JP2002153457A - Medical equipment - Google Patents

Medical equipment

Info

Publication number
JP2002153457A
JP2002153457A JP2000354559A JP2000354559A JP2002153457A JP 2002153457 A JP2002153457 A JP 2002153457A JP 2000354559 A JP2000354559 A JP 2000354559A JP 2000354559 A JP2000354559 A JP 2000354559A JP 2002153457 A JP2002153457 A JP 2002153457A
Authority
JP
Japan
Prior art keywords
rays
ray
glass
medical
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000354559A
Other languages
Japanese (ja)
Inventor
Marie Koseki
眞理恵 小関
Masatake Takeuchi
正剛 武内
Harumi Kato
晴己 加藤
Seijiro Yamabe
誠二郎 山辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU HAKUSUI CORP
Hakusui Tech Co Ltd
Original Assignee
KYUSHU HAKUSUI CORP
Hakusui Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU HAKUSUI CORP, Hakusui Tech Co Ltd filed Critical KYUSHU HAKUSUI CORP
Priority to JP2000354559A priority Critical patent/JP2002153457A/en
Publication of JP2002153457A publication Critical patent/JP2002153457A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide highly safe medical equipment not leaking radiation and electromagnetic waves, etc., adversely affecting a human body. SOLUTION: In the passing route of ultraviolet rays, infrared rays, X-rays, αrays, β rays, γ rays, electron rays and neutron rays generated from a medical device, glass containing a conductive metallic oxide as a component is arranged. For instance, on the surface of a bed 13 holding the patient 12 of an MRI-CT device 10, a glass plate 15 containing a conductive zinc oxide as the component is arranged slidably in a bed longitudinal direction. The radiation with which the patient 12 is irradiated is transmitted through the patient 12, then completely shielded by the glass plate 15 on the bed 13 and does not advance or scatter below the glass plate 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放射線や電磁波な
どを利用して人体などの診断、治療などを行う医療設備
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical facility for diagnosing and treating a human body using radiation, electromagnetic waves, and the like.

【0002】[0002]

【従来の技術】X線などを利用して病気の診断、治療を
行うことは広く行われており、現在の医療においても必
要不可欠なものであるが、近年の医療技術の進歩によ
り、放射線や電磁波などを利用した医療装置の開発はま
すます盛んとなり、実際の医療現場にも様々な医療装置
が導入されている。
2. Description of the Related Art Diagnosis and treatment of diseases using X-rays and the like are widely performed, and are indispensable in current medical treatment. The development of medical devices using electromagnetic waves and the like has become more and more active, and various medical devices have been introduced to actual medical sites.

【0003】放射線や電磁波などを長時間あるいは大量
に浴びると人体に悪影響が生じるため、これらの医療装
置は、放射線や電磁波などを透過しない分厚いコンクリ
ート壁で囲まれた専用の検査室内に設置されるととも
に、医療装置の操作員は安全性確保のために鉛などで形
成された安全服を着用している。
When exposed to radiation or electromagnetic waves for a long time or in large quantities, the human body is adversely affected. Therefore, these medical devices are installed in a dedicated examination room surrounded by a thick concrete wall that does not transmit radiation and electromagnetic waves. At the same time, medical device operators wear safety clothing made of lead or the like to ensure safety.

【0004】[0004]

【発明が解決しようとする課題】このような医療装置を
設置した医療設備において、人体に照射された放射線や
電磁波などは、人体を透過した後、検査室内で散乱する
が、γ線や中性子線などは、鉛の安全服やコンクリート
壁では完全に遮断することができないので、その一部が
周囲に漏洩するおそれがあり、医療装置の近くで長期間
に亘って作業を行う操作員や、検査室の周囲にいる第三
者への影響が無視できないことがある。
In a medical facility equipped with such a medical device, radiation or electromagnetic waves applied to the human body are transmitted through the human body and then scattered in the examination room. Can not be completely shut off with lead safety clothing or concrete walls, some of which may leak to the surroundings. The impact on third parties around the room may not be negligible.

【0005】本発明が解決しようとする課題は、人体に
悪影響を及ぼす放射線や電磁波などが漏洩することのな
い、安全性の高い医療設備を提供することにある。
[0005] An object of the present invention is to provide a highly safe medical facility that does not leak radiation or electromagnetic waves that adversely affect the human body.

【0006】[0006]

【課題を解決するための手段】本発明の医療設備は、紫
外線、赤外線、X線、α線、β線、γ線、電子線、中性
子線のいずれかを人体に照射して人体の診断、治療を行
う医療装置を含む医療設備であって、紫外線、赤外線、
X線、α線、β線、γ線、電子線、中性子線の通過経路
に、構成成分として導電性金属酸化物を含有するガラス
を配置したことを特徴とする。
According to the medical equipment of the present invention, a human body is irradiated with any one of ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, electron beams, and neutron rays to diagnose a human body. Medical equipment, including medical devices that provide treatment,
It is characterized in that glass containing a conductive metal oxide as a constituent component is disposed in a passage of X-rays, α-rays, β-rays, γ-rays, electron beams, and neutron beams.

