JP2002155759A - Aerodynamic device and related method for strengthening side plate cooling of collision cooling transition duct - Google Patents

Aerodynamic device and related method for strengthening side plate cooling of collision cooling transition duct

Info

Publication number
JP2002155759A
JP2002155759A JP2001156218A JP2001156218A JP2002155759A JP 2002155759 A JP2002155759 A JP 2002155759A JP 2001156218 A JP2001156218 A JP 2001156218A JP 2001156218 A JP2001156218 A JP 2001156218A JP 2002155759 A JP2002155759 A JP 2002155759A
Authority
JP
Japan
Prior art keywords
cooling
transition duct
sleeve
impingement
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001156218A
Other languages
Japanese (ja)
Other versions
JP4754097B2 (en
JP2002155759A5 (en
Inventor
Robert James Bland
ロバート・ジェームズ・ブランド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2002155759A publication Critical patent/JP2002155759A/en
Publication of JP2002155759A5 publication Critical patent/JP2002155759A5/ja
Application granted granted Critical
Publication of JP4754097B2 publication Critical patent/JP4754097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/24Three-dimensional ellipsoidal
    • F05D2250/241Three-dimensional ellipsoidal spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To cool down a transition duct for connecting plural combustors to the first stage of a gas turbine. SOLUTION: A tail pipe assembly for gas turbine comprises the transition duct having one end to be connected to a gas turbine combustor, the opposite end to be connected to the first turbine stage, and a pair of side plates. The assembly also has a collision sleeve surrounding the transition duct for establishing a cooling channel between the assembly and the transition duct. The collision sleeve has cooling apertures arranged in plural rows inside the sleeve, and plural flow catcher devices, each of which surrounds one cooling aperture at least partially, on the outer surface of the collision sleeve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般にターボ機械
に関するもので、より詳しくは、複数の燃焼器をガスタ
ービンの第1段へ接続する遷移ダクトの冷却に関するも
のである。
FIELD OF THE INVENTION The present invention relates generally to turbomachines and, more particularly, to cooling a transition duct connecting a plurality of combustors to a first stage of a gas turbine.

【0002】[0002]

【従来の技術】一般的な配置において、燃焼器は、圧縮
機の吐出し口の内部に環状整列体として配置され、一方
の端部でそれぞれの円筒形燃焼器ライナに形状適合する
ように、また反対側の端部でタービン段入口に形状適合
するように各々形づくられた遷移ダクトによってタービ
ンの第1段へ接続される。後者の端部において、遷移ダ
クトは、遷移ダクトがタービンにしっかり固定される外
端フレームを有する。本出願人の一連のガスタービン製
品における乾燥低NOx燃焼装置では、穴あき衝突冷却
スリーブが遷移ダクトを包囲しており、圧縮機吐出し冷
却空気を遷移ダクトと接触するように向けるために用い
られる。この冷却空気は、最終的に燃焼器の燃料と混合
する。
2. Description of the Prior Art In a typical arrangement, the combustors are arranged as an annular array inside the discharge port of the compressor, with one end conforming to a respective cylindrical combustor liner. Also connected at the opposite end to the first stage of the turbine by transition ducts each shaped to conform to the turbine stage inlet. At the latter end, the transition duct has an outer end frame to which the transition duct is secured to the turbine. In Applicants' series of dry low NOx combustors, a perforated impingement cooling sleeve surrounds the transition duct and is used to direct compressor discharge cooling air into contact with the transition duct. . This cooling air eventually mixes with the combustor fuel.

【0003】[0003]

【発明が解決しようとする課題】遷移ダクトとそれらに
付随する衝突スリーブは、圧縮機吐出しケーシングに非
常に緊密に一緒にして詰め込まれている。その結果、圧
縮機吐出し空気が遷移ダクトの外側部分を冷却するため
に通って流れることができる区域が殆どない。その結
果、空気は、隣接する遷移ダクトの側板の間の狭い隙間
を通って非常に早い速度で移動し、従って、空気の静圧
は比較的低い。衝突冷却は静圧の差に依存するので、遷
移ダクトの側板は、極めて不十分に冷却される。この結
果、ダクトの低サイクル疲労寿命は、規定寿命を下回る
場合がある。衝突冷却により遷移ダクトを冷却する例
は、本出願人が所有する米国特許第4、719、748
号に見出すことができる。
The transition ducts and their associated impingement sleeves are very closely packed together in the compressor discharge casing. As a result, there is little area where compressor discharge air can flow through to cool the outer portion of the transition duct. As a result, the air moves at a very high speed through the narrow gap between the side plates of the adjacent transition ducts, and therefore the static pressure of the air is relatively low. Since impingement cooling depends on the difference in static pressure, the side plates of the transition duct are very poorly cooled. As a result, the low cycle fatigue life of the duct may be shorter than the specified life. An example of cooling a transition duct by impingement cooling is described in commonly owned US Pat. No. 4,719,748.
Can be found in the issue.

