JP2002154844A - Sol-gel glass and method for manufacturing the same - Google Patents

Sol-gel glass and method for manufacturing the same

Info

Publication number
JP2002154844A
JP2002154844A JP2000345146A JP2000345146A JP2002154844A JP 2002154844 A JP2002154844 A JP 2002154844A JP 2000345146 A JP2000345146 A JP 2000345146A JP 2000345146 A JP2000345146 A JP 2000345146A JP 2002154844 A JP2002154844 A JP 2002154844A
Authority
JP
Japan
Prior art keywords
sol
gel
glass
silicon particles
starting solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345146A
Other languages
Japanese (ja)
Inventor
Satoshi Aihara
聡 相原
Nobuo Saito
信雄 斎藤
Norihiko Kamata
憲彦 鎌田
Hiroaki Terunuma
大陽 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2000345146A priority Critical patent/JP2002154844A/en
Publication of JP2002154844A publication Critical patent/JP2002154844A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/32Nature of the non-vitreous component comprising a sol-gel process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare sol-gel glass containing ultrafine silicon particles dispersed uniformly or nearly uniformly in the sol-gel matrix, and to provide a method for manufacturing the sol-gel glass. SOLUTION: A primary starting solution is prepared by mixing tetraethoxysilane (Si(OC2H5)4) in such a way that the molar ratio of Si(OC2H5)4: C2H5OH:H2O:HCl:DMF is adjusted to 1:4:10:0.3:1, ultrafine silicon particles are dispersed in ethanol by 8.3 wt.% of the amount of the tetraethoxysilane to prepare a suspension and 5 ml of the ethanol suspension is added to the primary starting solution to prepare a final starting solution. This sol-gel solution is applied to a quartz substrate of 10 mm×40 mm by a dipping method and dried at room temperature in the air for about 100 hr to manufacture the objective sol-gel dip glass. The PL spectrum of the resulting thin film glass measured confirms that ultrafine silicon particles are incorporated in the glass matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゾルゲルガラス及
びその作製方法に関し、特に、光吸収、フォトルミネッ
センス等の光学特性を有し、発光素子、受光素子として
使用されるシリコン超微粒子添加ゾルゲルガラス及びそ
の作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sol-gel glass and a method for producing the same, and more particularly to a sol-gel glass having ultra-fine silicon particles added to a light-emitting element and a light-receiving element having optical characteristics such as light absorption and photoluminescence. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】ナノメートルサイズのシリコン超微粒子
構造は、量子論的閉じ込め効果や表面効果により、バル
クシリコンでは観測されない光吸収端の短波長化、高効
率発光を呈することから、シリコン発光デバイスへの応
用展開が期待されている。
2. Description of the Related Art A nanometer-sized silicon ultrafine particle structure has a short light absorption edge and high-efficiency light emission, which are not observed in bulk silicon, due to quantum confinement effects and surface effects. The application development of is expected.

【0003】[0003]

【発明が解決しようとする課題】シリコン超微粒子の表
示デバイス応用には大面積化が、機能デバイス応用には
薄膜化が不可欠であるが、従来のシリコン超微粒子膜の
製造法は、減圧CVD法、レーザアブレーション法等の
ドライプロセスが主流であり、堆積には非常に精密な制
御パラメータが数多くあり、且つ大面積化には適してい
ない等の問題点があった。
It is necessary to increase the area of a silicon ultra-fine particle for a display device and to reduce the thickness of a functional device for a display device. However, dry processes such as laser ablation are predominant, and there are problems such as the fact that there are many very precise control parameters for deposition and that they are not suitable for increasing the area.

【0004】本発明の目的は、シリコン超微粒子がゾル
ゲルマトリックス中に均一(完全)もしくはほぼ均一に分
散したゾルゲルガラス及びその作製方法を提供すること
にある。本発明の前記ならびにその他の目的と新規な特
徴は、本明細書の記述及び添付図面によって明らかにす
る。
An object of the present invention is to provide a sol-gel glass in which ultrafine silicon particles are uniformly (completely) or almost uniformly dispersed in a sol-gel matrix, and a method for producing the same. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明の概要を簡単に説明すれば、下記のとおりである。
The outline of the invention disclosed in the present application is briefly described as follows.