【0007】このような構成とすることにより、導電性
金属酸化物を含有するガラスが、医療装置から発生する
紫外線、赤外線、X線、α線、β線、γ線、電子線、中
性子線を効果的に遮断するので、これらの放射線や電磁
波などが漏洩することのない安全性の高い医療設備とな
る。また、このガラスは透明で、従来の紫外線遮蔽用の
表面コーティングガラスと異なり、ガラス自体が前記の
放射線や電磁波などの遮蔽機能を備えているため、表面
損傷による機能低下や経時変化が発生せず、耐久性も優
れている。
[0007] With this configuration, the glass containing the conductive metal oxide can prevent ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, electron rays, and neutron rays generated from the medical device. Since the shielding is effectively performed, the medical equipment has high safety without radiation or electromagnetic waves leaking. Also, this glass is transparent, unlike the conventional UV-shielding surface coating glass, because the glass itself has the above-mentioned radiation or electromagnetic wave shielding function, there is no deterioration or deterioration with time due to surface damage. Also, the durability is excellent.

【0008】また、本発明の医療設備は、紫外線、赤外
線、X線、α線、β線、γ線、電子線、中性子線のいず
れかを人体に照射して人体の診断、治療を行う医療装置
を含む医療設備において、人体を保持するベッドに、構
成成分として導電性金属酸化物を含有するガラスを配置
した構成とすることもできる。
[0008] The medical equipment of the present invention is a medical equipment for diagnosing and treating a human body by irradiating the human body with any one of ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, electron beams and neutron rays. In a medical facility including a device, a configuration may be adopted in which glass containing a conductive metal oxide as a component is disposed on a bed for holding a human body.

【0009】このような構成とすることにより、導電性
金属酸化物を含有するガラスが、人体を透過した紫外
線、赤外線、X線、α線、β線、γ線、電子線、中性子
線を効果的に遮断するので、これらの放射線や電磁波な
どが漏洩することのない安全性の高い医療設備となる。
[0009] With this configuration, the glass containing the conductive metal oxide can effectively protect the human body from ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, electron beams, and neutron rays. Since the radiation and electromagnetic waves are prevented from leaking, the medical equipment is highly safe and does not leak.

【0010】ここで、前記導電性金属酸化物として、導
電性酸化亜鉛、導電性酸化錫、錫ドーピング酸化インジ
ウムのいずれかを使用することができる。これらの導電
性金属酸化物は、従来、紫外線、赤外線の遮蔽材として
ガラス表面にコーティングされていた物質であり、これ
らの物質をガラス構成成分中に含有させることにより、
紫外線、赤外線のみならず、X線、α線、β線、γ線、
電子線、中性子線を遮蔽する機能を発現し、ガラス自体
に導電性も発現するので、これらの放射線や電磁波の漏
洩を防止できるだけでなく、静電気による弊害も防止で
きる。
Here, any of conductive zinc oxide, conductive tin oxide, and tin-doped indium oxide can be used as the conductive metal oxide. Conventionally, these conductive metal oxides are substances that have been coated on the glass surface as a shielding material for ultraviolet rays and infrared rays, and by including these substances in glass constituent components,
X-ray, α-ray, β-ray, γ-ray,
Since the function of shielding electron beams and neutron beams is exhibited, and the glass itself also exhibits conductivity, not only leakage of these radiations and electromagnetic waves can be prevented, but also adverse effects due to static electricity can be prevented.

【0011】前記のように、導電性金属酸化物として
は、導電性酸化亜鉛、導電性酸化錫、錫ドーピング酸化
インジウムのいずれかを使用することができるが、とく
に導電性酸化亜鉛を含有させたガラスは、導電性酸化
錫、錫ドーピング酸化インジウムを含有させたガラスに
比べ、X線、α線、β線、γ線、電子線、中性子線を遮
蔽する機能に優れ、また、ガラスの透明度の劣化が極め
て少なく、着色による透明度の調整も容易である。
As described above, any one of conductive zinc oxide, conductive tin oxide, and tin-doped indium oxide can be used as the conductive metal oxide. Particularly, the conductive metal oxide contains conductive zinc oxide. Glass is superior to glass containing conductive tin oxide and tin-doped indium oxide in shielding X-rays, α-rays, β-rays, γ-rays, electron beams, and neutrons. Deterioration is extremely small, and it is easy to adjust the transparency by coloring.

