JP2002151364A - Electric double-layer capacitor and its manufacturing method - Google Patents

Electric double-layer capacitor and its manufacturing method

Info

Publication number
JP2002151364A
JP2002151364A JP2000341816A JP2000341816A JP2002151364A JP 2002151364 A JP2002151364 A JP 2002151364A JP 2000341816 A JP2000341816 A JP 2000341816A JP 2000341816 A JP2000341816 A JP 2000341816A JP 2002151364 A JP2002151364 A JP 2002151364A
Authority
JP
Japan
Prior art keywords
layer capacitor
electric double
double layer
electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000341816A
Other languages
Japanese (ja)
Inventor
Shigeaki Tomita
成明 富田
Yasuo Shinozaki
泰夫 篠崎
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000341816A priority Critical patent/JP2002151364A/en
Publication of JP2002151364A publication Critical patent/JP2002151364A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor, which exhibits high long-term reliability in performance, high electric strength and high-energy density. SOLUTION: With respect to an electric double-layer capacitor having a positive electrode, a negative electrode and a nonaqueous electrolytic solution, the positive and negative electrodes contain graphite based carbon material, as major components with the half-value width of which is 0.5-5.0 from X-ray diffraction (002), using CuKα-rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、性能の長期的信頼
性に優れ、かつ耐電圧が高くエネルギ密度が大きい電気
二重層キャパシタ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having excellent long-term reliability of performance, high withstand voltage and high energy density, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層キャパシタは、充放電サイク
ルによる性能劣化が小さく、出力密度が大きいなどの優
れた特性を有するが、リチウムイオン二次電池等の二次
電池に比べエネルギ密度が低く、エネルギ密度の向上が
望まれている。キャパシタに蓄積されるエネルギ(E)
は、キャパシタの静電容量(C)と印加電圧(V)を用
いて、E=1/2×C×V2 と表せ、静電容量や印加電
圧が向上すれば蓄積エネルギーは増加することになる。
エネルギは印加電圧の二乗に比例するので、キャパシタ
のエネルギ密度を高めるには耐電圧を高めることが非常
に有効となる。
2. Description of the Related Art An electric double layer capacitor has excellent characteristics such as small performance deterioration due to charge / discharge cycles and a large output density, but has a low energy density as compared with a secondary battery such as a lithium ion secondary battery. Improvement in energy density is desired. Energy stored in capacitor (E)
Can be expressed as E = 1/2 × C × V 2 using the capacitance (C) of the capacitor and the applied voltage (V). If the capacitance and the applied voltage increase, the stored energy increases. Become.
Since the energy is proportional to the square of the applied voltage, increasing the withstand voltage is very effective in increasing the energy density of the capacitor.

【0003】有機電解液は水系電解液に比べて分解電圧
が高いので、使用電圧を高くできる。前出の式のように
蓄積エネルギーは印加電圧の二乗に比例するので、使用
電圧を高くすることにより、より効果的に電気二重層キ
ャパシタの蓄積エネルギー密度の向上が期待できる。し
かしながら、長期信頼性の観点からは現状では耐電圧は
2.5〜2.8V程度であり、キャパシタのエネルギー
密度向上には、よりいっそうの耐電圧の向上が求められ
ている。
Since the decomposition voltage of the organic electrolyte is higher than that of the aqueous electrolyte, the working voltage can be increased. Since the stored energy is proportional to the square of the applied voltage as in the above equation, it is expected that the stored energy density of the electric double layer capacitor can be more effectively improved by increasing the working voltage. However, from the viewpoint of long-term reliability, the withstand voltage is about 2.5 to 2.8 V at present, and further improvement in withstand voltage is required to improve the energy density of the capacitor.

【0004】静電容量を高めるためには、比表面積が大
きい材料を電極に用いることが有利と考えられてきてお
り、従来の非水系電解液を用いた電気二重層キャパシタ
は主成分に比表面積が大きい炭素系材料、所謂活性炭が
用いられている。活性炭は、炭素質原料を水蒸気中で加
熱処理する、炭酸ガス中で加熱処理する、アルカリ金属
共存下で加熱処理する、アルカリ化合物共存下で加熱処
理する、アルカリ土類金属又はアルカリ土類金属化合物
共存下で加熱処理する等の所謂賦活を行うことにより製
造されている。炭素質原料と賦活条件の適切な組み合わ
せより、2000m2 /gを越える大比表面積を持つ活
性炭も製造されている。ところがこのような大比表面積
の活性炭を用いると、重量当たりの容量は増加傾向にあ
るものの、比表面積が増加すると必然的に電極への活性
炭の充填密度が低下し、電極体積あたりの容量の増加は
頭打ちとなってしまう。キャパシタのエネルギー密度を
向上させるために単位体積当たりの容量及び単位質量当
たりの容量が大きい電極材料が求められている。
In order to increase the capacitance, it has been considered advantageous to use a material having a large specific surface area for the electrode. A conventional electric double layer capacitor using a non-aqueous electrolyte is mainly composed of a specific surface area. , A so-called activated carbon is used. Activated carbon is a heat treatment of carbonaceous raw materials in steam, heat treatment in carbon dioxide gas, heat treatment in the presence of alkali metal, heat treatment in the presence of alkali compound, alkaline earth metal or alkaline earth metal compound It is manufactured by performing so-called activation such as heat treatment in the coexistence. Activated carbon having a large specific surface area exceeding 2000 m 2 / g has also been produced from an appropriate combination of carbonaceous raw materials and activation conditions. However, when activated carbon having such a large specific surface area is used, the capacity per weight tends to increase, but when the specific surface area increases, the packing density of the activated carbon in the electrode necessarily decreases, and the capacity per electrode volume increases. Will reach a plateau. In order to improve the energy density of a capacitor, an electrode material having a large capacity per unit volume and a large capacity per unit mass is required.

【0005】上述のように電気二重層キャパシタの電極
材料の主成分には活性炭が用いられているが、活性炭の
製造には賦活処理が必要になり、水蒸気賦活や炭酸ガス
賦活等の場合は賦活収率が低いので、製造コストが非常
に高くなる。またアルカリ系の賦活処理を行った場合
は、賦活収率は水蒸気賦活や炭酸ガス賦活等に比べ高く
なるものの、アルカリの加熱を伴う賦活設備と賦活後の
アルカリ不純物等の洗浄工程に非常に大きなコストがか
かることになる。
As described above, activated carbon is used as a main component of the electrode material of the electric double layer capacitor. However, activation of the activated carbon requires an activation treatment. In the case of activation of water vapor or carbon dioxide, activation is required. The production cost is very high because of the low yield. In addition, when an alkali-based activation treatment is performed, the activation yield is higher than that of steam activation or carbon dioxide gas activation, but it is extremely large in activation equipment involving heating of alkali and a cleaning step of alkali impurities and the like after activation. It will be costly.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、簡略
化された製造工程で低コストで得られ、かつ蓄積エネル
ギー密度や、長期的信頼性を損なわない電極材料を用い
た、性能の信頼性が長期に保証され、かつ耐電圧が高く
エネルギ密度が大きい電気二重層キャパシタ及びその製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a method of manufacturing a semiconductor device using an electrode material which can be obtained at a low cost through a simplified manufacturing process and does not impair the stored energy density or long-term reliability. It is an object of the present invention to provide an electric double layer capacitor which is guaranteed for a long time, has a high withstand voltage and a large energy density, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明では、正極、負極
及び非水系電解液を用いる電気二重層キャパシタにおい
て、前記正極及び前記負極が、CuKα線を用いたX線
回折にて(002)ピークの半価幅が0.5〜5.0で
ある黒鉛系炭素材料を主成分として含む電気二重層キャ
パシタを提供する。
According to the present invention, in an electric double layer capacitor using a positive electrode, a negative electrode and a non-aqueous electrolyte, the positive electrode and the negative electrode have a (002) peak in X-ray diffraction using CuKα ray. To provide an electric double layer capacitor containing a graphite-based carbon material having a half width of 0.5 to 5.0 as a main component.