【0006】(1)シリコン超微粒子がゾルゲルマトリ
ックス中に均一(完全)もしくはほぼ均一に分散したゾ
ルゲルガラスである。
(1) A sol-gel glass in which silicon ultrafine particles are uniformly (completely) or almost uniformly dispersed in a sol-gel matrix.

【0007】(2)表面が水酸基で終端されたシリコン
超微粒子を添加したゾルゲル出発溶液から作製するゾル
ゲルガラスの作製方法である。
(2) This is a method for producing a sol-gel glass produced from a sol-gel starting solution to which ultrafine silicon particles terminated with hydroxyl groups are added.

【0008】(3)前記手段(1)のゾルゲルガラスの
作製方法において、前記ゾルゲル出発溶液を基板上にス
ピンコート法、ディップ法、キャスト法により塗布し、
薄膜ガラスを作製する。
(3) In the method (1) for preparing a sol-gel glass, the sol-gel starting solution is applied onto a substrate by a spin coating method, a dipping method, or a casting method,
Fabricate thin film glass.

【0009】(4)シリコン超微粒子がゾルゲルマトリ
ックス中に均一(完全)もしくはほぼ均一に分散したゾル
ゲルガラスもしくは前記手段(3)のゾルゲルガラスの
作製方法により作製されたゾルゲルガラスを含むガラス
から成る発光/受光素子である。
(4) Luminescence composed of sol-gel glass in which ultrafine silicon particles are uniformly (completely) or almost uniformly dispersed in a sol-gel matrix or glass containing sol-gel glass produced by the method for producing sol-gel glass of the above means (3). / Light receiving element.

【0010】本発明のポイントは、シリコン超微粒子が
ゾルゲルマトリックス中に均一(完全)もしくはほぼ均一
に分散したゾルゲルガラスである。
The point of the present invention is a sol-gel glass in which ultrafine silicon particles are uniformly (completely) or almost uniformly dispersed in a sol-gel matrix.

【0011】また、表面が水酸基で終端されたシリコン
超微粒子を添加したゾルゲル出発溶液から作製する。
Further, the sol-gel starting solution is prepared from a sol-gel starting solution to which ultra-fine silicon particles terminated with hydroxyl groups are added.

【0012】また、シリコン超微粒子の各種デバイス応
用に向けて、塗布法等の大面積化が容易な薄膜形成法を
確立すべく案出されたものであり、ゾルゲル出発溶液を
基板上にスピンコート法、ディップ法、キャスト法によ
り塗布することにより、シリコン超微粒子薄膜を作製す
る方法である。
The present invention was also devised to establish a thin film forming method, such as a coating method, capable of easily increasing the area for various device applications of silicon ultra-fine particles. A sol-gel starting solution was spin-coated on a substrate. This is a method of producing a silicon ultrafine particle thin film by applying by a dipping method, a dipping method, or a casting method.

【0013】このようにすることにより、光吸収、フォ
トルミネッセンス等において優れた光学特性を得ること
ができる。
By doing so, excellent optical characteristics in light absorption, photoluminescence, and the like can be obtained.

