the building than the strength assumed in the design. As a result, in a normal seismic structure, there is a tendency that the middle layer of the building is easily damaged by earthquakes.

【0003】[0003]

【発明が解決しようとする課題】本発明は、建物におけ
るそのような特性を逆に利用して、建物全体に対して優
れた制震効果を得ることのできる有効な制震構造建物を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides an effective damping structure building which can obtain an excellent damping effect on the whole building by utilizing such characteristics of the building in reverse. The purpose is to:

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、特定
の中間層において全ての柱を上下に分断してそこに積層
ゴムを介装することによりこの中間層の水平剛性を他の
層よりも低下せしめて、この中間層を地震時に変形が集
中して大変形を生じる変形集中層として設定し、当該変
形集中層とその直上層との間に地震エネルギーを吸収す
る制震ダンパーを介装してなることを特徴とする。
According to a first aspect of the present invention, the horizontal rigidity of this intermediate layer is reduced by dividing all the columns in a specific intermediate layer into upper and lower sections and interposing a laminated rubber therewith. This intermediate layer is set as a deformation concentrated layer where deformation concentrates and a large deformation occurs during an earthquake, and a seismic damper that absorbs seismic energy is interposed between the deformation concentrated layer and the layer immediately above it. It is characterized by being worn.

【0005】本発明の制震構造建物は、地震時に建物全
体に入力される地震エネルギーが通常のように各層に均
等に分散されるのではなく、その大半が特定の中間層の
みで消費されるような特性を与える。そのためには、特
定の中間層において柱を分断してそこに積層ゴムを介装
し、その層の水平剛性を他の層よりも低下させることと
する。その結果、地震エネルギーの大半はその層つまり
変形集中層のみに集中してそこでは大変形が許容される
が他の層での変形は抑制される。そして、変形集中層に
設置した制震ダンパーが効率的に作動して地震エネルギ
ーを有効に吸収し、建物全体としての減衰性能が確保さ
れ、建物全体の耐震性能が確保される。また、本発明の
制震構造建物で想定される地震被害は変形集中層に設置
した制震ダンパーの損壊のみであり、それは補修あるい
は交換により容易に復旧することができる。
[0005] In the vibration control structure building of the present invention, the seismic energy input to the whole building during an earthquake is not evenly distributed to each story as usual, but most of the energy is consumed only in a specific middle story. Give such characteristics. For that purpose, a column is divided in a specific intermediate layer, a laminated rubber is interposed therebetween, and the horizontal rigidity of the layer is made lower than that of the other layers. As a result, most of the seismic energy is concentrated only in that layer, that is, the deformation concentration layer, where large deformation is allowed, but deformation in other layers is suppressed. Then, the damping dampers installed on the deformation concentrating layer operate efficiently to effectively absorb the seismic energy, and the damping performance of the entire building is secured, and the seismic performance of the entire building is secured. Also, the earthquake damage expected in the vibration control structure building of the present invention is only the damage of the vibration damper installed on the deformation concentrated layer, which can be easily recovered by repair or replacement.

【0006】請求項2の発明は、請求項1の発明の制震
構造建物において、制震ダンパーとして低降伏点鋼等の
鋼材が降伏する際の履歴吸収エネルギーを利用する履歴
形ダンパーを採用し、その制震ダンパーを変形集中層の
構面内に設置してなることを特徴とする。本発明では、
履歴形ダンパーにより大地震から中小地震までを対象と
して優れた制震効果が得られる。
According to a second aspect of the present invention, in the vibration control structure building according to the first aspect of the present invention, a hysteretic damper utilizing hysteretic absorption energy when a steel material such as a low yield point steel yields is adopted as the damping damper. The damper is installed on the surface of the deformation concentration layer. In the present invention,
The hysteretic damper provides excellent damping effects for large to small earthquakes.