【0012】このような導電性酸化亜鉛としては、アル
ミニウムやチタン、錫、これらの複合物などを含有する
ものがあるが、0.5〜10重量%のアルミニウムを含
有する導電性酸化亜鉛は、とくにX線、α線、β線、γ
線、電子線、中性子線を遮蔽する機能に優れており、製
造工程におけるガラスとの混練も容易である。このよう
な導電性酸化亜鉛としては、ハクスイテック株式会社製
の導電性酸化亜鉛(商品名:23K)が好適である。
As such conductive zinc oxide, there is a conductive zinc oxide containing aluminum, titanium, tin, a composite thereof, and the like. The conductive zinc oxide containing 0.5 to 10% by weight of aluminum is, Especially X-ray, α-ray, β-ray, γ
It has an excellent function of shielding rays, electron beams and neutron rays, and is easily kneaded with glass in the production process. As such a conductive zinc oxide, a conductive zinc oxide (trade name: 23K) manufactured by Hakusuiteku Co., Ltd. is preferable.

【0013】前述したガラスの構成成分としては、Si
2が65〜80%,Na2Oが10〜20%,CaOが
5〜15%,MgOが0〜10%,K2Oが0〜5%,
Al23が0〜5%が基本成分であり,そのほかに、酸
素、珪素、ナトリウム、カルシウム、ホウ素、リチウ
ム、イオウ、アンチモン、アルミニウム、カリウム、チ
タン、バリウム、ジルコニウム、亜鉛、鉛、砒素、マグ
ネシウム、ストロンチウム、セリウム、セレン、鉄、コ
バルト、ニッケル、マンガン、モリブデン、クロムなど
を含有していても差し支えない。
As a component of the above-mentioned glass, Si is used.
O 2 is 65-80% Na 2 O is 10 to 20% CaO is 5 to 15% MgO is 0% K 2 O 0 to 5%
Al 2 O 3 is 0 to 5% as a basic component, and oxygen, silicon, sodium, calcium, boron, lithium, sulfur, antimony, aluminum, potassium, titanium, barium, zirconium, zinc, lead, arsenic, It may contain magnesium, strontium, cerium, selenium, iron, cobalt, nickel, manganese, molybdenum, chromium, or the like.

【0014】また、前記のガラス構成成分に対する導電
性金属酸化物の含有量は、0.1〜25重量%の範囲、
望ましくは0.5〜10重量%の範囲が好適である。導
電性金属酸化物の含有量が25重量%を超えると、ガラ
ス構成成分の含有比率の自由度が低下するので、ガラス
本来の特徴を失うような弊害が生じることがあり、導電
性金属酸化物の含有量が0.1重量%より少なくなる
と、放射線や電磁波などの遮蔽機能および導電性が十分
に発現しない。
Further, the content of the conductive metal oxide with respect to the above-mentioned glass component is in the range of 0.1 to 25% by weight,
Desirably, the range is 0.5 to 10% by weight. When the content of the conductive metal oxide exceeds 25% by weight, the degree of freedom of the content ratio of the glass constituent components is reduced, so that a disadvantage such as losing the inherent characteristics of the glass may occur, and the conductive metal oxide may be adversely affected. If the content of is less than 0.1% by weight, the function of shielding radiation and electromagnetic waves and the conductivity are not sufficiently exhibited.

【0015】[0015]

【発明の実施の形態】図1は本発明の実施形態である医
療設備の一つとしてのMRI−CT装置を示す斜視図で
あり、図2は図1のMRI−CT装置の一部切欠側面
図、図3は図1のMRI−CT装置の動作説明図であ
る。なお、MRI−CTとは、Magnetic Re
sonace Imaging−Computed T
omographの略である。
FIG. 1 is a perspective view showing an MRI-CT apparatus as one of medical facilities according to an embodiment of the present invention, and FIG. 2 is a partially cutaway side view of the MRI-CT apparatus in FIG. FIG. 3 and FIG. 3 are explanatory diagrams of the operation of the MRI-CT apparatus of FIG. In addition, MRI-CT is Magnetic Re
sonace Imaging-Computed T
Omograph.

【0016】本実施形態のMRI−CT装置10は、大
口径のソレノイド11と、被験者12を保持するベッド
13と、被験者12に磁気共鳴入力波を照射するγ線発
生器14などで構成されている。ベッド13の表面に
は、構成成分として導電性金属酸化物を含有するガラス
板15が、ベッド長手方向にスライド可能に配置されて
おり、このガラス板15をスライドさせることにより、
ガラス板15上に横たわった被験者12を大口径のソレ
ノイド11内に出し入れすることができる。
The MRI-CT apparatus 10 of this embodiment includes a large-diameter solenoid 11, a bed 13 for holding a subject 12, a γ-ray generator 14 for irradiating the subject 12 with a magnetic resonance input wave, and the like. I have. On the surface of the bed 13, a glass plate 15 containing a conductive metal oxide as a constituent component is disposed so as to be slidable in the longitudinal direction of the bed, and by sliding the glass plate 15,
The subject 12 lying on the glass plate 15 can be moved in and out of the large-diameter solenoid 11.