【0014】本発明に係るゾルゲルガラスの主成分は、
目的とする酸化物に対応した金属アルコキシドであり、
この金属アルコキシドをアルコールと混ぜて混合溶液と
し、加水分解に必要な水、及び触媒として酸又は塩基を
加えて原料溶液を調整する。亀裂防止剤としてジメチル
ホルムアミド(DMF)を加える場合もある。調整した原
料溶液を室温から80℃程度の温度に置くと、金属アル
コキシドの加水分解、重縮合反応が進行し、金属酸化物
の粒子が形成される。反応の進行に伴って原料溶液の粘
性が増し、流動性のない湿潤ゲルを経て乾燥ゲルとな
る。
The main component of the sol-gel glass according to the present invention is:
A metal alkoxide corresponding to the intended oxide,
This metal alkoxide is mixed with alcohol to form a mixed solution.
And water required for hydrolysis, and acid or base as a catalyst.
In addition, the raw material solution is adjusted. Dimethyl as crack inhibitor
In some cases, formamide (DMF) is added. Adjusted source
When the solution is placed at room temperature to about 80 ° C,
The hydrolysis and polycondensation reaction of cooxide proceeds, and metal oxide
Particles are formed. As the reaction progresses, the viscosity of the raw material solution
It becomes more dry and becomes a dry gel through a wet gel with no fluidity.
You.

【0015】例えば、テトラエトキシシラン[Si(O
254]を用いたゾルゲル反応では、〔化1〕の式
による加水分解が進行する。
For example, tetraethoxysilane [Si (O
In the sol-gel reaction using C 2 H 5 ) 4 ], hydrolysis according to the formula [1] proceeds.

【0016】[0016]

【化1】 nSi(OC25)4+4nH2O→nSi(O
H)4+4nC25OH 生成したSi(OH)4は反応性が高く、次の〔化2〕
の式の縮合反応でガラス骨格を形成する。
Embedded image nSi (OC 2 H 5 ) 4 +4 nH 2 O → nSi (O
H) 4 + 4nC 2 H 5 OH resulting Si (OH) 4 is highly reactive, the following Chemical Formula 2]
A glass skeleton is formed by the condensation reaction of the formula

【0017】[0017]

【化2】 nSi(OH)4→nSiO2+2nH2O 反応全体としては次式〔化3〕で表され、高温で副生成
物のアルコールを除去することにより反応を促進させる
ことができる。
Embedded image nSi (OH) 4 → nSiO 2 + 2nH 2 O The overall reaction is represented by the following formula [Chemical Formula 3], and the reaction can be promoted by removing alcohol as a by-product at a high temperature.

【0018】[0018]

【化3】 nSi(OC25)4+2nH2O→nSiO2
+4nC25OH 触媒としては酸、塩基の何れも使用でき、ゾルゲル反応
を促進させる。
Embedded image nSi (OC 2 H 5 ) 4 +2 nH 2 O → nSiO 2
As the +4 nC 2 H 5 OH catalyst, either an acid or a base can be used, which promotes the sol-gel reaction.

【0019】ここで、シリコン超微粒子の表面が水酸基
(-OH)で終端されていれば、〔化2〕の式の反応に見
られるように、シリコン超微粒子の表面はSiO骨格と
結合し、完全にゾルゲルガラス中に埋め込まれることが
わかる。シリコン超微粒子は、ゾルゲルガラス原料溶液
に添加物として加えることにより、シリコン超微粒子添
加ゾルゲルガラスの出発溶液とする。ゾルゲル法では、
塊状ガラス、繊維状ガラスの形成が可能であるため、シ
リコン超微粒子添加ガラスパネルやシリコン超微粒子添
加ファイバー等を容易に作製することが可能となる。
Here, the surface of the silicon ultrafine particles has a hydroxyl group.
When terminated with (-OH), it can be seen that the surface of the silicon ultrafine particles bonds to the SiO skeleton and is completely embedded in the sol-gel glass as seen from the reaction of the formula [2]. The silicon ultra-fine particles are added as an additive to the sol-gel glass raw material solution to form a starting solution of the silicon ultra-fine particle-added sol-gel glass. In the sol-gel method,
Since a lump glass or a fibrous glass can be formed, it becomes possible to easily produce a glass panel with ultrafine silicon particles and fibers with ultrafine silicon particles.