【0007】請求項3の発明は、請求項1の発明の制震
構造建物において、変形集中層の外周構面の外側にこの
変形集中層とその直上層に跨る矩形枠状の高剛性のフレ
ーム体を設け、そのフレーム体と変形集中層およびその
直上層の少なくともいずれか一方との間に制震ダンパー
を介装してなることを特徴とする。本発明では矩形枠状
のフレーム体を外周構面の外側に設置することで外周構
面が塞がれてしまうようなことを回避でき、かつ制震ダ
ンパーの復旧を外部からの作業のみで行うことができ
る。
According to a third aspect of the present invention, in the vibration control structure building according to the first aspect of the present invention, a rectangular frame-shaped high rigidity frame straddling the deformation concentrating layer and the layer immediately above the deformation concentrating layer outside the outer peripheral surface of the deformation concentrating layer. A body is provided, and a vibration damper is interposed between the frame body and at least one of the deformation concentration layer and the layer immediately above the frame. In the present invention, it is possible to prevent the outer peripheral surface from being blocked by installing the rectangular frame-shaped frame body outside the outer peripheral surface, and to perform the recovery of the vibration damper only by an external operation. be able to.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。以下の各実施形態は、いずれも耐震性能が十分では
ない既存不適格建物を対象として本発明の制震構造建物
に改修する場合の例である。改修対象の既存不適格建物
としては、たとえば地上11階建て程度の鉄筋コンクリ
ート造の建物を想定している。
Embodiments of the present invention will be described below. Each of the following embodiments is an example of a case in which an existing ineligible building whose seismic performance is not sufficient is retrofitted to the vibration control structure building of the present invention. An existing ineligible building to be rehabilitated is, for example, a reinforced concrete building having about 11 stories above the ground.

【0009】図1は第1実施形態を示す。図1は改修後
の免震構造建物の中間層の一構面のみを示すもので、既
存建物の特定の中間層(たとえば3階部分)の柱1を上
下に分断してそこに積層ゴム2を介装することにより、
この層の水平剛性を他の層よりも低下させてこの層を大
変形を許容せしめる変形集中層3として設定し、この変
形集中層3と直上層4との間の層間変形により作動する
制震ダンパーを設置するようにしたものである。
FIG. 1 shows a first embodiment. FIG. 1 shows only one surface of an intermediate layer of a seismic isolation structure building after renovation. The pillar 1 of a specific intermediate layer (for example, the third floor portion) of an existing building is vertically divided and a laminated rubber 2 By interposing
The horizontal rigidity of this layer is set lower than that of the other layers, and this layer is set as a deformation concentrated layer 3 that allows a large deformation. It is designed to install a damper.

【0010】本第1実施形態では、制震ダンパーとして
一対二本のアンボンドブレースダンパー5を採用し、そ
れを柱1と梁6とにより形成されている所定の構面内に
取付用鋼材7および継手板8を介していわゆるK型に設
置している。アンボンドブレースダンパー5は、低降伏
点鋼等の帯鋼からなるダンパー本体5aの周囲に、その
軸方向変形を許容しつつ面外方向の変形を拘束して座屈
を防止する拘束部材5bを装着したもので、変形集中層
3とその直上層4との間で層間変形が生じた際にダンパ
ー本体5aが軸方向に伸縮して降伏し、その際の履歴吸
収エネルギーにより制震効果が得られるものである。
In the first embodiment, a pair of two unbonded brace dampers 5 are employed as the vibration dampers, and the unbonded brace dampers 5 are mounted on a predetermined structural surface formed by the columns 1 and the beams 6 so that the mounting steel members 7 and It is installed in a so-called K shape via a joint plate 8. The unbonded brace damper 5 includes a damper body 5a made of a steel strip such as a low-yield point steel, and a restraining member 5b for preventing buckling by restraining out-of-plane deformation while allowing its axial deformation. When the interlayer deformation occurs between the deformation concentration layer 3 and the layer 4 immediately above, the damper main body 5a expands and contracts in the axial direction and yields, and the damping effect is obtained by the hysteresis energy absorbed at that time. Things.

【0011】変形集中層3の特性は次のように設定する
ことが好ましい。 ・変形集中層の位置 質量比m/M≧0.7となるように変形集中層の位置を
設定する。 M:建物全体質量 m:変形集中層から上層の建物質量 ・変形集中層の固有周期とバネ定数 T=2π(m/k)1/2=2〜4(秒) T:変形集中層の固有周期 k:変形集中層のバネ定数 ・制震ダンパーの耐力 建物全体質量Mに対して4〜6%に等しい耐力を有す
る。
It is preferable to set the characteristics of the deformation concentration layer 3 as follows.・ Position of deformation concentration layer The position of the deformation concentration layer is set so that the mass ratio m / M ≧ 0.7. M: Mass of the entire building m: Mass of the building above the deformation concentrated layer ・ Natural period and spring constant of the deformation concentrated layer T = 2π (m / k) 1/2 = 2-4 (seconds) T: Eigen of the deformation concentrated layer Period k: Spring constant of deformation concentrated layer ・ Strength of damping damper It has proof strength equal to 4 to 6% with respect to the whole building mass M.