【0017】このような構成により、MRI−CT装置
10は、ソレノイド10の中に被験者12を入れ、被験
者12に垂直に照射する磁気共鳴入力波によって被験者
12の断面をスキャンしながら得られた信号をCT解析
し、被験者12の診断を行うものである。
With such a configuration, the MRI-CT apparatus 10 puts the subject 12 in the solenoid 10 and scans a cross section of the subject 12 with a magnetic resonance input wave irradiating the subject 12 vertically. Is subjected to CT analysis, and the subject 12 is diagnosed.

【0018】ベッド13の表面に配置されたガラス板1
5は、SiO2を71.8重量%,Na2Oを13.3重
量%,CaOを8.8重量%,MgOを3.5重量%,
2Oを0.8重量%,Al23を1.7重量%,Fe2
3を0.1重量%の割合で含むガラス原料粉粒体に、
ハクスイテック株式会社製の導電性酸化亜鉛(商品名:
23−K)の粉末(平均粒径0.1〜0.25μm)を
3〜10重量%添加して、この粉粒体を予め600〜1
300℃に加熱した電気炉内で4時間加熱、溶融した
後、ステンレス鋼板上に流し出して室温まで徐冷し、さ
らに表面を研磨して得られたものであり、その厚さtは
約10mmである。
Glass plate 1 placed on the surface of bed 13
5 is 71.8% by weight of SiO 2 , 13.3% by weight of Na 2 O, 8.8% by weight of CaO, 3.5% by weight of MgO,
0.8% by weight of K 2 O, 1.7% by weight of Al 2 O 3 , Fe 2
Glass raw material powder containing 0.1% by weight of O 3
Conductive zinc oxide (trade name: Hakusui Tech Co., Ltd.)
23-K) (average particle size: 0.1 to 0.25 μm) is added in an amount of 3 to 10% by weight, and the powder is added in advance to 600 to 1%.
It is obtained by heating and melting in an electric furnace heated to 300 ° C. for 4 hours, flowing out onto a stainless steel plate, gradually cooling to room temperature, and further polishing the surface, and having a thickness t of about 10 mm. It is.

【0019】このようにして製造されたガラス板15
は、その構成成分として導電性金属酸化物の一つである
導電性酸化亜鉛(商品名:23−K)を含有することで
紫外線、赤外線、X線、α線、β線、γ線、電子線、中
性子線を遮蔽する機能を有している。
The glass plate 15 thus manufactured
Contains a conductive zinc oxide (trade name: 23-K), which is one of conductive metal oxides, as a component thereof, so that ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, It has the function of shielding radiation and neutron radiation.

【0020】したがって、MRI−CT装置10を用い
て被験者12の診断を行う場合、図3に示すように、γ
線発生器14から照射された磁気共鳴入力波(γ線)
は、被験者12を透過した後、ベッド13上のガラス板
15によって完全に遮蔽され、ガラス板15より下方へ
進行、散乱することがない。すなわち、MRI−CT装
置10は、放射線や電磁波などが漏洩するおそれがな
く、安全性も高いものとなる。また、ガラス板15は導
電性を備えているため、帯電しにくく、静電気による弊
害も防止することができる。
Therefore, when diagnosing the subject 12 using the MRI-CT apparatus 10, as shown in FIG.
Magnetic resonance input wave (γ-ray) emitted from the ray generator 14
After being transmitted through the subject 12, is completely shielded by the glass plate 15 on the bed 13, and does not travel below the glass plate 15 and scatter. In other words, the MRI-CT apparatus 10 has no risk of radiation or electromagnetic waves leaking, and has high safety. Further, since the glass plate 15 has conductivity, it is difficult to be charged, and the adverse effect due to static electricity can be prevented.

【0021】本実施形態では、医療設備の一つとしてM
RI−CT装置10について説明しているが、本発明は
これに限定するものではないので、放射線や電磁波など
を利用したその他の医療装置を含む医療設備に広く採用
することができる。また、ガラス板15の配置場所は、
ベッド13に限定するものではなく、放射線や電磁波な
どの通過経路に配置することができ、これによって放射
線や電磁波などが診断対象物以外の場所などへ漏洩する
を防止することができる。
In this embodiment, M is one of the medical facilities.
Although the RI-CT apparatus 10 has been described, the present invention is not limited to this, and can be widely applied to medical facilities including other medical apparatuses using radiation, electromagnetic waves, and the like. The location of the glass plate 15 is as follows.
It is not limited to the bed 13 but can be arranged in a passage path of radiation, electromagnetic waves, etc., thereby preventing radiation, electromagnetic waves, etc. from leaking to places other than the diagnostic object.