【0008】従来、電気二重層キャパシタの電極用の炭
素材料の主成分に黒鉛系炭素材料を用いると、比表面積
あたりの容量が高いものの、体積当たりの容量が大きく
なることはなかった。ここでいう黒鉛系炭素材料とは、
天然黒鉛、人造黒鉛、土状黒鉛、黒鉛化メソカーボンマ
イクロビーズ、膨張黒鉛等及び、高純度フェノール樹脂
等の樹脂、ピッチ、コークス、タールや植物質原料等を
それぞれの黒鉛化温度付近以上の温度で加熱したものの
ことで、X線回折による(002)面の面間隔が0.3
77nm程度以下となったものである。本発明者は、黒
鉛の結晶性を乱すことにより容量が向上し、電気二重層
キャパシタとして充分な性能が期待できることをみいだ
した。すなわち、黒鉛を粗粉砕後、CuKα線を用いた
X線回折で(002)ピークの半価幅が特定の半価幅の
範囲内になるように強粉砕する事により、単位体積当た
りの容量及び単位質量当たりの容量が向上することを明
らかにした。また、結晶性を乱したといえども、賦活処
理を行った活性炭等よりは遙かに結晶性は高く、化学的
安定性は高いのでキャパシタの耐電圧( 規定の電圧を一
定時間加えてキャパシタの性能が大きく劣化しない電
圧)を上げることが可能となり、活性炭等ほどの容量は
発現しないものの、出力エネルギーが活性炭に近いレベ
ルになる。容量が向上する(002)ピークの半価幅は
0.5〜5.0である。半価幅が0.5未満であると、
容量の増加効果は充分ではない。5.0超にするには極
度な強粉砕が必要となり、現時点では工業的に現実的で
はない。より好ましい(002)ピークの半価幅は0.
5〜3.5である。ここで、X線回折の半価幅は、X線
デフラクトメータで回折線を測定した場合のプロファイ
ルの広がりを示し、結晶子が微小になったり、 不均一歪
があれば、ブロードになる。結晶子の大きさが充分大き
い場合は、不均一歪、積層不整等の結晶の不完全性に由
来するものとなり、回折ピークの半価幅が結晶性の尺度
となる。なお、本発明のX線回折による(002)ピー
クの測定条件は限定されないが、管電圧50kV、管電
流250mAで、CuKα線を照射して行うのが好まし
い。具体的には、後述の実施例に記載の条件で行うのが
好ましい。さらに本発明では、黒鉛系炭素材料の比表面
積が30〜1000m2 /gであることが好ましい。比
表面積が30m2 /g未満であると容量の高いものが得
にくく、1000m2 /g超のものを得ることは粉砕だ
けでは困難である。より好ましい比表面積は100〜5
00m2 /gである。
Conventionally, when a graphite-based carbon material is used as a main component of a carbon material for an electrode of an electric double layer capacitor, the capacity per specific surface area is high, but the capacity per volume is not increased. The graphite-based carbon material here means
Natural graphite, artificial graphite, earthy graphite, graphitized mesocarbon microbeads, expanded graphite, etc., and resins such as high-purity phenolic resin, pitch, coke, tar and vegetable raw materials, etc. The distance between (002) planes by X-ray diffraction was 0.3
It is about 77 nm or less. The present inventor has found that the capacity is improved by disturbing the crystallinity of graphite, and sufficient performance as an electric double layer capacitor can be expected. That is, graphite is roughly pulverized and then strongly pulverized by X-ray diffraction using CuKα radiation so that the half-width of the (002) peak falls within a specific half-width. It was clarified that the capacity per unit mass was improved. Even if the crystallinity is disturbed, the crystallinity is much higher than that of activated carbon and the like, and the chemical stability is high, so the withstand voltage of the capacitor (by applying a specified voltage for a certain period of time, the It is possible to increase the voltage at which the performance does not greatly deteriorate, and the output energy is at a level close to that of activated carbon, although the capacity is not as high as that of activated carbon. The half-width of the (002) peak at which the capacity is improved is 0.5 to 5.0. When the half width is less than 0.5,
The effect of increasing the capacity is not sufficient. Extremely high pulverization is required to achieve a value exceeding 5.0, which is not industrially practical at present. The more preferable half width of the (002) peak is 0.2.
5 to 3.5. Here, the half width of the X-ray diffraction indicates the spread of the profile when the diffraction line is measured by an X-ray defractometer, and becomes broad if the crystallite becomes minute or has non-uniform strain. When the size of the crystallite is sufficiently large, it is due to crystal imperfections such as non-uniform strain and stacking irregularity, and the half width of the diffraction peak is a measure of crystallinity. The measurement condition of the (002) peak by X-ray diffraction of the present invention is not limited, but it is preferable to perform the measurement by irradiating CuKα radiation at a tube voltage of 50 kV and a tube current of 250 mA. Specifically, it is preferable to carry out under the conditions described in Examples described later. Further, in the present invention, the specific surface area of the graphite-based carbon material is preferably 30 to 1000 m 2 / g. If the specific surface area is less than 30 m 2 / g, it is difficult to obtain a material having a high capacity, and it is difficult to obtain a material having a specific surface area exceeding 1000 m 2 / g by pulverization alone. A more preferred specific surface area is 100 to 5
00 m 2 / g.

【0009】本発明では黒鉛系炭素材料は微粉砕された
ものであることが好ましく、黒鉛系炭素材料の平均粒径
が0.1〜50μmであることが好ましい。粒子径が5
0μm超になるとキャパシタとしての質量当たりの容量
が小さくなるだけでなく電極への充填効率が低下する。
粒子径が0.1μm未満であると、粒子が嵩高くなりす
ぎて電極成型が困難になる。より好ましい平均粒径は
0.5〜20μmである。平均粒子径の測定方法は限定
されないが、レーザー回折法、直接観察法等を用いるこ
とが出来る。粉砕には任意の粉砕機が使用可能であり、
例えば転動ボールミル、振動ミルや遊星ミルが使用可能
で、特に遊星ミルが好ましい。
In the present invention, the graphite-based carbon material is preferably finely pulverized, and the graphite-based carbon material preferably has an average particle size of 0.1 to 50 μm. Particle size is 5
If the thickness exceeds 0 μm, not only the capacity per mass of the capacitor becomes small, but also the filling efficiency of the electrode decreases.
If the particle size is less than 0.1 μm, the particles become too bulky, making electrode molding difficult. A more preferred average particle size is 0.5 to 20 μm. The method for measuring the average particle diameter is not limited, but a laser diffraction method, a direct observation method, or the like can be used. Any crusher can be used for crushing,
For example, a rolling ball mill, a vibration mill or a planetary mill can be used, and a planetary mill is particularly preferable.