【0004】[0004]

【課題を解決するための手段】本発明の例示的実施形態
によると、遷移ダクトの側板の不十分な冷却は、衝突ス
リーブの外面に、好ましくはスリーブの側板に沿って、
従ってまた遷移ダクトの側板に隣接して、スクープを取
り付けることで改善される。これらのスクープは、流れ
が高速で通過する時に流れを停滞させ、流れを遷移ダク
トの側板上に向け直す。この向け直された流れは、材料
特性が十分良好であって所要の使用寿命を達成する温度
範囲まで金属を冷却するのに十分な冷却を供給する。ス
クープは様々な形状を持ってよく、スリーブの形状、圧
縮機吐出しケーシング内の流れ、及び、遷移ダクトに対
する熱負荷によって決定される数及び位置でスリーブに
固定されてよい。
According to an exemplary embodiment of the present invention, insufficient cooling of the transition duct side plate is provided on the outer surface of the impingement sleeve, preferably along the sleeve side plate.
Therefore, it is also improved by installing a scoop adjacent to the side plate of the transition duct. These scoops stop the flow as it passes at high speed and redirect the flow onto the side plates of the transition duct. This redirected flow provides sufficient cooling to cool the metal to a temperature range where the material properties are good enough to achieve the required service life. The scoops may have various shapes and may be fixed to the sleeve in a number and position determined by the shape of the sleeve, the flow in the compressor discharge casing, and the thermal load on the transition duct.

【0005】更に、スクープ無しの衝突冷却穴に対する
衝突冷却の相対的効果は、これら冷却穴に対する衝突ス
リーブ外側上の流れ剥離の正確な点により達成される。
すなわち、本発明の別の形態は、目標とする位置におい
て一貫した流れ剥離を強制するために衝突スリーブの表
面に空力装置を付け加えることである。この点に関して
は、遷移ダクト外側の高温側板区域の縁部の位置におい
て、特定の負荷及び幾何学形条件下で温度の急速かつ反
復する変動を見ることができることが試験で観察されて
いる。この温度場の不安定性は、圧縮機の吐出し渦や他
の要因の変化に応答して動き回る衝突スリーブ上部の剥
離点に起因する。この問題の解決法は、冷却穴に対して
与えられる位置において流れが確実に剥離し、それによ
り安定した冷却流れを生み出す特徴を衝突スリーブの表
面上に置くことである。例示的実施例において、1つ又
はそれ以上の例えば針金(又は、複数の針金)などの中
実部材が、衝突スリーブの外面に固定され、隣接する衝
突スリーブ間の最小空間の線の外側の、また、衝突スリ
ーブの側板に沿って配置されたスクープ整列体の外側の
スリーブにほぼ沿って延びる。
Furthermore, the relative effect of impingement cooling on impingement cooling holes without scoops is achieved by the precise point of flow separation on the outside of the impingement sleeve for these cooling holes.
That is, another form of the present invention is to add aerodynamic devices to the surface of the impingement sleeve to force consistent flow separation at the target location. In this regard, tests have shown that at the location of the edge of the hot side plate area outside the transition duct, rapid and repetitive fluctuations in temperature can be seen under certain loading and geometric conditions. This instability of the temperature field is due to a separation point at the top of the impingement sleeve that moves around in response to changes in compressor discharge vortices and other factors. A solution to this problem is to place a feature on the surface of the impingement sleeve that ensures that the flow separates at a given location relative to the cooling holes, thereby creating a stable cooling flow. In an exemplary embodiment, one or more solid members, such as, for example, wires (or wires) are secured to the outer surface of the impingement sleeve and are outside a line of minimal space between adjacent impingement sleeves. Also, it extends substantially along the outer sleeve of the scoop alignment arranged along the side plate of the impact sleeve.

【0006】従って1つの態様において、本発明は、ガ
スタービン燃焼器に接続するようになっている一方の端
部及び第1タービン段に接続するようになっている反対
側の端部と、1対の側板とを有する遷移ダクト、遷移ダ
クトを包囲し、遷移ダクトとの間に冷却通路を確立する
衝突スリーブ、スリーブ内の複数列の冷却穴を形成され
た衝突スリーブ、及び、各々が冷却穴の1つを少なくと
も部分的に包囲する、衝突スリーブ外面上の複数の流れ
キャッチャ装置を含む、ガスタービン用の尾筒組立体に
関する。
Accordingly, in one aspect, the present invention comprises a first end adapted to connect to a gas turbine combustor and an opposite end adapted to connect to a first turbine stage; A transition duct having a pair of side plates, an impingement sleeve surrounding the transition duct and establishing a cooling passage with the transition duct, an impingement sleeve formed with a plurality of rows of cooling holes in the sleeve, and each cooling hole To a transition piece assembly for a gas turbine, comprising a plurality of flow catcher devices on the outer surface of the impingement sleeve at least partially surrounding one of the two.