【0022】実際の医療現場において、MRI−CT装
置10は図4に示すように、コンクリート壁16で囲ま
れた専用の検査室17内に配置されており、その隣には
操作機器18などが配置された操作室19が設けられて
いる。そして、操作室19内にいる操作員20が操作機
器18などを操作することによって、MRI−CT装置
10を用いて被験者12の診断が行われる。
At an actual medical site, the MRI-CT apparatus 10 is arranged in a dedicated examination room 17 surrounded by a concrete wall 16, as shown in FIG. An operation room 19 is provided. When the operator 20 in the operation room 19 operates the operation device 18 and the like, the subject 12 is diagnosed using the MRI-CT apparatus 10.

【0023】この場合、検査室17と操作室19とを区
画するコンクリート壁16の一部にガラス板15と同じ
組成のガラス板21を配置すれば、操作員20はMRI
−CT装置10から発生する放射線や電磁波などを受け
ることなく、操作室19内からガラス板21を通してM
RI−CT装置10の状況を詳しく観察、確認しながら
操作することができる。
In this case, if a glass plate 21 having the same composition as the glass plate 15 is placed on a part of the concrete wall 16 that partitions the inspection room 17 and the operation room 19, the operator 20 can use the MRI.
From the operation room 19 through the glass plate 21 without receiving radiation, electromagnetic waves, etc. generated from the CT apparatus 10
The user can operate while observing and confirming the state of the RI-CT apparatus 10 in detail.

【0024】また、ガラス板21自体が放射線や電磁波
などの遮蔽機能を備えていることにより、従来のガラス
窓より面積の広いガラス板21を配置することが可能で
あるため、操作員20は検査室17内の様子を観察しや
すくなり、作業性も大幅に向上する。
Further, since the glass plate 21 itself has a function of shielding radiation and electromagnetic waves, it is possible to arrange the glass plate 21 having a larger area than a conventional glass window. The inside of the room 17 can be easily observed, and the workability is greatly improved.

【0025】さらに、ガラス板15,21は透明で、従
来の紫外線遮蔽用の表面コーティングガラスと異なり、
ガラス自体が放射線や電磁波などの遮蔽機能を備えてい
るため、表面損傷による機能低下や経時変化が発生せ
ず、透明度の劣化が極めて少なく、耐久性も優れてい
る。
Further, the glass plates 15 and 21 are transparent and different from the conventional surface coating glass for shielding ultraviolet rays,
Since the glass itself has a function of shielding radiation, electromagnetic waves, and the like, there is no deterioration or deterioration with time due to surface damage, the transparency is extremely low, and the durability is excellent.

【0026】[0026]

【発明の効果】本発明により、以下に示す効果を奏す
る。
According to the present invention, the following effects can be obtained.

【0027】(1)紫外線、赤外線、X線、α線、β
線、γ線、電子線、中性子線のいずれかを人体に照射し
て人体の診断、治療を行う医療設備において、これらの
放射線、電磁波の通過経路に、構成成分として導電性金
属酸化物を含有するガラスを配置することにより、この
ガラスがこれらの放射線、電磁波を効果的に遮断するの
で、放射線や電磁波などが漏洩することがなくなり、安
全性が高まる。
(1) UV, infrared, X-ray, α-ray, β
In medical facilities for diagnosing and treating the human body by irradiating the human body with any of rays, γ-rays, electron beams, or neutron rays, these radiation and electromagnetic wave passages contain conductive metal oxide as a component By arranging the glass, the glass effectively blocks these radiations and electromagnetic waves, so that the radiations and electromagnetic waves do not leak and the safety is enhanced.

【0028】(2)紫外線、赤外線、X線、α線、β
線、γ線、電子線、中性子線のいずれかを人体に照射し
て人体の診断、治療を行う医療設備において、人体を保
持するベッドに、構成成分として導電性金属酸化物を含
有するガラスを配置することにより、このガラスが人体
を透過したこれらの放射線、電磁波を効果的に遮断する
ので、放射線や電磁波などが漏洩することがなくなり、
安全性が高まる。
(2) UV, infrared, X-ray, α-ray, β
In a medical facility for diagnosing and treating the human body by irradiating the human body with any of rays, γ-rays, electron beams, and neutron rays, a bed containing a conductive metal oxide as a component is placed on a bed holding the human body. By arranging, this glass effectively blocks these radiation and electromagnetic waves transmitted through the human body, so that radiation and electromagnetic waves do not leak,
Increases safety.