【0010】本発明では黒鉛系炭素材料は所謂水蒸気賦
活処理、ガス賦活処理、アルカリ賦活処理等の加熱処理
を伴う賦活処理を経ている必要はない。すなわち、水蒸
気含有雰囲気中での加熱処理、炭酸ガス中での加熱処
理、アルカリ金属共存下での加熱処理、アルカリ化合物
共存下での加熱処理、アルカリ土類金属共存下での加熱
処理及びアルカリ土類金属化合物共存下での加熱処理を
経ている必要はない。これらの処理を行うことは、製造
工程が増えることになり製造コスト増となることから好
ましくなく、さらに、特にアルカリ賦活処理では、不可
避的に不純物が混入する可能性が高くなり、長期耐久性
の悪化の原因となることも考えられるので好ましくな
い。
In the present invention, it is not necessary for the graphite-based carbon material to have undergone an activation treatment involving a heat treatment such as a so-called steam activation treatment, a gas activation treatment, or an alkali activation treatment. That is, heat treatment in a steam-containing atmosphere, heat treatment in carbon dioxide gas, heat treatment in the presence of an alkali metal, heat treatment in the presence of an alkali compound, heat treatment in the presence of an alkaline earth metal, and alkaline earth It is not necessary to have gone through the heat treatment in the presence of the metal-like compound. Performing these treatments is not preferable because it increases the number of production steps and increases the production cost. Further, particularly in the alkali activation treatment, the possibility that impurities are inevitably mixed increases, and the long-term durability is increased. It is not preferable because it may cause deterioration.

【0011】本発明では炭素材料を含む電極からなる正
極及び負極をセパレータを介して対向させて素子体を作
製し、素子体に電解液を含浸させた後、素子体の正負極
間に2.8V以上4.5V以下の電圧を一定時間印加す
ることにより製造することが好ましい。印加する電圧は
定格電圧(使用予定電圧として設計される電圧)よりも
高いことが望ましく、定格電圧よりも高い電圧を一定時
間印加することにより、より高い容量が耐久性良く得ら
れるようになる。印加する電圧が2.8V未満である場
合は容量の向上効果が極めて低くなり、4.5V超を印
加すると現状で入手可能な電解液では分解反応が起きて
しまい、逆に容量が著しく低下するので不適当である。
より好ましい印加電圧は3.2〜4.0Vである。ま
た、好ましい印加時間は10min〜300hである。
In the present invention, a positive electrode and a negative electrode comprising an electrode containing a carbon material are opposed to each other with a separator interposed therebetween to produce an element body, and the element body is impregnated with an electrolytic solution. It is preferable to manufacture by applying a voltage of 8 V or more and 4.5 V or less for a certain period of time. The voltage to be applied is desirably higher than a rated voltage (a voltage designed as a voltage to be used). By applying a voltage higher than the rated voltage for a certain period of time, a higher capacity can be obtained with high durability. When the applied voltage is less than 2.8 V, the effect of improving the capacity is extremely low. When the applied voltage exceeds 4.5 V, a decomposition reaction occurs in currently available electrolytes, and conversely, the capacity is significantly reduced. It is inappropriate.
A more preferable applied voltage is 3.2 to 4.0 V. Further, the preferable application time is 10 min to 300 h.

【0012】本発明の炭素材料を用いた電気二重層キャ
パシタの構造は特に限定されず、円盤状の正極及び負極
をセパレータを介して対向させ電解液を含浸させたコイ
ン型構造、矩形状の正極と負極とをセパレータを介して
複数交互に積層し、電解液を含浸させて角型ケースに収
容してなる積層型構造、一対の帯状の正極と負極とをセ
パレータを介して対向させて巻回し、電解液を含浸させ
て円筒型ケースに収容してなる巻回型構造等いずれも好
ましく採用できる。電極は強度と導電性と容量のバラン
スの観点から、炭素材料とバインダとの合計質量中0.
5%〜20%(以下、特に断らない限り%は質量%を表
す)程度のバインダを含んで形成されることが好まし
い。電極の作製方法としては、例えば電極用の炭素材料
と導電材としてのカーボンブラックとバインダと液状潤
滑材との混合物を混練した後圧延してシート状に成形す
る。得られたシート状の電極は集電体に導電性接着剤を
介して接合し、加熱乾燥する(以下、このように集電体
と電極が接合、又は集電体上に電極が形成されて集電体
と電極が一体化したものを電極体という)。
The structure of the electric double layer capacitor using the carbon material of the present invention is not particularly limited. A coin-shaped structure in which a disk-shaped positive electrode and a negative electrode are opposed to each other via a separator and impregnated with an electrolytic solution, a rectangular positive electrode And a negative electrode are alternately laminated via a separator, and a laminated structure in which an electrolyte is impregnated and accommodated in a square case, a pair of belt-shaped positive and negative electrodes are wound facing each other with a separator interposed therebetween. Alternatively, any of a wound type structure in which an electrolytic solution is impregnated and accommodated in a cylindrical case can be preferably used. From the viewpoint of the balance between strength, conductivity, and capacity, the electrode has a diameter of 0.1% of the total mass of the carbon material and the binder.
The binder is preferably formed to contain about 5% to 20% of a binder (hereinafter, unless otherwise specified,% represents mass%). As a method of manufacturing an electrode, for example, a mixture of a carbon material for an electrode, carbon black as a conductive material, a binder, and a liquid lubricant is kneaded and then rolled to form a sheet. The obtained sheet-shaped electrode is bonded to the current collector via a conductive adhesive and dried by heating (hereinafter, the current collector and the electrode are bonded or the electrode is formed on the current collector. The one in which the current collector and the electrode are integrated is called an electrode body).

【0013】上記バインダとしては、例えばポリテトラ
フルオロエチレン、ポリフッ化ビニリデン、フルオロオ
レフィン/ビニルエーテル共重合体架橋ポリマー、カル
ボキシメチルセルロース、ポリビニルピロリドン、ポリ
ビニルブチラール(PVB)等のポリビニルアルコー
ル、又はポリアクリル酸、フェノール、コールタール等
が使用できる。電極中のバインダの含有量は炭素材料と
バインダの合計質量中0.5%〜20%程度とするのが
好ましい。バインダの量が0.5%未満であると電極の
強度が不足し、20%を超えると電気抵抗の増大や容量
の低下が起き好ましくない。電極の強度と容量バランス
から、バインダの配合量は0.5%〜10%とするのが
より好ましい。なお、架橋ポリマーの架橋剤としては、
アミン類、ポリアミン類、ポリイソシアネート類、ビス
フェノール類又はパーオキサイド類が好ましい。特にポ
リテトラフルオロエチレンが耐熱性、耐薬品性を有し、
繊維化させることにより少量含有されているだけでも電
極に強度を付与し、電極の導電性を阻害しにくいので好
ましい。電極は集電体の片面に接合してもよいし、両面
に接合してもよい。また、電極体は、ポリフッ化ビニリ
デン等のバインダを溶媒に溶解した溶液に炭素材料を分
散させてスラリとなし、該スラリを集電体に塗工して乾
燥して電極層を形成して得てもよい。
Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, crosslinked polymer of fluoroolefin / vinyl ether copolymer, carboxymethylcellulose, polyvinyl alcohol such as polyvinyl pyrrolidone and polyvinyl butyral (PVB), or polyacrylic acid and phenol. , Coal tar and the like can be used. The content of the binder in the electrode is preferably about 0.5% to 20% of the total mass of the carbon material and the binder. If the amount of the binder is less than 0.5%, the strength of the electrode is insufficient, and if it exceeds 20%, the electric resistance increases and the capacity decreases, which is not preferable. From the viewpoint of electrode strength and capacity balance, the blending amount of the binder is more preferably 0.5% to 10%. In addition, as a crosslinking agent of the crosslinked polymer,
Amines, polyamines, polyisocyanates, bisphenols or peroxides are preferred. In particular, polytetrafluoroethylene has heat resistance, chemical resistance,
It is preferable to form a fiber because even if a small amount is contained, strength is given to the electrode and conductivity of the electrode is hardly hindered. The electrodes may be joined to one side of the current collector, or may be joined to both sides. Further, the electrode body is obtained by dispersing a carbon material in a solution in which a binder such as polyvinylidene fluoride is dissolved in a solvent to form a slurry, coating the slurry on a current collector and drying to form an electrode layer. You may.