【0012】本第1実施形態の制震構造建物では、特定
の中間層に積層ゴム2を設置することでその層の水平剛
性を低下せしめた変形集中層3を設定し、そこに制震ダ
ンパーとしてのアンボンドブレースダンパー5を設置す
るのみで、地震エネルギーの大半(80%程度以上)が
そこに集中してアンボンドブレースダンパー5により有
効に吸収せしめることができ、したがって変形集中層3
以外の層に対しては一切の改修や補強を必要とすること
なく、建物全体に対して優れた制震効果が得られる。そ
して、変形集中層3において大変形が生じてもアンボン
ドブレースダンパー5が損壊を受けるだけで建物自体に
は被害が及ぶことはなく、その際にはアンボンドブレー
スダンパー5を補修あるいは交換することのみで容易に
復旧させることができる。
In the vibration damping structure building of the first embodiment, a deformation concentration layer 3 in which the horizontal rigidity of the layer is reduced by installing the laminated rubber 2 on a specific intermediate layer is set, and a vibration damper is provided there. By simply installing the unbonded brace damper 5 as the above, most of the seismic energy (about 80% or more) can be concentrated there and effectively absorbed by the unbonded brace damper 5, so that the deformation concentrated layer 3
It does not require any renovation or reinforcement for the other layers, and provides excellent damping effects for the entire building. Even if a large deformation occurs in the deformation concentration layer 3, the unbonded brace damper 5 is only damaged and the building itself is not damaged. In that case, only the repair or replacement of the unbonded brace damper 5 is required. It can be easily restored.

【0013】以上で第1実施形態を説明したが、以下に
他の実施形態を列挙する。以下の実施形態はいずれも制
震ダンパーの形式とその設置形態を変更した以外は第1
実施形態と共通しており、同様の効果を奏するものであ
る。
Although the first embodiment has been described above, other embodiments will be listed below. Each of the following embodiments is the first except that the form of the vibration damper and its installation form have been changed.
This embodiment is common to the embodiment and has the same effect.

【0014】図2は第2実施形態を示すもので、これは
制震ダンパーとして低降伏点鋼からなるせん断形のパネ
ルダンパー10を採用し、これを上下の梁6の間にブレ
ース11を介して設置することで、変形集中層3とその
直上層4との間の層間変形によりパネルダンパー10が
せん断変形を受けて降伏し、その際の履歴吸収エネルギ
ーにより優れた制震効果が得られるものである。
FIG. 2 shows a second embodiment, in which a shear-type panel damper 10 made of low yield point steel is adopted as a vibration damper, and this is interposed between upper and lower beams 6 via braces 11. The panel damper 10 undergoes shear deformation and yields due to interlayer deformation between the deformation concentration layer 3 and the layer 4 immediately above the deformation concentration layer 3, and a superior vibration damping effect can be obtained by hysteresis energy at that time. It is.

【0015】図3は第3実施形態を示すもので、鋼材を
二等辺三角形状に組んでなる高剛性のフレーム体12を
構面内に配して上下の梁6に対してピン12aにより揺
動可能な状態で設置し、そのフレーム体12の左右両端
部と柱1との間に第2実施形態のものと同様の低降伏点
鋼からなるせん断形のパネルダンパー10を設けたもの
である。これは、(b)に示すように変形集中層3とそ
の直上層4との間の層間変形がフレーム体12の揺動に
変換され、その揺動によりパネルダンパー10がせん断
変形を受けて降伏して制震効果が得られるものである。
これによれば、階高とスパンとの比に応じて層間変形が
拡大されてパネルダンパー10に作用する(たとえば階
高3.8m、スパン8.4mの場合は水平方向の層間変
形が2.2倍に拡大されてパネルダンパー10に対して
上下方向の変形として作用することになる)ので、微小
変形に対してもパネルダンパー10が有効に作動するこ
とになり、より効果的である。
FIG. 3 shows a third embodiment, in which a highly rigid frame body 12 formed by assembling steel materials in an isosceles triangular shape is arranged in a plane, and the upper and lower beams 6 are swung by pins 12a. It is installed in a movable state, and a shear-type panel damper 10 made of the same low yield point steel as that of the second embodiment is provided between the left and right ends of the frame body 12 and the column 1. . This is because the interlayer deformation between the deformation concentrating layer 3 and the layer immediately above the layer 3 is converted into a swing of the frame body 12 as shown in (b), and the swing causes the panel damper 10 to undergo shear deformation and yield. Then, the damping effect can be obtained.
According to this, the interlayer deformation is enlarged in accordance with the ratio between the floor height and the span, and acts on the panel damper 10 (for example, in the case of a 3.8 m floor height and 8.4 m span, the horizontal interlayer deformation is 2. Since the panel damper 10 is enlarged twice and acts as a vertical deformation with respect to the panel damper 10), the panel damper 10 effectively operates even for a small deformation, which is more effective.