【0029】(3)導電性金属酸化物として、導電性酸
化亜鉛、導電性酸化錫、錫ドーピング酸化インジウムの
いずれかを使用することにより、紫外線、赤外線、X
線、α線、β線、γ線、電子線、中性子線を遮蔽する機
能を発現し、ガラス自体に導電性も発現するので、放射
線や電磁波の漏洩防止機能および静電気防止機能がさら
に高まる。また、導電性酸化亜鉛を含有するガラスは透
明度の劣化が極めて少なく、着色による透明度の調整も
容易となる。
(3) By using any of conductive zinc oxide, conductive tin oxide, and tin-doped indium oxide as the conductive metal oxide, ultraviolet, infrared, X
Since the function of shielding rays, α-rays, β-rays, γ-rays, electron beams, and neutron rays is exhibited, and the glass itself also exhibits conductivity, the function of preventing leakage of radiation and electromagnetic waves and the function of preventing static electricity are further enhanced. Further, the glass containing conductive zinc oxide has very little deterioration in transparency, and the adjustment of the transparency by coloring becomes easy.

【0030】(4)導電性金属酸化物として、0.5〜
10重量%のアルミニウムを含有する導電性酸化亜鉛を
使用することにより、X線、α線、β線、γ線、電子
線、中性子線を遮蔽する機能が高まり、製造工程におけ
るガラスとの混練も容易となる。
(4) As the conductive metal oxide, 0.5 to 0.5
By using conductive zinc oxide containing 10% by weight of aluminum, the function of shielding X-rays, α-rays, β-rays, γ-rays, electron beams, and neutron rays is enhanced, and kneading with glass in the manufacturing process is also possible. It will be easier.

【0031】(5)ガラス構成成分に対する導電性金属
酸化物の含有量を0.1〜25重量%の範囲とすること
により、ガラス本来の特徴を失うことなく、放射線や電
磁波などの遮蔽機能および導電性を発現させることがで
きる。
(5) By setting the content of the conductive metal oxide to the glass component in the range of 0.1 to 25% by weight, the function of shielding radiation and electromagnetic waves and the like can be maintained without losing the inherent characteristics of glass. Conductivity can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態である医療設備の一つとしてのMR
I−CT装置を示す斜視図である。
FIG. 1 is an MR as one of medical equipment according to an embodiment.
It is a perspective view showing an I-CT device.

【図2】 図1のMRI−CT装置の一部切欠側面図で
ある。
FIG. 2 is a partially cutaway side view of the MRI-CT apparatus of FIG.

【図3】 図1のMRI−CT装置の動作説明図であ
る。
FIG. 3 is an operation explanatory diagram of the MRI-CT apparatus of FIG. 1;

【図4】 図1のMRI−CT装置の配置図である。FIG. 4 is a layout diagram of the MRI-CT apparatus of FIG. 1;

【符号の説明】[Explanation of symbols]