【0014】スラリを形成する溶媒としては、上記バイ
ンダを溶解できるものが好ましく、N−メチルピロリド
ン、ジメチルホルムアミド、トルエン、キシレン、イソ
ホロン、メチルエチルケトン、酢酸エチル、酢酸メチ
ル、エチルアセテート、ジメチルフタレート、メタノー
ル、エタノール、イソプロパノール、ブタノール、水等
が適宜選択される。
As a solvent for forming a slurry, a solvent capable of dissolving the above binder is preferable, and N-methylpyrrolidone, dimethylformamide, toluene, xylene, isophorone, methyl ethyl ketone, ethyl acetate, methyl acetate, ethyl acetate, dimethyl phthalate, methanol, Ethanol, isopropanol, butanol, water and the like are appropriately selected.

【0015】本発明における電極には、電極の導電性を
高めるために、カーボンブラック等を導電材として含有
させてもよい。しかし導電材の量が多すぎると、相対的
に黒鉛系炭素材料の量が少なくなるので、導電材の量は
電極質量中に40%以下とすることが好ましい。
The electrode according to the present invention may contain carbon black or the like as a conductive material in order to increase the conductivity of the electrode. However, if the amount of the conductive material is too large, the amount of the graphite-based carbon material becomes relatively small. Therefore, the amount of the conductive material is preferably set to 40% or less based on the mass of the electrode.

【0016】電極の集電体としては、電気化学的、化学
的に耐食性のある導電体であればよい。炭素材料を主成
分とする電極の集電体としては、ステンレス鋼、アルミ
ニウム、チタン、タンタル、ニッケル等が用いられる。
なかでも、ステンレス鋼とアルミニウムが性能と価格の
両面で好ましい集電体である。集電体の形状は箔でもよ
いし、三次元構造を有するニッケルやアルミニウムの発
泡金属やステンレス鋼のネットやウールでもよい。
The current collector of the electrode may be any conductor that is electrochemically and chemically resistant. Stainless steel, aluminum, titanium, tantalum, nickel, or the like is used as a current collector for an electrode mainly composed of a carbon material.
Among them, stainless steel and aluminum are preferred current collectors in terms of both performance and cost. The shape of the current collector may be a foil, a nickel or aluminum foam metal having a three-dimensional structure, or a stainless steel net or wool.

【0017】本発明において用いる電解液は、有機系溶
媒に電解質を溶解した非水系電解液であり、有機系溶媒
としては、電気化学的に安定なエチレンカーボネート、
プロピレンカーボネート、ブチレンカーボネート等の環
状カーボネート、ジメチルカーボネート、ジエチルカー
ボネート及びエチルメチルカーボネート等の直鎖状カー
ボネート、γ−ブチロラクトン、スルホラン、3−メチ
ルスルホラン、1,2−ジメトキシエタン、アセトニト
リル、グルタロニトリル等のニトリル、バレロニトリ
ル、ジメチルホルムアミド、ジメチルスルホキシド、テ
トラヒドロフラン、ジメトキシエタン、メチルフォルメ
イト、から選ばれる1種以上からなる溶媒が好ましい。
これらは混合して使用することも可能である。
The electrolyte used in the present invention is a non-aqueous electrolyte obtained by dissolving an electrolyte in an organic solvent. Examples of the organic solvent include electrochemically stable ethylene carbonate,
Propylene carbonate, cyclic carbonate such as butylene carbonate, linear carbonate such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, γ-butyrolactone, sulfolane, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile And a solvent comprising at least one selected from the group consisting of nitrile, valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, and methylformate.
These can be used as a mixture.

【0018】電気二重層形成のために有機電解液中に含
まれる溶質としての電解質は、電気伝導性、溶解度、電
気化学的安定性の点で第4級オニウム塩が好ましい。特
にR 1 2 3 4 + 又はR1 2 3 4 + (R
1 、R2 、R3 、R4 はそれぞれ独立に炭素数1〜6の
アルキル基又は炭素数6〜10のアリール基である。)
で表されるカチオンを有することが好ましく、特に前記
カチオンとBF4 - 、PF6 - 、CF3 SO3 - 、As
6 - 、N(SO2 CF3 2 - 、ClO4 -又は(S
2 5 )(SO2 6 )N- (R5 、R6 はそれぞれ
独立に炭素数1〜4のアルキル基又はアルキレン基を示
し、R5 とR6 が環を形成していてもよい。)等のアニ
オンとからなる塩が好ましい。具体的には、例えば、
(C2 5 4 NBF4 、(C2 5 3 (CH3 )N
BF4 、(C2 5 8 (CH3 )NBF4 、(C2
5 4 PBF4 及び(C 2 5 3 (CH3 )PBF4
等が好ましいものとして挙げられる。電解液中の上記オ
ニウム塩の濃度は、電気二重層形成に必要なイオン量を
確保し、充分な電気伝導性を得る目的から、0.1mo
l/L〜2.5mol/L、さらには0.5mol/L
〜2mol/L程度とするのが好ましい。(C2 5
4 NBF4、(C2 5 3 (CH3 )NBF4 のプロ
ピレンカーボネート溶液を電解質とすると、電気二重層
キャパシタの静電容量を大きくでき、充放電サイクル耐
久性に優れているため特に好ましい。
In order to form an electric double layer, it is contained in an organic electrolyte.
Electrolyte as a solute to be contained has electrical conductivity, solubility,
Quaternary onium salts are preferred from the viewpoint of thermochemical stability. Special
To R 1RTwoRThreeRFourN+Or R1RTwoRThreeRFourP+(R
1, RTwo, RThree, RFourEach independently has 1 to 6 carbon atoms
It is an alkyl group or an aryl group having 6 to 10 carbon atoms. )
It is preferable to have a cation represented by
Cation and BFFour -, PF6 -, CFThreeSOThree -, As
F6 -, N (SOTwoCFThree)Two -, ClOFour -Or (S
OTwoRFive) (SOTwoR6) N-(RFive, R6Are each
Independently represents an alkyl group or alkylene group having 1 to 4 carbon atoms
Then RFiveAnd R6May form a ring. Ani)
Salts consisting of on are preferred. Specifically, for example,
(CTwoHFive)FourNBFFour, (CTwoHFive)Three(CHThree) N
BFFour, (CTwoHFive)8(CHThree) NBFFour, (CTwoH
Five)FourPBFFourAnd (C TwoHFive)Three(CHThree) PBFFour
And the like are preferred. The above e in the electrolyte
The concentration of the salt determines the amount of ions necessary for forming the electric double layer.
0.1mo for the purpose of securing and obtaining sufficient electric conductivity
1 / L to 2.5 mol / L, further 0.5 mol / L
It is preferable to be about 2 mol / L. (CTwoHFive)
FourNBFFour, (CTwoHFive)Three(CHThree) NBFFourProfessional
When the pyrene carbonate solution is used as the electrolyte, the electric double layer
Capacitor capacitance can be increased and charge / discharge cycle resistance
It is particularly preferable because of its excellent durability.