【0020】また、原料溶液が流動性を失う前に滴下、
スピンコート、ディップ等で基板表面に接触させること
により、キャスト膜、スピンコート膜、ディップ膜等の
薄膜ガラスが基板上に容易に作製される。この場合、基
板表面が親水処理されていれば基板素材に制限は無く、
ガラス基板、ステンレス鋼板、インジウムスズ酸化膜基
板、SnO2、In23、Al、Ge、Si等が使用で
きる。
Further, before the raw material solution loses fluidity, it is dropped.
A thin film glass such as a cast film, a spin coat film, or a dip film can be easily formed on the substrate by contacting the substrate surface by spin coating, dip, or the like. In this case, the substrate material is not limited as long as the surface of the substrate is subjected to a hydrophilic treatment,
A glass substrate, a stainless steel plate, an indium tin oxide film substrate, SnO 2 , In 2 O 3 , Al, Ge, Si or the like can be used.

【0021】以下に、本発明について、本発明による実
施形態(実施例)とともに詳細に説明する。
Hereinafter, the present invention will be described in detail together with embodiments (examples) according to the present invention.

【0022】[0022]

【発明の実施の形態】(実施例1)テトラエトキシシラ
ンSi(OC25)4を、 Si(OC25)4:C25OH:H2O:HCl:DMF
=1:4:10:0.3:1(モル比) となるように調整し、30分攪拌混合することにより一
次出発溶液を調整した。
(Embodiment 1) Tetraethoxysilane Si (OC 2 H 5 ) 4 is replaced by Si (OC 2 H 5 ) 4 : C 2 H 5 OH: H 2 O: HCl: DMF
= 1: 4: 10: 0.3: 1 (molar ratio), and the mixture was stirred and mixed for 30 minutes to prepare a primary starting solution.

【0023】シリコン超微粒子をテトラエトキシシラン
との重量百分率で5.0wt%となるようにエタノール
に分散させた懸濁液を調整し、該エタノール懸濁液5m
lを一次出発溶液に加えて最終的な出発溶液とした。調
整されたゾルゲル溶液は、直径1cm、高さ2cmの円
柱形ポリプロピレン容器に移し、室温大気中で約170
時間乾燥させることによりバルクガラスを作製した。作
製したガラスは、全体がシリコン超微粒子の色である灰
褐色を呈しており、目視で着色むらも観測されず、シリ
コン超微粒子がガラス内に均質に分散したものであっ
た。
Silicon ultrafine particles are made of tetraethoxysilane
Ethanol so that the weight percentage with respect to
The ethanol suspension was adjusted to 5 m
l was added to the primary starting solution to give the final starting solution. Key
The prepared sol-gel solution is a circle with a diameter of 1 cm and a height of 2 cm
Transfer to a columnar polypropylene container and place at room temperature
The bulk glass was produced by drying for an hour. Work
The glass produced is made of ash, which is entirely the color of silicon ultrafine particles.
It has a brown color with no visible color unevenness.
Ultra-fine particles are homogeneously dispersed in glass.
Was.

【0024】得られたシリコン超微粒子添加ゾルゲルバ
ルクガラスについて、フォトルミネッセンス(PL)スペ
クトルを測定し、シリコン超微粒子に起因する発光を観
測した(図1)。
Photoluminescence (PL) spectrum of the obtained sol-gel bulk glass containing silicon ultrafine particles was measured, and light emission caused by silicon ultrafine particles was observed (FIG. 1).

【0025】(実施例2)前記実施例1で用いた一次出
発溶液に、シリコン超微粒子をテトラエトキシシランと
の重量百分率で8.3wt%となるようにエタノールに
分散させた懸濁液を調整し、該エタノール懸濁液5ml
を一次出発溶液に加えて最終的な出発溶液とした。該ゾ
ルゲル溶液を10mm×40mm石英基板にディップ法
により塗布し、室温大気中で約100時間乾燥させるこ
とによりゾルゲルディップガラスを作製した。得られた
薄膜ガラスについて、PLスペクトルを測定し、ガラス
マトリックス中にシリコン超微粒子が組み込まれている
ことを確認した(図2)。
(Example 2) A suspension in which ultrafine silicon particles were dispersed in ethanol so that the weight percentage with respect to tetraethoxysilane was 8.3% by weight in the primary starting solution used in Example 1 was prepared. 5 ml of the ethanol suspension
Was added to the primary starting solution to give the final starting solution. The sol-gel solution was applied to a 10 mm × 40 mm quartz substrate by a dipping method, and dried in a room temperature atmosphere for about 100 hours to produce a sol-gel dip glass. The PL spectrum of the obtained thin film glass was measured, and it was confirmed that ultrafine silicon particles were incorporated in the glass matrix (FIG. 2).