【0016】以上の第1〜第3実施形態は制震ダンパー
を構面内に設置したものであるが、図4に示す第4実施
形態と、図5に示す第5実施形態は、変形集中層3の外
周構面の外側に、柱1に添う縦鋼材13aと梁6に添う
横鋼材13bとを矩形枠状に組んでなる高剛性のフレー
ム体13を設け、そのフレーム体13と梁6あるいは柱
1との間に制震ダンパーとしての鋼材ダンパー17を介
装するようにしたものである。
In the above-described first to third embodiments, the damping damper is installed on the surface of the structure. The fourth embodiment shown in FIG. 4 and the fifth embodiment shown in FIG. Outside the outer peripheral surface of the layer 3, there is provided a highly rigid frame body 13 formed by assembling a vertical steel member 13 a along the column 1 and a horizontal steel member 13 b along the beam 6 into a rectangular frame shape. Alternatively, a steel damper 17 as a vibration damper is interposed between the column 1 and the pillar 1.

【0017】図4に示す第4実施形態は、(c)に示す
ように下側の梁6に対して下側の横鋼材13bをスタッ
ド14、アンカー15および充填モルタル16を用いて
固定し、(b)に示すように上側の梁6と上側の横鋼材
13bとの間に低降伏点鋼からなる帯鋼状の鋼材ダンパ
ー17を介装し、層間変形による上側の梁6とフレーム
体13との間の相対変位により鋼材ダンパー17がせん
断および捻れ変形を受けて降伏することで制震効果が得
られる。
In the fourth embodiment shown in FIG. 4, the lower cross steel 13b is fixed to the lower beam 6 using studs 14, anchors 15 and filling mortar 16, as shown in FIG. As shown in (b), a steel strip damper 17 made of low yield point steel is interposed between the upper beam 6 and the upper transverse steel member 13b, and the upper beam 6 and the frame body 13 due to interlayer deformation. And the steel damper 17 undergoes shearing and torsional deformation and yields due to the relative displacement between the steel damper 17 and the steel damper 17, thereby obtaining a vibration damping effect.

【0018】図5に示す第5実施形態は、(c)に示す
ようにフレーム体13の横鋼材13bの中央部をそれぞ
れ上下の梁6に対してピン18により揺動可能に軸支
し、(b)に示すように縦鋼材13aと柱1との間に低
降伏点鋼からなる帯鋼状の鋼材ダンパー17を介装し、
(d)に示すように層間変形によりフレーム体13が建
物に対して相対回転することで鋼材ダンパー17が捻れ
変形を生じて降伏することで制震効果が得られる。
In the fifth embodiment shown in FIG. 5, as shown in FIG. 5 (c), the central portion of the transverse steel material 13b of the frame 13 is pivotally supported by the pins 18 with respect to the upper and lower beams 6, respectively. As shown in (b), a steel band-shaped steel damper 17 made of low yield point steel is interposed between the vertical steel material 13a and the column 1,
As shown in (d), the frame member 13 rotates relative to the building due to interlayer deformation, and the steel damper 17 is twisted and yields, yielding a damping effect.

【0019】これら第4実施形態および第5実施形態に
よれば、矩形枠状のフレーム体13を外周構面の外側に
設置するので、外周構面に窓等の開口部を支障なく確保
することができるし、鋼材ダンパー17が損壊を受けた
際の補修や交換を建物の外部からの作業のみで行うこと
が可能である。
According to the fourth and fifth embodiments, since the rectangular frame 13 is installed outside the outer peripheral surface, it is possible to secure an opening such as a window on the outer peripheral surface without any trouble. In addition, repair or replacement when the steel damper 17 is damaged can be performed only by work from outside the building.