【0019】本発明において正極と負極との間に介在さ
せるセパレータは特に限定されないが、電気絶縁性と電
解液に対する化学的安定性に優れ、かつ電解液の吸液量
が多くて保液性に優れる多孔質材料からなることが好ま
しい。具体的には、ガラス繊維、シリカファイバ、アル
ミナファイバ、及びこれらのウィスカ等の無機繊維や、
マニラ麻等の天然繊維、ポリオレフィン、ポリエステル
等の合成繊維等の有機繊維からなることが好ましく、こ
れらの繊維を抄造してなるシートが好ましい。また、ポ
リオレフィン、ポリエステル等からなるフィルムに延伸
操作によって微孔を設けたマイクロポーラスフィルムも
好ましい。
In the present invention, the separator to be interposed between the positive electrode and the negative electrode is not particularly limited, but is excellent in electric insulation and chemical stability to the electrolyte, and has a large liquid absorption of the electrolyte and has a high liquid retention. It is preferred to be made of an excellent porous material. Specifically, glass fibers, silica fibers, alumina fibers, and inorganic fibers such as whiskers,
It is preferable to use organic fibers such as natural fibers such as Manila hemp and synthetic fibers such as polyolefin and polyester, and a sheet formed from these fibers is preferable. Further, a microporous film in which micropores are provided in a film made of polyolefin, polyester, or the like by a stretching operation is also preferable.

【0020】[0020]

【作用】本発明における作用原理は現時点では不明な点
が多いが、以下のように推定している。一般的にX線の
半価幅は結晶性の良さや結晶子の大きさを表していると
言われている。本発明における黒鉛系炭素材料は半価幅
が黒鉛類にしては大きく、結晶性の乱れた部分が増加
し、結晶子も小さくなっていると考えられる。乱れた部
分が電気二重層キャパシタの充放電に関連していると考
えられ、乱れた部分の増加が容量に寄与しているのでは
ないかと考えられる。また、多くの電気二重層キャパシ
タの電極材料の放電容量が印加電圧依存性を持っている
が、印加電圧を徐々に増加させていくとある電圧で変曲
し急に容量増加量が大きくなるものがある。一旦このレ
ベルの電圧を印加すると、電圧を下げても高くなった静
電容量はほぼ維持され、容量ヒステリシスは極度に大き
くなる。この電圧は電極炭素材料と電解液の相性により
若干異なる傾向がある。黒鉛系の電極材料でもこのよう
な傾向を示す。結晶性が高いと考えられるものほど変曲
点が高電圧側にある傾向があり、結晶性の高い黒鉛粉末
では変曲点以上の高電圧では比較的高い容量を示すが、
変曲点以下では極度に小さい傾向がある。結晶性の低い
部分が多いほど変曲点が低電圧側となる傾向にあり、電
圧印加によって電極が容量発現的に活性化される、すな
わち低い電圧で高容量を示すようになる傾向があり、結
晶性の高いものは非常に高い印加電圧でなければ活性化
されない傾向がある。X線の半価幅に反映される結晶性
は、電圧印加による容量向上効果にも寄与している。
The operation principle of the present invention has many unclear points at present, but is presumed as follows. In general, it is said that the half width of X-rays indicates good crystallinity and crystallite size. It is considered that the graphite-based carbon material in the present invention has a large half-value width for graphites, a portion having disordered crystallinity increases, and a crystallite also decreases. The disturbed portion is considered to be related to the charging and discharging of the electric double layer capacitor, and it is considered that the increase in the disturbed portion contributes to the capacity. In addition, although the discharge capacity of the electrode material of many electric double layer capacitors has an applied voltage dependency, when the applied voltage is gradually increased, the inflection occurs at a certain voltage, and the capacity increase suddenly increases. There is. Once a voltage of this level is applied, the increased capacitance is substantially maintained even if the voltage is reduced, and the capacitance hysteresis becomes extremely large. This voltage tends to be slightly different depending on the compatibility between the electrode carbon material and the electrolytic solution. Graphite-based electrode materials also show such a tendency. The inflection point tends to be on the high voltage side as the crystallinity is considered to be high, and the graphite powder having high crystallinity shows a relatively high capacity at a high voltage above the inflection point,
Below the inflection point, it tends to be extremely small. The inflection point tends to be on the low voltage side as there are many parts with low crystallinity, and the electrode is activated in a capacity-expressing manner by applying a voltage, that is, the electrode tends to show high capacity at a low voltage, Those with high crystallinity tend to be activated only at a very high applied voltage. The crystallinity reflected in the half width of the X-ray also contributes to the capacity improvement effect by applying a voltage.

【0021】一般に粒子を粉砕し微粒化すると比表面積
は増加する。キャパシタの容量は電極材料の比表面積に
比例することが知られており、微粒であるほど容量が高
いことが期待できるが、比表面積の増加ほど容量は増え
ておらず、必ずしも表面の増大のメカニズムが支配的で
はないと考えられる。また、本発明における黒鉛系炭素
材料は黒鉛としては結晶性は低いものの、賦活された炭
素材料と比較すれば充分に結晶性が高い。このため化学
的安定性も高いと考えられ、性能の長期的信頼性に優
れ、耐電圧も高くなる。本発明における黒鉛系炭素材料
は賦活工程を経る必要がなく、必要な場合に行われる粉
砕による加工のみであるので収率も高く、自明的に製造
コストの低減が行える。
Generally, when the particles are pulverized and atomized, the specific surface area increases. It is known that the capacitance of a capacitor is proportional to the specific surface area of the electrode material.It can be expected that the finer the particle, the higher the capacitance. However, the capacitance does not increase as the specific surface area increases. Is not considered dominant. Further, the graphite-based carbon material in the present invention has low crystallinity as graphite, but has sufficiently high crystallinity as compared with the activated carbon material. For this reason, it is considered that the chemical stability is high, the long-term reliability of the performance is excellent, and the withstand voltage is high. The graphite-based carbon material in the present invention does not need to go through an activation step, and is only processed by pulverization performed when necessary, so that the yield is high and the production cost can be obviously reduced.

【0022】[0022]

【実施例】次に、実施例及び比較例により本発明をさら
に具体的に説明するが、本発明はこれらにより限定され
ない。 〔例1〜6〕各種黒鉛粉末を遊星ミルで乾式で30分の
粉砕を行い、表1のような試料を作製した。粉砕して得
た黒鉛粉末を80%、導電材としてカーボンブラック1
0%及びバインダとしてポリテトラフルオロエチレン粉
末10%の割合で混合し、エタノールを滴下しながら混
練し、ロール圧延した後200℃で30分乾燥してエタ
ノールを除去することにより厚さ約180μmの電極シ
ートを作製した。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. [Examples 1 to 6] Various graphite powders were pulverized by a planetary mill in a dry system for 30 minutes to prepare samples as shown in Table 1. 80% graphite powder obtained by grinding, carbon black 1 as conductive material
0% and 10% of polytetrafluoroethylene powder as a binder were mixed, kneaded while dropping ethanol, roll-rolled, and dried at 200 ° C. for 30 minutes to remove ethanol to remove an electrode having a thickness of about 180 μm. A sheet was prepared.

【0023】この電極シートを直径20mmの円状に切
り抜き、リード引き出しを有する厚さ40μmのアルミ
ニウム箔集電体に、導電性接着剤を用いて上記電極シー
トを接合して電極体を作製し、これを正極体及び負極体
とした。これらの電極体を真空中で200℃で2時間の
乾燥処理を行なった後、ドライボックス中(露点−50
℃)に入れ、ガラス繊維抄造シートを挟んで電極体を対
向させて正極・負極とし、ガラス板で補強することによ
りキャパシタ素子とした。この素子を1.5mol/L
の(C2 5 3 (CH3 )NBF4 を溶解したプロピ
レンカーボネート溶液の入った容器に浸漬し、減圧中に
保持した後、静電容量測定用の素子とした。
The electrode sheet is cut out into a circular shape having a diameter of 20 mm, and the electrode sheet is joined to a 40 μm-thick aluminum foil current collector having lead leads using a conductive adhesive to form an electrode body. This was used as a positive electrode body and a negative electrode body. After drying these electrode bodies in vacuum at 200 ° C. for 2 hours, they were placed in a dry box (dew point −50).
° C), and the positive electrode and the negative electrode are opposed to each other with the glass fiber sheet being interposed therebetween, thereby forming a capacitor element by reinforcing with a glass plate. 1.5 mol / L of this element
(C 2 H 5 ) 3 (CH 3 ) NBF 4 was immersed in a container containing a solution of propylene carbonate, and was kept under reduced pressure to prepare an element for measuring capacitance.