【0007】別の態様において、本発明は、圧縮機から
吐き出される空気によりガスタービン燃焼器と第1ター
ビン段との間に接続される遷移ダクトを衝突冷却する方
法であって、a)複数の冷却穴を備える衝突スリーブに
より遷移ダクトを包囲する段階と、b)衝突スリーブに
沿って圧縮機吐出し空気用の流路を確立する段階と、
c)圧縮機吐出し空気を捕らえ、衝突穴を通して遷移ダ
クト上に向け直す流れキャッチャ装置を衝突スリーブ上
に用意する段階とを含むことを特徴とする方法に関す
る。
In another aspect, the present invention is a method of impinging and cooling a transition duct connected between a gas turbine combustor and a first turbine stage with air discharged from a compressor, the method comprising: Enclosing the transition duct with an impingement sleeve having cooling holes, and b) establishing a flow path for compressor discharge air along the impingement sleeve;
c) providing a flow catcher device on the impingement sleeve that captures compressor discharge air and redirects it through the impingement hole onto the transition duct.

【0008】[0008]

【発明の実施の形態】以上述べてきたように、一般的な
ガスタービンは、燃焼器と第1タービン段との間に接続
される遷移ダクトを各々有する環状の燃焼器整列体を含
む。そのような1つの遷移ダクトと付随する冷却スリー
ブとの概略図が図1に示されている。詳細には、遷移ダ
クト10は、高温の燃焼ガスを燃焼器ライナ12で表さ
れる上流側燃焼器からタービンの第1段入口14へ運
ぶ。ガスタービン圧縮機からの空気の流れは、軸流ディ
フューザ16を出て圧縮機吐出しケーシング18へ流入
する。遷移ダクトを冷却するために、圧縮機が吐き出す
空気の約50%は、遷移ダクト10と半径方向外側衝突
スリーブとの間の環状領域又は環24内への流れ用の、
衝突冷却スリーブ22に沿ってその周囲に形成された冷
却開口又は穴20を通過する。圧縮機吐出し流れの残り
の約50%は、上流側燃焼器ライナ冷却スリーブ(図示
しない)の流れスリーブ穴の中を通り、冷却スリーブと
燃焼器ライナとの間の環の中を通って流れ、最終的には
空気遷移ダクト環24と混合する。この組み合わされた
空気は、最終的に燃焼室内でガスタービン燃料と混合す
る。
DETAILED DESCRIPTION OF THE INVENTION As described above, typical gas turbines include an annular combustor array having transition ducts each connected between a combustor and a first turbine stage. A schematic diagram of one such transition duct and the associated cooling sleeve is shown in FIG. In particular, the transition duct 10 carries hot combustion gases from an upstream combustor, represented by a combustor liner 12, to a first stage inlet 14 of the turbine. The flow of air from the gas turbine compressor exits the axial diffuser 16 and discharges from the compressor into a casing 18. In order to cool the transition duct, about 50% of the air exhaled by the compressor is used for flow into the annulus or annulus 24 between the transition duct 10 and the radially outer impingement sleeve.
Along the impingement cooling sleeve 22 passes through a cooling opening or hole 20 formed therearound. The remaining about 50% of the compressor discharge stream flows through the flow sleeve holes in the upstream combustor liner cooling sleeve (not shown) and through the annulus between the cooling sleeve and the combustor liner. And finally mixed with the air transition duct ring 24. This combined air eventually mixes with the gas turbine fuel in the combustion chamber.

【0009】図2は、本発明に従って使用される空力
「流れキャッチャ装置」26を有する遷移ダクト衝突ス
リーブ122を示す。例示的実施形態において、装置2
6は、軸線方向、円周方向、又は、その両方に、また好
ましくは、遷移ダクトの類似の側板に隣接する側板に沿
って延びる数列の衝突スリーブ冷却穴120に沿って装
着されたスクープの形をとる。上記の通り、特定のガス
タービン設計において燃焼器及び遷移ダクトのコンパク
トな環状整列体では、冷却が最も困難なのが遷移ダクト
の側板である。一般的なスクープは、完全に又は部分的
に冷却穴120を包囲するか(例えば、スクープは上面
を持つか又は持たない半円筒形が可能である)、又は、
部分的又は完全に穴を覆ってほぼ部分球の形状をとるこ
とができる。同様な流れを捕らえる機能をもたらす他の
形状を使用してもよい。
FIG. 2 shows a transition duct impingement sleeve 122 having an aerodynamic "flow catcher device" 26 used in accordance with the present invention. In an exemplary embodiment, the device 2
6 is in the form of a scoop mounted axially, circumferentially, or both, and preferably along rows of impingement sleeve cooling holes 120 extending along side plates adjacent to similar side plates of the transition duct. Take. As noted above, in a particular gas turbine design, with a compact annular arrangement of combustors and transition ducts, it is the transition duct side plates that are most difficult to cool. A typical scoop may completely or partially surround the cooling holes 120 (eg, the scoop may be semi-cylindrical with or without a top surface), or
It can take the shape of a partial sphere partially or completely over the hole. Other shapes that provide a similar flow capture function may be used.