【0020】以上で本発明の実施形態を説明したが、以
下に本発明の有効性を実証するための具体的なシミュレ
ーションとその結果を図6に示す。
The embodiment of the present invention has been described above. FIG. 6 shows a specific simulation for verifying the effectiveness of the present invention and the result thereof.

【0021】本シミュレーションが対象としている既存
不適格建物(原建物)は鉄筋コンクリート造の地上11
階建ての事務所であり、桁行方向13スパン、梁間方向
6スパン、延床面積67,522m2の規模のもので、
そのままでは想定規模の地震により8〜11階部分に大
きな損傷を受けることが想定されるものである。本シミ
ュレーションではその原建物の第3層に変形集中層を設
定し、質量比m/M=0.79に設定した。変形集中層
の各柱に直径75cmの積層ゴム(面圧110kgf/
cm2≒11MN/m2)を設置し、変形集中層の固有周
期Tを2秒に設定した。変形集中層に設置する制震ダン
パーとしてはアンボンドブレースダンパーを採用し、そ
のダンパー本体として極低降伏点鋼(LYP100)に
よる36×250mmの断面のものを用い、これをK形
ブレースの形態で11構面に2台ずつ(全22台)設置
して、建物全体質量Mの4%に相当する耐力を有するも
のとした。想定地震規模はレベル2相当(地震最大速度
を50kineに基準化)とし、地震波はElCentro1940NSを
用いた。
Existing ineligible buildings (original buildings) targeted by the simulation are reinforced concrete 11 above ground.
It is a multi-storey office with a 13-span girder direction, a 6-span beam span, and a total floor area of 67,522 m 2 .
It is assumed that the 8th to 11th floors will be seriously damaged by the earthquake of the assumed scale. In this simulation, a deformation concentration layer was set as the third layer of the original building, and the mass ratio m / M was set to 0.79. A laminated rubber of 75 cm in diameter (surface pressure of 110 kgf /
cm 2 ≒ 11 MN / m 2 ), and the natural period T of the deformation concentrated layer was set to 2 seconds. An unbonded brace damper is used as the vibration damper to be installed on the deformation concentrated layer, and a 36 × 250 mm cross section made of extremely low yield point steel (LYP100) is used as the damper body. Two units (22 units in total) were installed on the construction surface to have a proof stress equivalent to 4% of the entire building mass M. The assumed earthquake scale was equivalent to level 2 (maximum earthquake velocity was standardized to 50 kinetics), and ElCentro1940NS was used as the seismic wave.

【0022】また、比較例として、変形集中層を設ける
ことなく建物全体にアンボンドブレースダンパーを分散
配置した場合についてもあわせて検討し、図6に「各層
制震補強」として示した。その場合、アンボンドブレー
スダンパーと建物耐力の累積耐力がAi分布となり、ベ
ースシャ係数で0.25となるように各層の5〜13構
面に2台ずつ(建物全体では186台)分散配置した。
Further, as a comparative example, a case where unbonded brace dampers are dispersed and arranged throughout the building without providing a deformation concentration layer was also examined, and is shown in FIG. 6 as "Each layer seismic control reinforcement". In this case, two units (186 units in the entire building) were dispersedly arranged on 5 to 13 structural surfaces of each layer so that the cumulative strength of the unbonded brace damper and the building strength had an Ai distribution and a base shear coefficient of 0.25.

【0023】図6(a)は各層のエネルギー分布を示す
ものであり、第3層を変形集中層(第3層弱層)とした
ことでそこに地震入力エネルギーの84%が集中してい
ることがわかる。比較例(各層制震補強)では建物の弾
塑性履歴によるエネルギーは原建物より低減するもの
の、アンボンドブレースダンパー(制震装置)の消費エ
ネルギーを加えると原建物を越える層もあることがわか
る。この結果、(b)および(c)に示すように、比較
例のように建物全体にアンボンドブレースダンパーを分
散配置した場合には層剪断力および層間変形が原建物を
越えてしまう層もあり、好ましくないことがわかる。
FIG. 6A shows the energy distribution of each layer. Since the third layer is a deformation concentrated layer (third layer weak layer), 84% of the earthquake input energy is concentrated there. You can see that. In the comparative example (Each layer seismic control reinforcement), although the energy due to the elasto-plastic history of the building is lower than that of the original building, it can be seen that when the energy consumed by the unbonded brace damper (vibration control device) is added, some layers exceed the original building. As a result, as shown in (b) and (c), when the unbonded brace dampers are dispersed and arranged throughout the building as in the comparative example, there is a layer in which the layer shear force and the interlayer deformation exceed the original building, It turns out that it is not preferable.