【0024】キャパシタ素子の両極間に、3.8Vで2
0分間の電圧印加を行い放電し、3.3Vで充放電し、
放電曲線から容量を算出した。表1にシート体積あたり
の放電容量を示す。また粉砕した炭化試料についてCu
Kα線を用いたX線回折にて(002)ピークの半価幅
を測定した。X線回折装置にはリガク社製RINT25
00を用い、出力50kV−250mA、発散スリット
0.5°、散乱スリット0.5°、受光スリット0.1
5mmに設定し、スキャンスピード4.000°/mi
n、スキャンステップ0.05°で2θ/θスキャンを
行った。試料は試料部が20mm×16mm×0.2m
mの硝子試料板に載置した。結果を表1に示す。結果よ
り半価幅の大きいものの方が高い容量が得られているこ
とがわかる。
Between 3.8 V of the capacitor element, 2 at 3.8 V
Discharge by applying voltage for 0 minutes, charge and discharge at 3.3V,
The capacity was calculated from the discharge curve. Table 1 shows the discharge capacity per sheet volume. In addition, for the ground carbonized sample, Cu
The half width of the (002) peak was measured by X-ray diffraction using Kα ray. Rigaku RINT25 is used for the X-ray diffractometer.
00, output 50 kV-250 mA, divergence slit 0.5 °, scattering slit 0.5 °, light receiving slit 0.1
Set to 5mm, scan speed 4.000 ° / mi
n, 2θ / θ scan was performed at a scan step of 0.05 °. The sample part is 20mm x 16mm x 0.2m
m on a glass sample plate. Table 1 shows the results. It can be seen from the results that those having a larger half width have higher capacities.

【0025】〔例7〕例1で作製した半価幅0.75の
黒鉛系炭素材料を用いて、黒鉛系炭素材料80%、導電
材としてカーボンブラック10%及びバインダとしてポ
リテトラフルオロエチレン粉末10%を混合し、エタノ
ールを滴下しながら混練し、ロール圧延した後200℃
で30分乾燥してエタノールを除去して厚さ140μm
の電極シートを作製した。
Example 7 Using the graphite-based carbon material having a half-value width of 0.75 prepared in Example 1, 80% of the graphite-based carbon material, 10% of carbon black as a conductive material, and 10% of polytetrafluoroethylene powder as a binder %, Kneading while adding ethanol dropwise, and rolling at 200 ° C.
Dry for 30 minutes to remove ethanol and remove to 140μm thick
Was prepared.

【0026】リード引き出し部を有する厚さ40μmの
アルミニウム箔集電体の幅6cm、長さ13cmの部分
の両面に、導電性接着剤を用いて上記電極シートを接合
し、さらにロールプレスして電極と集電体とが一体化さ
れた厚さ330μmの電極体を作製し、これを正極体及
び負極体とした。
The above-mentioned electrode sheet is joined to both sides of a 6 cm wide and 13 cm long portion of an aluminum foil current collector having a lead lead portion and having a thickness of 40 μm using a conductive adhesive, and further roll-pressed to form an electrode. An electrode body having a thickness of 330 μm in which the electrode and the current collector were integrated was produced, and this was used as a positive electrode body and a negative electrode body.

【0027】ガラス繊維抄造シートを幅6.6cm、長
さ13.6cmの長方形状に打ち抜いてセパレータと
し、正極体18枚と負極体18枚とをセパレータを介し
て交互に積層し、素子体を得た。この素子体を高さ15
cm、幅7cm、厚さ2.2cmの有底角型のアルミニ
ウム製金属ケースに挿入した。次いでアルミニウム蓋体
に絶縁されつつ気密に取り付けられた正極端子と負極端
子に正極、負極の電極リードをそれぞれまとめて超音波
溶接した。その後、前記蓋体を前記金属ケースの開口部
にはめ込み、周辺部をレーザー溶接して封口した。な
お、この蓋体は電解液の注液口となる小孔を有してい
る。素子体を含む封口したケースを真空中で200℃で
72時間の乾燥を行った。次にドライボックス中(露点
−50℃)にケースを入れ、ケース内部を減圧し、大気
圧で1.5mol/Lの(C2 5 3 (CH3 )NB
4 を溶解したプロピレンカーボネート溶液を電解液と
して注液した。
The sheet made of glass fiber was punched out into a rectangular shape having a width of 6.6 cm and a length of 13.6 cm to form a separator. Eighteen positive electrode bodies and eighteen negative electrode bodies were alternately laminated with a separator interposed therebetween. Obtained. The height of this element body is 15
cm, a width of 7 cm, and a thickness of 2.2 cm. Next, the positive electrode terminal and the negative electrode electrode lead were collectively and ultrasonically welded to the positive electrode terminal and the negative electrode terminal, which were hermetically attached while being insulated from the aluminum lid. Thereafter, the lid was fitted into the opening of the metal case, and the periphery was sealed by laser welding. The lid has a small hole serving as a liquid inlet for the electrolyte. The sealed case including the element body was dried in a vacuum at 200 ° C. for 72 hours. Next, the case is placed in a dry box (dew point −50 ° C.), the inside of the case is decompressed, and 1.5 mol / L of (C 2 H 5 ) 3 (CH 3 ) NB at atmospheric pressure.
A propylene carbonate solution in which F 4 was dissolved was injected as an electrolyte.

【0028】注液後のセルに3.8Vの電圧を5時間印
加し、1Torrの減圧下で10分間保持した後、注液
孔に栓をして密閉し電気二重層キャパシタを作製した。
得られた各電気二重層キャパシタの初期の3.3Vでの
充電での放電容量を測定すると1140Fで、出力エネ
ルギーは1.18Whであった。このキャパシタを45
℃の恒温槽中にて3.3Vの電圧を印加しながら500
時間保持し、耐久試験を実施した。放電容量における初
期容量に対する耐久試験後の容量維持率は91%であっ
た。
A voltage of 3.8 V was applied to the cell after the liquid injection for 5 hours, and the cell was held at a reduced pressure of 1 Torr for 10 minutes. Then, the liquid injection hole was plugged and sealed to produce an electric double layer capacitor.
When the discharge capacity of the obtained electric double layer capacitor at the initial charge at 3.3 V was measured, it was 1140 F and the output energy was 1.18 Wh. This capacitor is 45
500 V while applying a voltage of 3.3 V in a constant temperature bath at
After holding for a time, a durability test was performed. The capacity retention ratio after the durability test with respect to the initial capacity in the discharge capacity was 91%.