【0010】スクープ26は、圧縮機吐出し空気を穴1
20を通って遷移ダクトの側板上へ半径方向内向きに向
けるために、スリーブへ個別に溶接されるのが好まし
い。本発明の構成ではスクープ26は、流れの方向に向
かって傾斜することができる開口部を持つ。スクープ
は、1つ1つ、ストリップに、又は、全スクープが単一
作業で固定されるシートとして、製造することができ
る。スクープ26の数量や位置は、衝突スリーブの形
状、圧縮機吐出しケーシング内の流れ、及び、尾筒に対
する燃焼器による熱負荷により規定される。
The scoop 26 discharges air discharged from the compressor into the hole 1.
It is preferably welded individually to the sleeve for directing radially inward through 20 and onto the side plate of the transition duct. In the configuration of the present invention, the scoop 26 has an opening that can be inclined in the direction of flow. The scoops can be manufactured one by one, in strips, or as sheets in which the entire scoop is fixed in a single operation. The number and position of the scoops 26 are determined by the shape of the collision sleeve, the flow in the compressor discharge casing, and the heat load of the transition piece by the combustor.

【0011】本発明の別の特徴は、隣接する尾筒間の最
小面積の線の外側の衝突スリーブ120の表面に固定さ
れる針金などの一定断面の材料のストリップ28が含ま
れる。最小面積点の後では、流れは不安定の流れ体制で
拡散する。ある時点で流れは、衝突スリーブの輪郭にも
はや追従できず、剥離して圧縮機吐出しケーシングの外
壁に衝突する。表面上の流れは、表面近傍の圧力に影響
を与え、従って、この領域の衝突性能にも影響を与え
る。いわゆる「トリップ・ストリップ」28の目的は、
流れを既知の位置において衝突スリーブの表面から強制
的に離すことである。これらのストリップは、流れが再
びストリップ背後の表面に付着するのを不可能にするた
めに適当な距離だけ表面から突出する必要がある。一般
的な装着において、ストリップ28は、側板に沿うスク
ープ整列体の最終のスクープ列の外側の衝突スリーブ表
面上に置かれる。この種の配置例は、図2に説明されて
いる。しかし、スクープ26と、トリップ・ストリップ
又は流れセパレータ28の数、正確な位置、及び、形状
は、用途により特定なものになる。
Another feature of the present invention includes a strip 28 of a constant cross-section material, such as wire, secured to the surface of the impact sleeve 120 outside the line of minimum area between adjacent transition pieces. After the point of minimum area, the flow diffuses in an unstable regime. At some point, the flow can no longer follow the contour of the impingement sleeve and will separate and impinge on the outer wall of the compressor discharge casing. The flow over the surface affects the pressure near the surface and therefore also the impact performance in this area. The purpose of the so-called “trip strip” 28 is
Forcing the flow away from the surface of the impingement sleeve at a known location. These strips need to protrude a suitable distance from the surface to make it impossible for the flow to adhere to the surface behind the strip again. In a typical installation, the strip 28 is placed on the impact sleeve surface outside the final scoop row of scoop alignment along the side plate. An example of this type of arrangement is illustrated in FIG. However, the number, exact location, and shape of scoop 26 and trip strip or flow separator 28 will be specific to the application.

【0012】本発明の使用において、空気は、衝突スリ
ーブを通過する高速空気流の中に突出した空力スクープ
26によって尾筒表面へと導かれる。スクープ26は、
停滞及び再方向づけの組合せにより、以前においては流
れを衝突冷却穴120を通すように働く静圧差が不足し
ていたために衝突冷却穴120を通過してしまったであ
ろう空気を捕らえ、流れを遷移ダクトの高温表面(すな
わち、側板)上へ内方に導き、その結果、金属の温度を
許容できるレベルまで低下させる。同時にトリップ・ス
トリップ28は、所望される位置におけるスリーブ表面
からの流れの剥離を確実にし、それにより、衝突スリー
ブの冷却能力を強化する。
In use of the present invention, air is directed to the transition piece surface by an aerodynamic scoop 26 projecting into the high velocity air flow past the impingement sleeve. Scoop 26
The combination of stagnation and redirection traps air that would have previously passed through the impingement cooling holes 120 due to a lack of static pressure differential that acted to force the flow through the impingement cooling holes 120, and transitioned the flow. Guides inward onto the hot surface (i.e., side plates) of the duct, thereby reducing the temperature of the metal to an acceptable level. At the same time, the trip strip 28 ensures flow separation from the sleeve surface at the desired location, thereby enhancing the cooling capacity of the impingement sleeve.

【0013】本発明の1つの利点は、既存の設計に適用
可能なことであり、比較的安価で装着しやすく、追加冷
却を必要とする側板上のどの領域にも適用できる局部的
解決法を提供することである。
One advantage of the present invention is that it is adaptable to existing designs, is relatively inexpensive, is easy to install, and provides a local solution that can be applied to any area on the side plate that requires additional cooling. To provide.

【0014】本発明は、現在最も実用的で好ましい実施
形態と考えられるものに関連して説明されたが、本発明
が開示された実施形態に限定されず、逆に、本請求項の
精神及び範囲に含まれる様々な修正や同等装置を包含す
るように意図されていることを理解されたい。
Although the present invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, the present invention is not limited to the disclosed embodiments, but rather, the spirit and scope of the claims. It is to be understood that various modifications and equivalent devices that fall within the scope are intended to be covered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 燃焼器と第1タービン段との間に位置する従
来技術の遷移ダクトで、遷移ダクトの端部フレームが省
略された概略断面図。
FIG. 1 is a schematic cross-sectional view of a prior art transition duct located between a combustor and a first turbine stage, omitting an end frame of the transition duct.