【0024】一方、本発明のように変形集中層を設定し
た場合には、その変形集中層(第3層弱層)以外の層で
のエネルギー消費が著しく減少し、変形集中層を除いて
応答は建物各層に耐力に至っていないことがわかる。
On the other hand, when the deformation concentration layer is set as in the present invention, the energy consumption in layers other than the deformation concentration layer (third weak layer) is remarkably reduced, and the response is reduced except for the deformation concentration layer. It can be seen that the building has not reached the proof stress in each layer.

【0025】また、(d)に示すように本発明によれば
変形集中層を除いて塑性率μ<1とすることが可能であ
り、耐力はあるものの変形能力が小さい原建物の耐震性
を十分に向上させることが可能である。そして、比較例
として示した各層制震補強の場合にはダンパーの所要台
数が186台にもなるのに対し、本発明ではわずか22
台で済むので、本発明では耐震補強に要する費用と工期
を格段に軽減することが可能である。
According to the present invention, as shown in (d), it is possible to make the plasticity factor μ <1 except for the deformation concentrated layer, and to improve the seismic resistance of the original building which has a proof strength but a small deformation capacity. It is possible to improve it sufficiently. In the case of the seismic reinforcement for each layer shown as a comparative example, the required number of dampers is 186, whereas in the present invention only 22 is required.
Since only a stand is required, the present invention can significantly reduce the cost and the construction period required for the seismic retrofit.

【0026】なお、本発明は上記のように既存不適格建
物に対する耐震補強の手法として採用するばかりでな
く、新築建物として適用することも可能であることは言
うまでもない。本発明を新築建物に適用する場合には、
レベル1地震に対してはベースシャ係数を0.1ないし
それ以下の設計が可能であるし、地震による損壊を受け
る層が明確になるので建物の耐震設計手法として好まし
いものである。
It is needless to say that the present invention can be applied not only as a method of seismic reinforcement for an existing ineligible building as described above, but also as a new building. When applying the present invention to a new building,
For a level 1 earthquake, it is possible to design a base shear coefficient of 0.1 or less, and it is preferable as a seismic design method for a building because a layer to be damaged by the earthquake becomes clear.

【0027】[0027]

【発明の効果】請求項1の発明の制震構造建物は、特定
の中間層において全ての柱を上下に分断してそこに積層
ゴムを介装することによりこの中間層の水平剛性を他の
層よりも低下せしめて、この中間層を地震時に変形が集
中して大変形を生じる変形集中層として設定し、当該変
形集中層とその直上層との間に地震エネルギーを吸収す
る制震ダンパーを介装したものであるので、地震エネル
ギーの大半を変形集中層に集中させてそこに設置した制
震ダンパーにより地震エネルギーを有効に吸収し、以て
建物全体の耐震性能を確保することができることはもと
より、想定される地震被害は変形集中層に設置した制震
ダンパーの損壊のみであるのでその復旧は容易であり、
新築建物に適用するばかりでなく既存建物の耐震補強手
法としても好適である。
According to the vibration control structure of the first aspect of the present invention, the horizontal rigidity of this intermediate layer is increased by dividing all the columns in the specific intermediate layer up and down and interposing a laminated rubber therewith. Lower than the layer, this intermediate layer is set as a deformation concentrated layer where deformation concentrates and a large deformation occurs during an earthquake, and a seismic damper that absorbs seismic energy between the deformation concentrated layer and the layer immediately above it is set. Because it is interposed, most of the seismic energy is concentrated in the deformation concentrating layer, and the seismic energy is effectively absorbed by the damping damper installed there, so that the seismic performance of the entire building can be secured. Naturally, the expected earthquake damage is only the damage of the damping damper installed on the deformation concentrated layer, so its recovery is easy,
It is suitable not only for newly built buildings, but also as a method for retrofitting existing buildings.

【0028】請求項2の発明は、制震ダンパーとして低
降伏点鋼等の鋼材が降伏する際の履歴吸収エネルギーを
利用する履歴形ダンパーを採用し、その制震ダンパーを
変形集中層の構面内に設置したものであるから、履歴形
ダンパーにより大地震から中小地震までを対象として優
れた制震効果が得られる。
According to a second aspect of the present invention, a hysteretic damper utilizing hysteretic absorption energy when a steel material such as a low yield point steel yields is adopted as a damping damper, and the damping damper is formed on a surface of a deformation concentrated layer. Since it is installed in the inside, the hysteretic damper can provide an excellent damping effect for large to small earthquakes.