【0029】〔例8〕高純度フェノール樹脂を水蒸気賦
活した比表面積約1800m2 /gの活性炭を用いて、
活性炭材料80%、導電材としてカーボンブラック10
%及びバインダとしてポリテトラフルオロエチレン粉末
10%を混合し、エタノールを滴下しながら混練し、ロ
ール圧延した後200℃で30分乾燥してエタノールを
除去して厚さ140μmの電極シートを作製した。な
お、この活性炭材料の(002)ピークの半価幅の測定
は、X線のプロファイルがブロードで測定できなかっ
た。リード引き出し部を有する厚さ40μmのアルミニ
ウム箔集電体の幅6cm、長さ13cmの部分の両面
に、導電性接着剤を用いて上記電極シートを接合し、さ
らにロールプレスして電極と集電体とが一体化された厚
さ330μmの電極体を作製し、これを正極体及び負極
体とした。
Example 8 Using activated carbon having a specific surface area of about 1800 m 2 / g obtained by steam-activating a high-purity phenol resin,
80% activated carbon material, carbon black 10 as conductive material
% And a polytetrafluoroethylene powder 10% as a binder were mixed, kneaded while dropping ethanol, roll-rolled, and dried at 200 ° C. for 30 minutes to remove ethanol to prepare an electrode sheet having a thickness of 140 μm. The half-width of the (002) peak of this activated carbon material could not be measured with a broad X-ray profile. The above-mentioned electrode sheet is joined to both sides of a 6-cm-wide and 13-cm-long portion of a 40-μm-thick aluminum foil current collector having a lead-out portion by using a conductive adhesive, and further roll-pressed to collect the electrode and the current. An electrode body having a thickness of 330 μm was formed integrally with the body, and this was used as a positive electrode body and a negative electrode body.

【0030】ガラス繊維抄造シートを幅6.6cm、長
さ13.6cmの長方形状に打ち抜いてセパレータと
し、正極体18枚と負極体18枚とをセパレータを介し
て交互に積層し、素子体を得た。この素子体を高さ15
cm、幅7cm、厚さ2.2cmの有底角型のアルミニ
ウム製金属ケースに挿入した。次いでアルミニウム蓋体
に絶縁されつつ気密に取り付けられた正極端子と負極端
子に正極、負極の電極リードをそれぞれまとめて超音波
溶接した。その後、前記蓋体を前記金属ケースの開口部
にはめ込み、周辺部をレーザー溶接して封口した。な
お、この蓋体は電解液の注液口となる小孔を有してい
る。素子体を含む封口したケースを真空中で200℃で
72時間の乾燥を行った。次にドライボックス中(露点
−50℃)にケースを入れ、ケース内部を減圧し、大気
圧で1.5mol/Lの(C2 5 3 (CH3 )NB
4 を溶解したプロピレンカーボネート溶液を電解液と
して注液した。
The sheet made of glass fiber was punched out into a rectangular shape having a width of 6.6 cm and a length of 13.6 cm to form a separator. Eighteen positive electrode bodies and eighteen negative electrode bodies were alternately laminated with the separator interposed therebetween. Obtained. The height of this element body is 15
cm, a width of 7 cm, and a thickness of 2.2 cm. Next, the positive electrode terminal and the negative electrode electrode lead were collectively and ultrasonically welded to the positive electrode terminal and the negative electrode terminal, which were hermetically attached while being insulated from the aluminum lid. Thereafter, the lid was fitted into the opening of the metal case, and the periphery was sealed by laser welding. The lid has a small hole serving as a liquid inlet for the electrolyte. The sealed case including the element body was dried in a vacuum at 200 ° C. for 72 hours. Next, the case is placed in a dry box (dew point −50 ° C.), the inside of the case is decompressed, and 1.5 mol / L of (C 2 H 5 ) 3 (CH 3 ) NB at atmospheric pressure.
A propylene carbonate solution in which F 4 was dissolved was injected as an electrolyte.

【0031】注液後のセルに2.8Vの電圧を12時間
印加し、1Torrの減圧下で10分間保持した後、注
液孔に栓をして密閉し電気二重層キャパシタを作製し
た。得られた各電気二重層キャパシタの初期の2.7V
放電での放電容量を測定したところ1510Fで、出力
エネルギーは1.15Whであった。3.3Vまで充電
すると、抵抗が増大し、容量が測定できなかった。この
キャパシタを45℃の恒温槽中にて2.7Vの電圧を印
加しながら500時間保持し、耐久試験を実施した。放
電容量における初期容量に対する耐久試験後の容量維持
率は92%であった。例7,8より本発明の炭素材料を
用いた電気二重層キャパシタは、容量は低いが高い電圧
で使用可能であるので、従来材料である活性炭を用いた
電気二重層キャパシタと同等に近い放電エネルギーが得
られることがわかる。
A voltage of 2.8 V was applied to the cell after the liquid injection for 12 hours, and the cell was maintained at a reduced pressure of 1 Torr for 10 minutes. Then, the liquid injection hole was plugged and sealed to produce an electric double layer capacitor. Initial 2.7V of each obtained electric double layer capacitor
When the discharge capacity at the time of discharge was measured, it was 1510F and the output energy was 1.15 Wh. When the battery was charged to 3.3 V, the resistance increased and the capacity could not be measured. This capacitor was held in a thermostat at 45 ° C. for 500 hours while applying a voltage of 2.7 V to perform a durability test. The capacity retention ratio after the durability test with respect to the initial capacity in the discharge capacity was 92%. According to Examples 7 and 8, the electric double layer capacitor using the carbon material of the present invention has a low capacity but can be used at a high voltage. Therefore, the discharge energy is almost equal to that of the conventional electric double layer capacitor using activated carbon. Is obtained.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明によれば、賦活工程を伴わない製
造過程で電気二重層キャパシタの電極が製造できるの
で、電極材料の製造コストが大幅に低減可能であり、ま
た電極材の耐電圧も向上するので従来材と遜色ない出力
エネルギーが得られる。
According to the present invention, the electrodes of the electric double layer capacitor can be manufactured in the manufacturing process without the activation step, so that the manufacturing cost of the electrode material can be greatly reduced and the withstand voltage of the electrode material can be reduced. As a result, the output energy is inferior to conventional materials.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極、負極、及び非水系電解液を有する電
気二重層キャパシタにおいて、前記正極及び前記負極
が、CuKα線を用いたX線回折で(002)ピークの
半価幅が0.5〜5.0である黒鉛系炭素材料を主成分
として含む電気二重層キャパシタ。
1. An electric double layer capacitor comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode have a (002) peak half-value width of 0.5 in X-ray diffraction using CuKα rays. An electric double layer capacitor containing a graphite-based carbon material having a size of from 5.0 to 5.0 as a main component.
【請求項2】前記黒鉛系材料の比表面積が30〜100
0m2/gであることを特徴とする請求項1に記載の電気
二重層キャパシタ。
2. The graphite material has a specific surface area of 30 to 100.
The electric double layer capacitor according to claim 1, characterized in that the 0 m 2 / g.
【請求項3】前記黒鉛系材料が、平均粒径0.1〜50
μmまで粉砕されていることを特徴とする請求項1 又は
2に記載の電気二重層キャパシタ。
3. The graphite-based material has an average particle size of 0.1 to 50.
3. The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor is crushed to μm.
【請求項4】前記黒鉛系材料が、水蒸気中での加熱処
理、炭酸ガス中での加熱処理、アルカリ金属共存下での
加熱処理、アルカリ化合物共存下での加熱処理、アルカ
リ土類金属共存下での加熱処理及びアルカリ土類金属化
合物共存下での加熱処理がされてないことを特徴とする
請求項1 ないし3のいずれかに記載の電気二重層キャパ
シタ。
4. The heat treatment in water vapor, heat treatment in carbon dioxide gas, heat treatment in the presence of an alkali metal, heat treatment in the presence of an alkali compound, and heat treatment in the presence of an alkaline earth metal. The electric double layer capacitor according to any one of claims 1 to 3, wherein the heat treatment is not performed in step (a) or in the presence of an alkaline earth metal compound.
【請求項5】前記非水電解液の溶質が、R1 2 3
4 + 又はR1 2 3 4 + (R1 、R2 、R3
4 はそれぞれ独立に炭素数1〜6のアルキル基又は炭
素数6〜10のアリール基である。)で表されるカチオ
ンと、BF4 - 、PF6 - 、CF3 SO3 - 、AsF6
- 、N(SO2 CF3 2 - 、ClO4 - 及び(SO 2
5 )(SO2 6 )N- (R5 、R6 はそれぞれ独立
に炭素数1〜4のアルキル基又はアルキレン基を示し、
5 とR6 が環を形成していてもよい。)からなる群か
ら選ばれる1種以上のアニオンとからなる塩であること
を特徴とする請求項1 ないし4のいずれかに記載の電気
二重層キャパシタ。
5. The method according to claim 1, wherein the solute of the non-aqueous electrolyte is R1RTwoRThreeR
FourN+Or R1RTwoRThreeRFourP+(R1, RTwo, RThree,
RFourAre each independently an alkyl group having 1 to 6 carbon atoms or carbon
It is an aryl group having a prime number of 6 to 10. Katio represented by)
And BFFour -, PF6 -, CFThreeSOThree -, AsF6
-, N (SOTwoCFThree)Two -, ClOFour -And (SO Two
RFive) (SOTwoR6) N-(RFive, R6Are independent
Represents an alkyl group or alkylene group having 1 to 4 carbon atoms,
RFiveAnd R6May form a ring. Group)
A salt consisting of at least one anion selected from
The electricity according to any one of claims 1 to 4, characterized in that:
Double layer capacitor.
【請求項6】CuKα線を用いたX線回折で(002)
ピークの半価幅が0.5〜5.0である黒鉛系炭素材料
を主成分として含む正極及び負極をセパレータを介して
対向させて素子体を構成し、該素子体に非水系の電解液
を含浸させ、該正極、負極間に、2.8〜4.5Vの電
圧を所定時間印加する電気二重層キャパシタの製造方
法。
6. X-ray diffraction using CuKα ray (002)
A positive electrode and a negative electrode each containing a graphite-based carbon material having a peak half-value width of 0.5 to 5.0 as a main component are opposed to each other via a separator to form an element body, and the element body is provided with a non-aqueous electrolytic solution. And a voltage of 2.8 to 4.5 V is applied between the positive electrode and the negative electrode for a predetermined time.
JP2000341816A 2000-11-09 2000-11-09 Electric double-layer capacitor and its manufacturing method Withdrawn JP2002151364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341816A JP2002151364A (en) 2000-11-09 2000-11-09 Electric double-layer capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341816A JP2002151364A (en) 2000-11-09 2000-11-09 Electric double-layer capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002151364A true JP2002151364A (en) 2002-05-24