【図2】 本発明による空力スクープ及び流れセパレー
タ装置が図解されている遷移ダクト衝突スリーブの概略
側面図。
FIG. 2 is a schematic side view of a transition duct impingement sleeve illustrating an aerodynamic scoop and flow separator device according to the present invention.

【図3】 衝突スリーブ上の空力スクープの拡大詳細
図。
FIG. 3 is an enlarged detail view of the aerodynamic scoop on the impact sleeve.

【符号の説明】[Explanation of symbols]

26 空力流れキャッチャ装置 28 トリップ・ストリップ 120 衝突スリーブ冷却穴 122 遷移ダクト衝突スリーブ 26 aerodynamic catcher device 28 trip strip 120 impingement sleeve cooling hole 122 transition duct impingement sleeve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン燃焼器に接続するようにな
っている一方の端部及び第1タービン段に接続するよう
になっている反対側の端部と、1対の側板とを有する遷
移ダクトと、 前記遷移ダクトを包囲し、遷移ダクトとの間に冷却通路
を確立する、複数列の冷却穴を形成された衝突スリーブ
と、 各々が前記冷却穴の1つを少なくとも部分的に包囲す
る、前記衝突スリーブ外面上の複数の流れキャッチャ装
置と、を含むことを特徴とする、ガスタービン用の尾筒
組立体。
A transition duct having one end adapted to connect to a gas turbine combustor and an opposite end adapted to connect to a first turbine stage, and a pair of side plates. A plurality of rows of cooling sleeves surrounding the transition duct and establishing a cooling passage between the transition duct, each of which at least partially surrounds one of the cooling holes; And a plurality of flow catchers on the outer surface of the impingement sleeve.
【請求項2】 流れキャッチャ装置を有する前記冷却穴
列の外側で前記外面に沿って延びる少なくとも1つの中
実の材料ストリップを更に含むことを特徴とする請求項
1に記載の尾筒組立体。
2. The transition piece assembly according to claim 1, further comprising at least one solid material strip extending along said outer surface outside said row of cooling holes having a flow catcher device.
【請求項3】 ガスタービン・尾筒を冷却する衝突スリ
ーブであって、 複数列の冷却穴を形成された管状体と、 各々が前記冷却穴の1つに近接している、衝突スリーブ
の外面上の複数の流れキャッチャ装置と、を含むことを
特徴とする衝突スリーブ。
3. An impingement sleeve for cooling a gas turbine transition piece, the tubular body having a plurality of rows of cooling holes, and an outer surface of the impingement sleeve each proximate one of the cooling holes. And a plurality of flow catcher devices thereon.
【請求項4】 圧縮機から吐き出される空気によりガス
タービン燃焼器と第1タービン段との間に接続される遷
移ダクトを衝突冷却する方法であって、 a)複数の冷却穴を備える衝突スリーブにより前記遷移
ダクトを包囲する段階と、 b)前記衝突スリーブに沿って圧縮機吐出し空気用の流
路を確立する段階と、 c)前記圧縮機吐出し空気を捕らえ、前記衝突穴を通し
て前記遷移ダクト上に向け直す流れキャッチャ装置を前
記衝突スリーブ上に用意する段階と、を含むことを特徴
とする方法。
4. A method for impingement cooling a transition duct connected between a gas turbine combustor and a first turbine stage by air discharged from a compressor, comprising: a) an impingement sleeve having a plurality of cooling holes. Enclosing the transition duct; b) establishing a flow path for compressor discharge air along the impingement sleeve; c) capturing the compressor discharge air and passing the transition duct through the impingement hole. Providing a redirecting flow catcher device on said impingement sleeve.
JP2001156218A 2000-11-20 2001-05-25 Aerodynamic devices and related methods for enhancing side plate cooling of impact cooling transition ducts Expired - Lifetime JP4754097B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/715034 2000-11-20
US09/715,034 US6494044B1 (en) 1999-11-19 2000-11-20 Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method

Publications (3)

Publication Number Publication Date
JP2002155759A true JP2002155759A (en) 2002-05-31
JP2002155759A5 JP2002155759A5 (en) 2008-07-03
JP4754097B2 JP4754097B2 (en) 2011-08-24

Family

ID=24872424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156218A Expired - Lifetime JP4754097B2 (en) 2000-11-20 2001-05-25 Aerodynamic devices and related methods for enhancing side plate cooling of impact cooling transition ducts

Country Status (5)