【0026】以上、本発明者によってなされた発明を、
前記実施形態に基づき具体的に説明したが、本発明は、
前記実施形態に限定されるものではなく、その要旨を逸
脱しない範囲において種々変更可能であることは勿論で
ある。
As described above, the invention made by the present inventor is:
Although specifically described based on the embodiment, the present invention
It is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the scope of the invention.

【0027】[0027]

【発明の効果】以上に説明したように、本発明によれ
ば、シリコン超微粒子は、ゾルゲルガラス中に均一(完
全)もしくはほぼ均一に分散した形でガラスネットワー
クと骨格を組むため、大面積のシリコン超微粒子添加薄
膜ガラスが作製可能となる。この薄膜ガラスは、優れた
光吸収、発光機能を有するため、光センシングデバイ
ス、発光デバイス等の機能性材料に使用される。
As described above, according to the present invention,
For example, silicon ultrafine particles can be uniformly (completely)
All) or almost evenly distributed glass network
Large area silicon ultra-fine particles
Film glass can be produced. This thin film glass is excellent
Optical sensing device
Used for functional materials such as light emitting devices and light emitting devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のシリコン超微粒子添加ゾル
ゲルバルクガラスの発光特性を示す図である。
FIG. 1 is a diagram showing the luminescence characteristics of a sol-gel bulk glass with ultrafine silicon particles added in Example 1 of the present invention.

【図2】本発明の実施例2のシリコン超微粒子添加ゾル
ゲル薄膜ガラスの発光特性を示す図である。
FIG. 2 is a view showing the light emission characteristics of a sol-gel thin film glass containing silicon ultrafine particles added in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 照沼 大陽 埼玉県大宮市日進町1−789 Fターム(参考) 4G014 AH04 4G062 AA04 AA15 BB02 CC05 DA08 MM02 NN10 NN19 PP02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Taiyo 1-789 Nisshin-cho, Omiya-shi, Saitama F-term (reference) 4G014 AH04 4G062 AA04 AA15 BB02 CC05 DA08 MM02 NN10 NN19 PP02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン超微粒子がゾルゲルマトリック
ス中に均一もしくはほぼ均一に分散したことを特徴とす
るゾルゲルガラス。
1. A sol-gel glass in which ultrafine silicon particles are uniformly or almost uniformly dispersed in a sol-gel matrix.
【請求項2】 表面が水酸基で終端されたシリコン超微
粒子を添加したゾルゲル出発溶液から作製することを特
徴とするゾルゲルガラスの作製方法。
2. A method for producing a sol-gel glass, which comprises producing a sol-gel starting solution to which ultrafine silicon particles terminated with hydroxyl groups are added.
【請求項3】 請求項1に記載のゾルゲルガラスの作製
方法であって、ゾルゲル出発溶液を基板上にスピンコー
ト法、ディップ法、キャスト法により塗布し、薄膜ガラ
スを作製することを特徴とするゾルゲルガラスの作製方
法。
3. The method for producing a sol-gel glass according to claim 1, wherein the sol-gel starting solution is applied on a substrate by a spin coating method, a dipping method, or a casting method to produce a thin film glass. How to make sol-gel glass.
【請求項4】 シリコン超微粒子がゾルゲルマトリック
ス中に均一もしくはほぼ均一に分散したゾルゲルガラス
もしくは請求項3に記載のゾルゲルガラスの作製方法に
より作製されたゾルゲルガラスを含むガラスから成るこ
とを特徴とする発光/受光素子。
4. A sol-gel glass in which ultrafine silicon particles are uniformly or almost uniformly dispersed in a sol-gel matrix, or a glass containing a sol-gel glass produced by the method for producing a sol-gel glass according to claim 3. Light emitting / light receiving element.
JP2000345146A 2000-11-13 2000-11-13 Sol-gel glass and method for manufacturing the same Pending JP2002154844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345146A JP2002154844A (en) 2000-11-13 2000-11-13 Sol-gel glass and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345146A JP2002154844A (en) 2000-11-13 2000-11-13 Sol-gel glass and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002154844A true JP2002154844A (en) 2002-05-28