Family

ID=18816485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341816A Withdrawn JP2002151364A (en) 2000-11-09 2000-11-09 Electric double-layer capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002151364A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022137A1 (en) * 2004-08-27 2006-03-02 Bridgestone Corporation Electrode stabilizer for nonaqueous electrolyte electric double layer capacitor, nonaqueous electrolyte solution for electric double layer capacitor and nonaqueous electrolyte electric double layer capacitor
EP1717832A1 (en) * 2005-04-25 2006-11-02 Power Systems Co., Ltd. Positive electrode for electric double layer capacitors and method for the production thereof
JP2006332627A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
US7154738B2 (en) 2002-11-29 2006-12-26 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
JP2007157954A (en) * 2005-12-05 2007-06-21 Hiroshima Univ Electric double-layer capacitor
US7626804B2 (en) 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
CN101644723B (en) * 2009-08-20 2012-12-05 浙江富来森能源科技有限公司 Unit device for measuring performance of electrode material of double electric layer capacitor in water solution system and measuring method therefor
JP2013191827A (en) * 2012-02-13 2013-09-26 Nissin Electric Co Ltd Power storage device
JP2014529188A (en) * 2011-08-11 2014-10-30 カーディアック ペースメイカーズ, インコーポレイテッド Sintered capacitor electrode with three-dimensional frame structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041199A (en) * 1996-07-25 1998-02-13 Asahi Glass Co Ltd Manufacture of large-capacity electric double layer capacitor
JPH11297577A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor and carbon material used for the capacitor
JP2000223121A (en) * 1999-01-27 2000-08-11 Tdk Corp Carbon material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041199A (en) * 1996-07-25 1998-02-13 Asahi Glass Co Ltd Manufacture of large-capacity electric double layer capacitor
JPH11297577A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor and carbon material used for the capacitor
JP2000223121A (en) * 1999-01-27 2000-08-11 Tdk Corp Carbon material and its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154738B2 (en) 2002-11-29 2006-12-26 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
US7626804B2 (en) 2004-03-10 2009-12-01 Masaki Yoshio Power storage element and electric double layer capacitor
WO2006022137A1 (en) * 2004-08-27 2006-03-02 Bridgestone Corporation Electrode stabilizer for nonaqueous electrolyte electric double layer capacitor, nonaqueous electrolyte solution for electric double layer capacitor and nonaqueous electrolyte electric double layer capacitor
JP2006066699A (en) * 2004-08-27 2006-03-09 Bridgestone Corp Non-water electrolyte electric double-layer capacitor, electrode stabilizing agent therefor, and non-water electrolyte for electric double-layer capacitors
JP4537154B2 (en) * 2004-08-27 2010-09-01 株式会社ブリヂストン Non-aqueous electrolyte electric double layer capacitor
EP1717832A1 (en) * 2005-04-25 2006-11-02 Power Systems Co., Ltd. Positive electrode for electric double layer capacitors and method for the production thereof
JP2006332627A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof
JP2007157954A (en) * 2005-12-05 2007-06-21 Hiroshima Univ Electric double-layer capacitor
CN101644723B (en) * 2009-08-20 2012-12-05 浙江富来森能源科技有限公司 Unit device for measuring performance of electrode material of double electric layer capacitor in water solution system and measuring method therefor
JP2014529188A (en) * 2011-08-11 2014-10-30 カーディアック ペースメイカーズ, インコーポレイテッド Sintered capacitor electrode with three-dimensional frame structure
JP2013191827A (en) * 2012-02-13 2013-09-26 Nissin Electric Co Ltd Power storage device

Similar Documents

Publication Publication Date Title
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
EP1168389B1 (en) Activated carbon material, process for producing the same and electric double layer capacitor employing the same
JP4918418B2 (en) Lithium ion pre-doping method and method for producing lithium ion capacitor storage element
JP4035150B2 (en) Pseudo capacitance capacitor
WO2010116612A1 (en) Carbon material for electric double layer capacitor electrode and method for producing same
WO2010032407A1 (en) Carbon material for electric double layer capacitor and process for producing the carbon material
JPH097896A (en) Electric double-layer capacitor
TW201522219A (en) High-voltage and high-capacitance activated carbon and carbon-based electrodes
JP2023169201A (en) Activated carbon for power storage device electrode
KR100978604B1 (en) Carbonaceous material for electric double layer capacitor and electric double layer capacitor
JP4081125B2 (en) Positive electrode for electric double layer capacitor and electric double layer capacitor
JP2002151364A (en) Electric double-layer capacitor and its manufacturing method
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JPH1154383A (en) Electric double layer capacitor
US10984961B2 (en) Hybrid capacitor and manufacturing method thereof
KR101138522B1 (en) Electrode structure and lithium ion capacitor with the same
JP5158839B2 (en) Non-aqueous electrolyte electrochemical device
JP2006024611A (en) Electric double layer capacitor
JPH1154384A (en) Electric double layer capacitor
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP3872494B1 (en) Winding type electric double layer capacitor
JP4453174B2 (en) Electric double layer capacitor
WO2022181605A1 (en) Electrochemical capacitor
JPH09275041A (en) Double layer electric capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100608