Country Link
US (1) US6494044B1 (en)
EP (2) EP2813761B1 (en)
JP (1) JP4754097B2 (en)
KR (1) KR100540054B1 (en)
CZ (1) CZ20011837A3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159745A (en) * 2009-01-06 2010-07-22 General Electric Co <Ge> Cooling apparatus for combustor transition piece
JP2012047443A (en) * 2010-08-27 2012-03-08 Alstom Technology Ltd Method of operating burner arrangement and burner arrangement for implementing the same
JP2014509710A (en) * 2011-03-29 2014-04-21 シーメンス エナジー インコーポレイテッド Cooling scoop for turbine combustion system
JP2018521287A (en) * 2015-05-27 2018-08-02 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Combustor chamber with rotatable air induction cap
US10352244B2 (en) 2014-04-25 2019-07-16 Mitsubishi Hitachi Power Systems, Ltd. Combustor cooling structure
JP2020148449A (en) * 2019-03-12 2020-09-17 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Transition piece assembly, transition piece module, and combustor and gas turbine including transition piece assembly

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
US6435816B1 (en) * 2000-11-03 2002-08-20 General Electric Co. Gas injector system and its fabrication
JP2002243154A (en) * 2001-02-16 2002-08-28 Mitsubishi Heavy Ind Ltd Gas turbine combustor and tail cylinder outlet structure thereof
CN1250906C (en) * 2001-09-07 2006-04-12 阿尔斯托姆科技有限公司 Damping arrangement for reducing combustion chamber pulsations in a gas turbine system
US6761031B2 (en) 2002-09-18 2004-07-13 General Electric Company Double wall combustor liner segment with enhanced cooling
US6722134B2 (en) 2002-09-18 2004-04-20 General Electric Company Linear surface concavity enhancement
US7104067B2 (en) * 2002-10-24 2006-09-12 General Electric Company Combustor liner with inverted turbulators
US6681578B1 (en) 2002-11-22 2004-01-27 General Electric Company Combustor liner with ring turbulators and related method
US7302802B2 (en) * 2003-10-14 2007-12-04 Pratt & Whitney Canada Corp. Aerodynamic trip for a combustion system
US7186084B2 (en) * 2003-11-19 2007-03-06 General Electric Company Hot gas path component with mesh and dimpled cooling
US6984102B2 (en) * 2003-11-19 2006-01-10 General Electric Company Hot gas path component with mesh and turbulated cooling
US7137241B2 (en) * 2004-04-30 2006-11-21 Power Systems Mfg, Llc Transition duct apparatus having reduced pressure loss
US7010921B2 (en) * 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US7574865B2 (en) * 2004-11-18 2009-08-18 Siemens Energy, Inc. Combustor flow sleeve with optimized cooling and airflow distribution
US7310938B2 (en) * 2004-12-16 2007-12-25 Siemens Power Generation, Inc. Cooled gas turbine transition duct
US7082766B1 (en) * 2005-03-02 2006-08-01 General Electric Company One-piece can combustor
US8387390B2 (en) * 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
GB0601413D0 (en) * 2006-01-25 2006-03-08 Rolls Royce Plc Wall elements for gas turbine engine combustors
US7827801B2 (en) * 2006-02-09 2010-11-09 Siemens Energy, Inc. Gas turbine engine transitions comprising closed cooled transition cooling channels
FR2899315B1 (en) * 2006-03-30 2012-09-28 Snecma CONFIGURING DILUTION OPENINGS IN A TURBOMACHINE COMBUSTION CHAMBER WALL
US20100018211A1 (en) * 2008-07-23 2010-01-28 General Electric Company Gas turbine transition piece having dilution holes
US7926279B2 (en) * 2006-09-21 2011-04-19 Siemens Energy, Inc. Extended life fuel nozzle
GB0624294D0 (en) * 2006-12-05 2007-01-10 Rolls Royce Plc A transition duct for a gas turbine engine
US8522557B2 (en) * 2006-12-21 2013-09-03 Siemens Aktiengesellschaft Cooling channel for cooling a hot gas guiding component
US8281600B2 (en) * 2007-01-09 2012-10-09 General Electric Company Thimble, sleeve, and method for cooling a combustor assembly
US8387396B2 (en) * 2007-01-09 2013-03-05 General Electric Company Airfoil, sleeve, and method for assembling a combustor assembly
US7617684B2 (en) * 2007-11-13 2009-11-17 Opra Technologies B.V. Impingement cooled can combustor
US8151570B2 (en) * 2007-12-06 2012-04-10 Alstom Technology Ltd Transition duct cooling feed tubes
US20090165435A1 (en) * 2008-01-02 2009-07-02 Michal Koranek Dual fuel can combustor with automatic liquid fuel purge
AU2009216788B2 (en) 2008-02-20 2014-09-25 General Electric Technology Gmbh Gas turbine having an improved cooling architecture
US8096133B2 (en) * 2008-05-13 2012-01-17 General Electric Company Method and apparatus for cooling and dilution tuning a gas turbine combustor liner and transition piece interface
US7918433B2 (en) * 2008-06-25 2011-04-05 General Electric Company Transition piece mounting bracket and related method
US9046269B2 (en) 2008-07-03 2015-06-02 Pw Power Systems, Inc. Impingement cooling device
US20100005804A1 (en) * 2008-07-11 2010-01-14 General Electric Company Combustor structure
US8397512B2 (en) * 2008-08-25 2013-03-19 General Electric Company Flow device for turbine engine and method of assembling same
US8490400B2 (en) * 2008-09-15 2013-07-23 Siemens Energy, Inc. Combustor assembly comprising a combustor device, a transition duct and a flow conditioner
US8051662B2 (en) * 2009-02-10 2011-11-08 United Technologies Corp. Transition duct assemblies and gas turbine engine systems involving such assemblies
US20100223930A1 (en) * 2009-03-06 2010-09-09 General Electric Company Injection device for a turbomachine
US20100269513A1 (en) * 2009-04-23 2010-10-28 General Electric Company Thimble Fan for a Combustion System
US8894363B2 (en) 2011-02-09 2014-11-25 Siemens Energy, Inc. Cooling module design and method for cooling components of a gas turbine system
US8959886B2 (en) 2010-07-08 2015-02-24 Siemens Energy, Inc. Mesh cooled conduit for conveying combustion gases
GB2479865B (en) * 2010-04-26 2013-07-10 Rolls Royce Plc An installation having a thermal transfer arrangement
US9810081B2 (en) 2010-06-11 2017-11-07 Siemens Energy, Inc. Cooled conduit for conveying combustion gases
US20120031099A1 (en) * 2010-08-04 2012-02-09 Mahesh Bathina Combustor assembly for use in a turbine engine and methods of assembling same