10 MRI−CT装置 11 ソレノイド 12 被験者 13 ベッド 14 γ線発生器 15,21 ガラス板 16 コンクリート壁 17 検査室 18 操作機器 19 操作室 20 操作員 DESCRIPTION OF SYMBOLS 10 MRI-CT apparatus 11 Solenoid 12 Subject 13 Bed 14 γ-ray generator 15, 21 Glass plate 16 Concrete wall 17 Inspection room 18 Operation equipment 19 Operation room 20 Operator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03C 3/087 C03C 3/087 4/14 4/14 G21F 1/06 G21F 1/06 (72)発明者 加藤 晴己 大阪府茨木市耳原1−1−45 レシェンテ 耳原303号 (72)発明者 山辺 誠二郎 福岡県飯塚市大字立岩1077−171 Fターム(参考) 4C082 AC02 AC03 AC05 AC06 AC07 AE01 AL01 AR01 AT04 PA01 PA03 PC09 PG17 PJ01 4C093 CA33 ED02 EE11 4G062 AA01 BB01 CC01 DA06 DA07 DB01 DB02 DB03 DC01 DC02 DC03 DD01 DE01 DE02 DE03 DE04 DF01 DF02 DF03 EA01 EA02 EA03 EB04 EC01 EC02 EC03 ED01 ED02 ED03 EE01 EE02 EE03 EE04 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FA10 FB01 FB02 FB03 FC01 FC02 FC03 FD01 FE01 FE02 FE03 FE04 FF01 FG01 FH01 FJ01 FK01 FL01 FL02 FL03 GA01 GA10 GB01 GB02 GB03 GC01 GC02 GC03 GD01 GE01 HH01 HH03 HH05 HH06 HH07 HH08 HH09 HH10 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM40 NN12 NN13 NN14 NN24 NN35 NN40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C03C 3/087 C03C 3/087 4/14 4/14 G21F 1/06 G21F 1/06 (72) Inventor Harumi Kato 1-1-45 Amihara, Ibara, Ibaraki-shi, Osaka No. 303, Reshente Minohara (72) Inventor Seijiro Yamabe 1077-171, Tateiwa, Oaza, Iizuka-shi, Fukuoka F term (reference) 4C082 AC02 AC03 AC05 AC06 AC07 AE01 AL01 AR01 AT04 PA01 PA03 PC09 PG17 PJ01 4C093 CA33 ED02 EE11 4G062 AA01 BB01 CC01 DA06 DA07 DB01 DB02 DB03 DC01 DC02 DC03 DD01 DE01 DE02 DE03 DE04 DF01 DF02 DF03 EA01 EA02 EA03 FAEB EB04 EC01 EC02 EC03 ED01 ED03 EE03 EE03 EE03 EE03 FB03 FC01 FC02 FC03 FD01 FE01 FE02 FE03 FE04 FF01 FG01 FH01 FJ01 FK01 FL01 FL02 FL03 GA01 GA10 GB01 GB02 GB03 GC01 GC02 GC03 GD01 GE01 HH01 HH03 HH05 H H06 HH07 HH08 HH09 HH10 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM40 NN12 NN13 NN14 NN24 NN35 NN40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 紫外線、赤外線、X線、α線、β線、γ
線、電子線、中性子線のいずれかを人体に照射して人体
の診断、治療を行う医療装置を含む医療設備であって、
前記紫外線、赤外線、X線、α線、β線、γ線、電子
線、中性子線の通過経路に、構成成分として導電性金属
酸化物を含有するガラスを配置したことを特徴とする医
療設備。
1. ultraviolet, infrared, X-ray, α-ray, β-ray, γ
X-ray, electron beam, medical equipment including a medical device for diagnosing the human body by irradiating any of the neutron beam, treatment,
A medical facility, wherein a glass containing a conductive metal oxide as a constituent component is disposed in a passage of the ultraviolet light, infrared light, X-ray, α-ray, β-ray, γ-ray, electron beam, and neutron beam.
【請求項2】 紫外線、赤外線、X線、α線、β線、γ
線、電子線、中性子線のいずれかを人体に照射して人体
の診断、治療を行う医療装置を含む医療設備であって、
前記人体を保持するベッドに、構成成分として導電性金
属酸化物を含有するガラスを配置したことを特徴とする
医療設備。
2. Ultraviolet, infrared, X-ray, α-ray, β-ray, γ
X-ray, electron beam, medical equipment including a medical device for diagnosing the human body by irradiating any of the neutron beam, treatment,
A medical facility, wherein a glass containing a conductive metal oxide as a component is disposed on a bed for holding the human body.
【請求項3】 前記導電性金属酸化物が、導電性酸化亜
鉛、導電性酸化錫、錫ドーピング酸化インジウムのいず
れかである請求項1または2記載の医療設備。
3. The medical facility according to claim 1, wherein the conductive metal oxide is one of conductive zinc oxide, conductive tin oxide, and tin-doped indium oxide.
【請求項4】 前記導電性金属酸化物が、0.5〜10
重量%のアルミニウムを含有する導電性酸化亜鉛である
請求項1または2記載の医療設備。
4. The method according to claim 1, wherein the conductive metal oxide is 0.5 to 10
The medical equipment according to claim 1, wherein the medical equipment is a conductive zinc oxide containing aluminum by weight.
【請求項5】 前記導電性金属酸化物の含有量が、ガラ
ス原料の0.1〜25重量%である請求項1ないし4の
いずれかに記載の医療設備。
5. The medical facility according to claim 1, wherein the content of the conductive metal oxide is 0.1 to 25% by weight of the glass raw material.
JP2000354559A 2000-11-21 2000-11-21 Medical equipment Pending JP2002153457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000354559A JP2002153457A (en) 2000-11-21 2000-11-21 Medical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000354559A JP2002153457A (en) 2000-11-21 2000-11-21 Medical equipment

Publications (1)

Publication Number Publication Date
JP2002153457A true JP2002153457A (en) 2002-05-28

Family

ID=18827122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000354559A Pending JP2002153457A (en) 2000-11-21 2000-11-21 Medical equipment

Country Status (1)