Family

ID=18819227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345146A Pending JP2002154844A (en) 2000-11-13 2000-11-13 Sol-gel glass and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002154844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335873A (en) * 2005-06-02 2006-12-14 National Institute Of Advanced Industrial & Technology Fluorescent substance obtained by dispersing semiconductor nano particles in inorganic matrix
JP2010285600A (en) * 2009-05-14 2010-12-24 National Institute Of Advanced Industrial Science & Technology Fluorescent fiber comprising semiconductor nanoparticle
JP2015167871A (en) * 2014-03-04 2015-09-28 公立大学法人首都大学東京 Photocatalytic glass, and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335873A (en) * 2005-06-02 2006-12-14 National Institute Of Advanced Industrial & Technology Fluorescent substance obtained by dispersing semiconductor nano particles in inorganic matrix
JP4528947B2 (en) * 2005-06-02 2010-08-25 独立行政法人産業技術総合研究所 Phosphors with semiconductor nanoparticles dispersed in an inorganic matrix
JP2010285600A (en) * 2009-05-14 2010-12-24 National Institute Of Advanced Industrial Science & Technology Fluorescent fiber comprising semiconductor nanoparticle
JP2015167871A (en) * 2014-03-04 2015-09-28 公立大学法人首都大学東京 Photocatalytic glass, and method of producing the same

Similar Documents

Publication Publication Date Title
JP2020170171A (en) Glass substrate with low reflection coating, method for manufacturing glass substrate with low reflection coating, and photo-electric conversion device
EP2342298A1 (en) Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
US20170327416A1 (en) Low-reflection coated glass sheet
JP4028517B2 (en) Dispersion of titanium dioxide particles containing a binder based on polyorganosiloxane
WO2002070413A1 (en) Method for fabricating optical element
CN102557466A (en) Etching method for surface structuring
JP2002154844A (en) Sol-gel glass and method for manufacturing the same
AU719340B2 (en) Process for forming silica film and composition therefor
JPH054839A (en) Method for preparing thin film by sol-gel method
JP2705756B2 (en) Low temperature curable composition and method of forming vitreous coating film
KR100747103B1 (en) Method for coating of inorganic phosphor electro-luminescence
KR100233768B1 (en) Water repellent glass and the manufacturing method of water repellent ceramic
JP2008534413A (en) Glassy flake body containing organic compound and method for producing the same
JP2003277041A (en) Method for manufacturing silica thin film on substrate surface having optional surface characteristic and surface form, and composite structural body
JP3339078B2 (en) Method for producing silicon compound coated article
JPH06191858A (en) Formation of inorganic polymer
JP7213177B2 (en) Film-coated transparent substrate, coating solution for forming film on film-coated transparent substrate, and method for producing film-coated transparent substrate
JPS6168350A (en) Inorganic plate reduced in surface reflection and its production
JPS6086018A (en) Silicone resin
KR100547201B1 (en) Silica film provided with a enduring roughness and a water repellent glass employing the same
JP3069125B2 (en) Monolith formation method
JPS62273270A (en) Electrically conductive inorganic coating agent and its production
JP2678380B2 (en) Method for producing improved coating liquid for forming silica film
JP2006111851A (en) Solution for forming silica-based film
JP2004143186A (en) Coating solution for forming transparent silica film and method for producing transparent silica film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609