US8201412B2 (en) 2010-09-13 2012-06-19 General Electric Company Apparatus and method for cooling a combustor
US8727710B2 (en) * 2011-01-24 2014-05-20 United Technologies Corporation Mateface cooling feather seal assembly
US9869279B2 (en) * 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
EP2735796B1 (en) * 2012-11-23 2020-01-01 Ansaldo Energia IP UK Limited Wall of a hot gas path component of a gas turbine and method for enhancing operational behaviour of a gas turbine
US9228747B2 (en) * 2013-03-12 2016-01-05 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
EP2865850B1 (en) * 2013-10-24 2018-01-03 Ansaldo Energia Switzerland AG Impingement cooling arrangement
US9909432B2 (en) 2013-11-26 2018-03-06 General Electric Company Gas turbine transition piece aft frame assemblies with cooling channels and methods for manufacturing the same
KR101556532B1 (en) * 2014-01-16 2015-10-01 두산중공업 주식회사 liner, flow sleeve and gas turbine combustor including cooling sleeve
EP3186558B1 (en) 2014-08-26 2020-06-24 Siemens Energy, Inc. Film cooling hole arrangement for acoustic resonators in gas turbine engines
EP3015770B1 (en) 2014-11-03 2020-07-01 Ansaldo Energia Switzerland AG Can combustion chamber
WO2017023327A1 (en) * 2015-08-06 2017-02-09 Siemens Aktiengesellschaft Trailing edge duct for combustors with cooling features
US10465907B2 (en) 2015-09-09 2019-11-05 General Electric Company System and method having annular flow path architecture
US10815789B2 (en) * 2016-02-13 2020-10-27 General Electric Company Impingement holes for a turbine engine component
KR101766449B1 (en) 2016-06-16 2017-08-08 두산중공업 주식회사 Air flow guide cap and combustion duct having the same
WO2018021993A1 (en) * 2016-07-25 2018-02-01 Siemens Aktiengesellschaft Cooling features for a gas turbine engine
KR101986729B1 (en) * 2017-08-22 2019-06-07 두산중공업 주식회사 Cooling passage for concentrated cooling of seal area and a gas turbine combustor using the same
KR101863774B1 (en) 2017-09-06 2018-06-01 두산중공업 주식회사 Scoop arrangement for enhancing cooling performance of transition piece and a gas turbine combustor using the same
US11268438B2 (en) * 2017-09-15 2022-03-08 General Electric Company Combustor liner dilution opening
US10598380B2 (en) 2017-09-21 2020-03-24 General Electric Company Canted combustor for gas turbine engine
KR102099300B1 (en) * 2017-10-11 2020-04-09 두산중공업 주식회사 Shroud structure for enhancing swozzle flows and a burner installed on gas turbine combustor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB685068A (en) * 1950-03-21 1952-12-31 Shell Refining & Marketing Co Combustion chamber for gas turbines
US2993337A (en) * 1959-02-12 1961-07-25 Herbert L Cheeseman Turbine combustor
US3581492A (en) * 1969-07-08 1971-06-01 Nasa Gas turbine combustor
JPS629157A (en) * 1985-05-14 1987-01-17 ゼネラル・エレクトリツク・カンパニイ Collisional cooling device
JPS6257892B2 (en) * 1982-10-06 1987-12-03 Hitachi Ltd
JPH06323544A (en) * 1993-05-11 1994-11-25 Toshiba Corp Transition piece of gas turbine combustor
US6000908A (en) * 1996-11-05 1999-12-14 General Electric Company Cooling for double-wall structures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962862A (en) * 1946-10-26 1950-06-22
US3589128A (en) * 1970-02-02 1971-06-29 Avco Corp Cooling arrangement for a reverse flow gas turbine combustor
US3899882A (en) 1974-03-27 1975-08-19 Westinghouse Electric Corp Gas turbine combustor basket cooling
US4192138A (en) * 1977-08-29 1980-03-11 Westinghouse Electric Corp. Gas turbine combustor air inlet
CH633347A5 (en) * 1978-08-03 1982-11-30 Bbc Brown Boveri & Cie GAS TURBINE.
JPS55164731A (en) * 1979-06-11 1980-12-22 Hitachi Ltd Gas-turbine combustor
US4719748A (en) 1985-05-14 1988-01-19 General Electric Company Impingement cooled transition duct
JP3054420B2 (en) * 1989-05-26 2000-06-19 株式会社東芝 Gas turbine combustor
US5309710A (en) * 1992-11-20 1994-05-10 General Electric Company Gas turbine combustor having poppet valves for air distribution control
US5737915A (en) 1996-02-09 1998-04-14 General Electric Co. Tri-passage diffuser for a gas turbine
US5724816A (en) 1996-04-10 1998-03-10 General Electric Company Combustor for a gas turbine with cooling structure
US5758504A (en) * 1996-08-05 1998-06-02 Solar Turbines Incorporated Impingement/effusion cooled combustor liner
GB2328011A (en) * 1997-08-05 1999-02-10 Europ Gas Turbines Ltd Combustor for gas or liquid fuelled turbine
US6494044B1 (en) * 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB685068A (en) * 1950-03-21 1952-12-31 Shell Refining & Marketing Co Combustion chamber for gas turbines
US2993337A (en) * 1959-02-12 1961-07-25 Herbert L Cheeseman Turbine combustor
US3581492A (en) * 1969-07-08 1971-06-01 Nasa Gas turbine combustor
JPS6257892B2 (en) * 1982-10-06 1987-12-03 Hitachi Ltd
JPS629157A (en) * 1985-05-14 1987-01-17 ゼネラル・エレクトリツク・カンパニイ Collisional cooling device
JPH06323544A (en) * 1993-05-11 1994-11-25 Toshiba Corp Transition piece of gas turbine combustor
US6000908A (en) * 1996-11-05 1999-12-14 General Electric Company Cooling for double-wall structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159745A (en) * 2009-01-06 2010-07-22 General Electric Co <Ge> Cooling apparatus for combustor transition piece
JP2012047443A (en) * 2010-08-27 2012-03-08 Alstom Technology Ltd Method of operating burner arrangement and burner arrangement for implementing the same
JP2014509710A (en) * 2011-03-29 2014-04-21 シーメンス エナジー インコーポレイテッド Cooling scoop for turbine combustion system
US9127551B2 (en) 2011-03-29 2015-09-08 Siemens Energy, Inc. Turbine combustion system cooling scoop
US10352244B2 (en) 2014-04-25 2019-07-16 Mitsubishi Hitachi Power Systems, Ltd. Combustor cooling structure
JP2018521287A (en) * 2015-05-27 2018-08-02 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Combustor chamber with rotatable air induction cap
JP2020148449A (en) * 2019-03-12 2020-09-17 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Transition piece assembly, transition piece module, and combustor and gas turbine including transition piece assembly