【0029】請求項3の発明は、変形集中層の外周構面
の外側にこの変形集中層とその直上層に跨る矩形枠状の
高剛性のフレーム体を設け、そのフレーム体と変形集中
層およびその直上層の少なくともいずれか一方との間に
制震ダンパーを介装したものであるから、制震ダンパー
を設置することで外周構面が塞がれてしまうようなこと
を回避でき、かつ制震ダンパーの復旧を外部からの作業
のみで行うことができる。
According to a third aspect of the present invention, a high-rigidity rectangular frame is provided outside the deformation concentrating layer and a layer immediately above the deformation concentrating layer. Since the damping damper is interposed between at least one of the layers immediately above it, installing the damping damper can prevent the outer peripheral surface from being blocked, and Restoration of the seismic damper can be performed only by external work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】 本発明の第2実施形態を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】 本発明の第3実施形態を示す図である。FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】 本発明の第4実施形態を示す図である。FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】 本発明の第5実施形態を示す図である。FIG. 5 is a diagram showing a fifth embodiment of the present invention.

【図6】 本発明の解析例を示す図である。FIG. 6 is a diagram showing an analysis example of the present invention.

【符号の説明】[Explanation of symbols]

1 柱 2 積層ゴム 3 変形集中層 4 直上層 5 アンボンドブレースダンパー(制震ダンパー) 6 梁 10 パネルダンパー(制震ダンパー) 13 フレーム体 17 鋼材ダンパー(制震ダンパー) DESCRIPTION OF SYMBOLS 1 Pillar 2 Laminated rubber 3 Deformation concentrated layer 4 Directly above layer 5 Unbonded brace damper (vibration damper) 6 Beam 10 Panel damper (vibration damper) 13 Frame 17 Steel damper (vibration damper)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 15/04 F16F 15/04 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16F 15/04 F16F 15/04 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 特定の中間層において全ての柱を上下に
分断してそこに積層ゴムを介装することによりこの中間
層の水平剛性を他の層よりも低下せしめて、この中間層
を地震時に変形が集中して大変形を生じる変形集中層と
して設定し、当該変形集中層とその直上層との間に地震
エネルギーを吸収する制震ダンパーを介装してなること
を特徴とする制震構造建物。
1. A specific intermediate layer, in which all columns are vertically divided and laminated rubber is interposed therebetween to reduce the horizontal rigidity of the intermediate layer as compared with the other layers, and the intermediate layer is subjected to an earthquake. A seismic control characterized by being set as a deformation concentrating layer in which deformation sometimes concentrates and causing large deformation, and a vibration damper that absorbs seismic energy is interposed between the deformation concentrating layer and a layer immediately above the layer. Structural building.
【請求項2】 請求項1記載の制震構造建物において、
制震ダンパーとしては低降伏点鋼等の鋼材が降伏する際
の履歴吸収エネルギーを利用する履歴形ダンパーを採用
し、その制震ダンパーを変形集中層の構面内に設置して
なることを特徴とする制震構造建物。
2. The vibration control structure building according to claim 1,
A hysteretic damper that uses hysteretic absorption energy when steel such as low yield point steel yields is adopted as the damping damper, and the damping damper is installed on the surface of the deformation concentrated layer. Building with vibration control structure.
【請求項3】 請求項1記載の制震構造建物において、
変形集中層の外周構面の外側にこの変形集中層とその直
上層に跨る矩形枠状の高剛性のフレーム体を設け、その
フレーム体と変形集中層およびその直上層の少なくとも
いずれか一方との間に制震ダンパーを介装してなること
を特徴とする制震構造建物。
3. The vibration control structure building according to claim 1,
Outside the outer peripheral surface of the deformation concentration layer, a rectangular frame-shaped high rigidity frame body is provided that straddles the deformation concentration layer and the layer immediately above the deformation concentration layer, and the frame body and at least one of the deformation concentration layer and the layer immediately above the same are provided. A vibration control structure with a vibration damper between them.
JP2000356436A 2000-11-22 2000-11-22 Damping structure building Expired - Fee Related JP3845834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000356436A JP3845834B2 (en) 2000-11-22 2000-11-22 Damping structure building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000356436A JP3845834B2 (en) 2000-11-22 2000-11-22 Damping structure building