Country Link
JP (1) JP2002153457A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120941A1 (en) 2005-05-09 2006-11-16 Shiseido Company, Ltd. Parakeratosis inhibitor, pore-shrinking agent and external composition for skin
JP2008019134A (en) * 2006-07-14 2008-01-31 Agc Techno Glass Co Ltd Ultraviolet-ray absorbing glass for fluorescent lamp, glass tube for fluorescent lamp, and method for manufacturing the ultraviolet-ray absorbing glass for fluorescent lamp
KR100958791B1 (en) 2008-04-28 2010-05-18 중앙대학교 산학협력단 A device for a medical imaging
JP2011092423A (en) * 2009-10-29 2011-05-12 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment and structure of storage chamber
JP2011092424A (en) * 2009-10-29 2011-05-12 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment
JP2013081602A (en) * 2011-10-07 2013-05-09 High Energy Accelerator Research Organization Method and apparatus for preventing radiation exposure
KR20160029647A (en) * 2014-09-05 2016-03-15 스미도모쥬기가이고교 가부시키가이샤 Neutron-ray capture therapy system
KR101731436B1 (en) * 2013-02-27 2017-04-28 스미도모쥬기가이고교 가부시키가이샤 Neutron capture therapy system
WO2018176686A1 (en) * 2017-03-29 2018-10-04 南京中硼联康医疗科技有限公司 Radiation irradiation system and positioning component for radiation irradiation system
WO2023090216A1 (en) * 2021-11-16 2023-05-25 国立大学法人京都大学 Neutron shielding material and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120941A1 (en) 2005-05-09 2006-11-16 Shiseido Company, Ltd. Parakeratosis inhibitor, pore-shrinking agent and external composition for skin
JP2008019134A (en) * 2006-07-14 2008-01-31 Agc Techno Glass Co Ltd Ultraviolet-ray absorbing glass for fluorescent lamp, glass tube for fluorescent lamp, and method for manufacturing the ultraviolet-ray absorbing glass for fluorescent lamp
KR100958791B1 (en) 2008-04-28 2010-05-18 중앙대학교 산학협력단 A device for a medical imaging
JP2011092423A (en) * 2009-10-29 2011-05-12 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment and structure of storage chamber
JP2011092424A (en) * 2009-10-29 2011-05-12 Sumitomo Heavy Ind Ltd Accelerated particle irradiation equipment
JP2013081602A (en) * 2011-10-07 2013-05-09 High Energy Accelerator Research Organization Method and apparatus for preventing radiation exposure
KR101731436B1 (en) * 2013-02-27 2017-04-28 스미도모쥬기가이고교 가부시키가이샤 Neutron capture therapy system
KR20160029647A (en) * 2014-09-05 2016-03-15 스미도모쥬기가이고교 가부시키가이샤 Neutron-ray capture therapy system
KR101670017B1 (en) 2014-09-05 2016-10-27 스미도모쥬기가이고교 가부시키가이샤 Neutron-ray capture therapy system
WO2018176686A1 (en) * 2017-03-29 2018-10-04 南京中硼联康医疗科技有限公司 Radiation irradiation system and positioning component for radiation irradiation system
EP3527261A4 (en) * 2017-03-29 2019-11-13 Neuboron Medtech Ltd. Radiation irradiation system and positioning component for radiation irradiation system
JP2020503164A (en) * 2017-03-29 2020-01-30 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. Irradiation system and positioning assembly for the irradiation system
US11338155B2 (en) 2017-03-29 2022-05-24 Neuboron Medtech Ltd. Radiation irradiation system and positioning assembly for radiation irradiation system
WO2023090216A1 (en) * 2021-11-16 2023-05-25 国立大学法人京都大学 Neutron shielding material and method for producing same

Similar Documents

Publication Publication Date Title
Boukhris et al. Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations
Limbacher et al. Radiation safety in the practice of cardiology
Almatari et al. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies
McCaffrey et al. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians
JP2002153457A (en) Medical equipment
Kim et al. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays
Al-Hadeethi et al. Preparation and radiation attenuation properties of ceramic ball clay enhanced with micro and nano ZnO particles
Tijani et al. The influence of TeO2 and Bi2O3 on the shielding ability of lead-free transparent bismuth tellurite glass at low gamma energy range
Jain Radiation in medical practice & health effects of radiation: rationale, risks, and rewards
Thumwong et al. Enhanced X-ray shielding properties of NRL gloves with nano-Bi2O3 and their mechanical properties under aging conditions
EP1939147B2 (en) Radiation shielding glass and method for manufacture thereof
Norris Radiation safety in fluoroscopy.(Directed Reading)
Balter Radiation safety in the cardiac catheterization laboratory: basic principles
Al-Buriahi et al. Klein–Nishina formula and Monte Carlo method for evaluating the gamma attenuation properties of Zn, Ba, Te and Bi elements
Tsapaki et al. Patient and staff radiation exposure during endoscopic retrograde cholangio-pancreatography: eight years of dose monitoring
Hassan et al. A versatile program for the calculation of linear accelerator room shielding
Persson Radiation hazards
Itas et al. Radiation shielding properties of 35-XBaO-15CaO-5Al2O3-10B2O3-35SiO2-XBNNT (X= 5, 10, 15, 20) glass reinforced with boron nitride nanotubes
Kim et al. Radiation Safety
Kwon et al. Performance and feasibility evaluation for radiation shielding of metal oxides: Monte Carlo simulation
Urfa et al. Study of Alternative Radiation Material Shielding for Gamma Radiation using Monte Carlo Simulation
El-Khatib et al. Novel composite based on silicone rubber and a nano mixture of SnO2, Bi2O3, and CdO for gamma radiation protection
Berg Radiation exposure to personnel during CT procedures
Hussein Optical and Shielding Parameters of Tellurite Glass with Composition 80TeO2-5Nb2O5-10ZnO-5LiF for Medical Application: Theoretical Investigation
Adhikari Current status of radiation protection in different hospitals in Nepal