Also Published As

Publication number Publication date
EP1207273A3 (en) 2002-11-20
CZ20011837A3 (en) 2002-07-17
KR20020039220A (en) 2002-05-25
US6494044B1 (en) 2002-12-17
EP1207273B1 (en) 2015-03-25
JP4754097B2 (en) 2011-08-24
EP1207273A2 (en) 2002-05-22
EP2813761A3 (en) 2015-01-07
EP2813761A2 (en) 2014-12-17
EP2813761B1 (en) 2018-11-07
KR100540054B1 (en) 2006-01-10

Similar Documents

Publication Publication Date Title
JP4754097B2 (en) Aerodynamic devices and related methods for enhancing side plate cooling of impact cooling transition ducts
CN1704573B (en) Apparatus for cooling combustor liner and transition piece of a gas turbine
JP4128393B2 (en) Method for cooling an igniter tube of a gas turbine engine, gas turbine engine and combustor for a gas turbine engine
JP4464247B2 (en) Deflector embedded impingement baffle
US4903477A (en) Gas turbine combustor transition duct forced convection cooling
US8166764B2 (en) Flow sleeve impingement cooling using a plenum ring
US6179557B1 (en) Turbine cooling
JP5802404B2 (en) Angled vanes in the combustor airflow sleeve
US9046269B2 (en) Impingement cooling device
EP1143107A2 (en) Gas turbine transition duct end frame cooling
US20090145099A1 (en) Transition duct cooling feed tubes
JPH0610709A (en) Casing assembly reducing temperature gradient of bleeded air of gas turbine engine, bleeder for gas turbine engine and method of controlling casing distortion of gas turbine
JPH0228683B2 (en)
JPH0524337B2 (en)
US20100170258A1 (en) Cooling apparatus for combustor transition piece
EP2730748A2 (en) A system for cooling a hot gas path component, corresponding gas turbine combustor and cooling method
EP2955443A1 (en) Impingement cooled wall arrangement
US10669860B2 (en) Gas turbine blade
JPS63131924A (en) Cooling structure for tail of combustor
JP4235208B2 (en) Gas turbine tail tube structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101027

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4754097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term