Publications (2)

Publication Number Publication Date
JP2002161648A true JP2002161648A (en) 2002-06-04
JP3845834B2 JP3845834B2 (en) 2006-11-15

Family

ID=18828685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000356436A Expired - Fee Related JP3845834B2 (en) 2000-11-22 2000-11-22 Damping structure building

Country Status (1)

Country Link
JP (1) JP3845834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108727A (en) * 2014-12-02 2016-06-20 学校法人五島育英会 Partial base isolation structure
WO2016157708A1 (en) * 2015-03-27 2016-10-06 三菱日立パワーシステムズ株式会社 Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
CN112695912A (en) * 2020-12-28 2021-04-23 道尔道科技有限公司 Novel energy dissipation and shock absorption device for building
CN114482319A (en) * 2022-03-17 2022-05-13 郑州信息科技职业学院 Civil engineering antidetonation structure
CN114961314A (en) * 2022-04-12 2022-08-30 湖北省工业建筑集团有限公司 Anti-seismic reinforcing structure is built in room

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108727A (en) * 2014-12-02 2016-06-20 学校法人五島育英会 Partial base isolation structure
WO2016157708A1 (en) * 2015-03-27 2016-10-06 三菱日立パワーシステムズ株式会社 Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
JP2016183539A (en) * 2015-03-27 2016-10-20 三菱日立パワーシステムズ株式会社 Base-isolating structure, steel support structure and base-isolating construction method of existing steel support structure
TWI617724B (en) * 2015-03-27 2018-03-11 Mitsubishi Hitachi Power Sys Seismic-free chemical method for existing steel-braced support structures
US10309643B2 (en) 2015-03-27 2019-06-04 Mitsubishi Hitachi Power Systems, Ltd. Structure for seismic isolation, steel support structure, and method for seismic isolation of existing steel support structures
CN112695912A (en) * 2020-12-28 2021-04-23 道尔道科技有限公司 Novel energy dissipation and shock absorption device for building
CN114482319A (en) * 2022-03-17 2022-05-13 郑州信息科技职业学院 Civil engineering antidetonation structure
CN114482319B (en) * 2022-03-17 2023-08-18 郑州信息科技职业学院 Civil engineering shock-resistant structure
CN114961314A (en) * 2022-04-12 2022-08-30 湖北省工业建筑集团有限公司 Anti-seismic reinforcing structure is built in room
CN114961314B (en) * 2022-04-12 2023-01-17 湖北省工业建筑集团有限公司 Anti-seismic reinforced structure is built in room

Also Published As

Publication number Publication date
JP3845834B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US6233884B1 (en) Method and apparatus to control seismic forces, accelerations, and displacements of structures
Jangid et al. SEISMIC BEHAVIOUR OF BASE-ISOLATED BUILDINGS: A STATE-OF-THE ART REVIEW.
Christopoulos et al. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high‐rise buildings
Clark et al. Design procedures for buildings incorporating hysteretic damping devices
Buchanan et al. Base isolation and damage-resistant technologies for improved seismic performance of buildings
JP5567094B2 (en) Long-period building
KR20160048298A (en) Circular Shear Panel Damper
Pasquin et al. Friction dampers for seismic rehabilitation of Eaton’s building, Montreal
JP4913660B2 (en) Steel stairs
JP2007077698A (en) Structure having base isolation/seismic response control function
JP2002161648A (en) Seismic control building
Kanitkar et al. Seismic performance of conventional multi-storey buildings with open ground floors for vehicular parking
Peng et al. Seismic behavior of steel moment frames with mechanical hinge beam-to-column connections
Rogers et al. Impact of diaphragm behavior on the seismic design of low-rise steel buildings
JPH11172952A (en) Seisemic resistant and wind resistant structure
JPH10280725A (en) Damping skeleton construction
JP3248684B2 (en) Damping structure
JP5727690B2 (en) Long-period building
JP2000328810A (en) Vibration control frame
JP2011038294A (en) Additional mass seismic response control building
Bansal et al. Pushover analysis of multistorey buildings having flat slab and grid slab
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JP2005133443A (en) Compound damper and column-beam structure
Madan et al. Performance based seismic retrofit of masonry infilled reinforced concrete frames using passive energy dissipation devices
JPH11141176A (en) Overdamping structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees