JP2002151093A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JP2002151093A
JP2002151093A JP2000343275A JP2000343275A JP2002151093A JP 2002151093 A JP2002151093 A JP 2002151093A JP 2000343275 A JP2000343275 A JP 2000343275A JP 2000343275 A JP2000343275 A JP 2000343275A JP 2002151093 A JP2002151093 A JP 2002151093A
Authority
JP
Japan
Prior art keywords
organic electrolyte
battery
negative electrode
present
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000343275A
Other languages
Japanese (ja)
Inventor
Shinichi Kawaguchi
真一 川口
忠義 ▲高▼橋
Tadayoshi Takahashi
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000343275A priority Critical patent/JP2002151093A/en
Publication of JP2002151093A publication Critical patent/JP2002151093A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte cell in which a reaction of an anode with an organic electrolyte is inhibited, thereby preventing increase in internal resistance during storage and a charge/discharge cycle to improve conservation ability and charge/discharge cycle characteristics. SOLUTION: For the organic electrolyte cell comprising a cathode, an anode composed of metal lithium or lithium alloy and an organic electrolyte, hexamethyldisilazane is added to the organic electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムまたはそ
の化合物を活物質とする有機電解液電池に関し、長期保
存使用における電池特性の安定性に優れ、且つ高エネル
ギー密度を有する有機電解液電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery using lithium or a compound thereof as an active material, and more particularly to an organic electrolyte battery having excellent stability of battery characteristics in long-term storage use and having a high energy density.

【0002】[0002]

【従来の技術】正極活物質に遷移金属の酸化物やリチウ
ム複合酸化物を、負極活物質にリチウムを用いる有機電
解液電池は、小型で高エネルギー密度であることから携
帯機器の主電源をはじめとし、電子機器のメモリーバッ
クアップ電源として様々な用途で使用されている。最近
は、これら電子機器の高機能化、多様化に伴い電池特性
の改善も要望されており、特に高温環境下での保存、使
用に対する電池特性の長期安定性が望まれている。
2. Description of the Related Art Organic electrolyte batteries using a transition metal oxide or lithium composite oxide as a positive electrode active material and lithium as a negative electrode active material are small in size and have a high energy density. It is used for various purposes as a memory backup power supply for electronic devices. In recent years, as the functions and diversification of these electronic devices have been enhanced and diversified, improvements in battery characteristics have been demanded. In particular, long-term stability of battery characteristics for storage and use in a high-temperature environment has been desired.

【0003】前記有機電解液電池に用いられる電解液
は、一般にエチレンカーボネート(EC)、プロピレン
カーボネート(PC)等の環状エステルと1,2ジメト
キシエタン(DME)、1,3ジオキソラン(DOL)
等の鎖状エーテルあるいはジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)等の鎖状エステ
ルとの混合溶媒に、LiClO4、LiPF6、LiBF
4、LiCF3SO3、LiN(CF3SO22、等からな
る溶質を溶解して構成されている。
[0003] The electrolyte used in the organic electrolyte battery is generally a cyclic ester such as ethylene carbonate (EC) or propylene carbonate (PC), 1,2 dimethoxyethane (DME) or 1,3 dioxolan (DOL).
Such as chain ethers or dimethyl carbonate (DM
C), LiClO 4 , LiPF 6 , LiBF in a mixed solvent with a chain ester such as diethyl carbonate (DEC).
4 , a solute composed of LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , etc. is dissolved.

【0004】[0004]

【発明が解決しようとする課題】ところで、有機電解液
を用いた電池は、電池内部に存在する水分、特に電解液
中に含まれる水分により、放電特性や保存特性等に影響
を受ける。水分は有機電解液に不純物として含まれてお
り、これが有機電解液を構成する溶質と化学的な反応を
生ずることで酸を生成してしまう。この酸が正極の溶出
を生じさせてしまい、これにより長期間に亘る保存や使
用、特に高温環境下での保存時に放電容量の減少を招く
問題点がある。さらに前記酸は、セパレータやガスケッ
ト等の起電反応に寄与しない電池構成部材にも影響を与
え、電池の劣化を進めてしまう問題点を有していた。
A battery using an organic electrolytic solution is affected by discharge characteristics, storage characteristics, and the like, due to moisture present inside the battery, particularly, moisture contained in the electrolytic solution. Moisture is contained as an impurity in the organic electrolytic solution, and this causes a chemical reaction with a solute constituting the organic electrolytic solution to generate an acid. This acid causes elution of the positive electrode, which causes a problem that the discharge capacity is reduced during storage and use for a long period of time, particularly during storage in a high-temperature environment. Further, the acid has a problem that it also affects battery constituent members such as a separator and a gasket which do not contribute to the electromotive reaction, and promotes deterioration of the battery.

【0005】また、電池内部に存在する水分は、負極を
構成するリチウムやリチウム合金と反応し易く、負極表
面上に負極金属の水酸化物を容易に形成してしまう。こ
の被膜は電気伝導性が低いことから、電池の内部抵抗を
上昇させる要因となり、放電特性を悪化させてしまう。
In addition, water present in the battery easily reacts with lithium or a lithium alloy constituting the negative electrode, and easily forms a negative metal hydroxide on the surface of the negative electrode. Since this film has low electric conductivity, it becomes a factor of increasing the internal resistance of the battery, and deteriorates the discharge characteristics.

【0006】このように電池内部に存在する水分は、保
存特性や放電特性等の電池特性を悪化させてしまう。し
かしながら、実際の電池の製造工程を鑑みた場合、電池
内部に存在する水分をゼロ近くまで低減することは原理
的には可能であるが、製造コストの高騰を招くだけであ
り、その適用は極めて困難である。したがって、有機電
解液を用いた電池に許容される水分量を明らかにすると
共に、混入した水分による影響を排除する構成を採用す
ることで、電池特性等の実用性と製造コストとがバラン
スした電池を得ることができる。
[0006] As described above, moisture existing inside the battery deteriorates battery characteristics such as storage characteristics and discharge characteristics. However, in view of the actual battery manufacturing process, it is possible in principle to reduce the moisture present inside the battery to near zero, but this only increases the manufacturing cost, and its application is extremely low. Have difficulty. Therefore, by clarifying the amount of water allowed for a battery using an organic electrolyte and adopting a configuration that eliminates the influence of mixed water, a battery that balances practicality such as battery characteristics and manufacturing cost. Can be obtained.

【0007】本発明は、上記問題点を解決するものであ
って、その目的は有機電解液に化合物を添加することに
より、長期安定性に優れた高エネルギー密度の有機電解
液電池を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a high energy density organic electrolyte battery excellent in long-term stability by adding a compound to the organic electrolyte. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の有機電解液電池は、正極、リチウム金属、リ
チウム合金あるいはリチウムの吸蔵・放出が可能な材料
からなる負極、有機電解液を基本構成とする有機電解液
電池であって、該有機電解液に(化2)で示されるヘキ
サメチルジシアザンを添加したことを特徴とする。
In order to achieve the above object, an organic electrolyte battery according to the present invention comprises a positive electrode, a negative electrode made of lithium metal, a lithium alloy or a material capable of inserting and extracting lithium, and an organic electrolyte. An organic electrolyte battery having a basic structure, characterized in that hexamethyldiciazane represented by (Chemical Formula 2) is added to the organic electrolyte.

【0009】[0009]

【化2】 Embedded image

【0010】本発明に係るヘキサメチルジシアザンが添
加された有機電解液は、電池内部に存在する水分による
影響を排除できることから、有機電解液中の溶質と水分
との反応による酸の生成、これに起因する正極の溶出、
電池構成部材の劣化を低減することを可能にする。さら
に水分と反応による負極表面上の被膜形成を抑制し、こ
の被膜に起因する内部抵抗の上昇を抑えることができ
る。これにより、保存特性及び放電特性等を改善し、長
期安定性に優れた電池を得ることができるものである。
The organic electrolyte to which hexamethyldisiazane is added according to the present invention can eliminate the influence of water present inside the battery, and therefore can generate an acid by the reaction between the solute and the water in the organic electrolyte. Elution of the positive electrode due to
It is possible to reduce deterioration of battery components. Furthermore, the formation of a film on the negative electrode surface due to the reaction with moisture can be suppressed, and the increase in internal resistance due to this film can be suppressed. As a result, storage characteristics and discharge characteristics can be improved, and a battery having excellent long-term stability can be obtained.

【0011】また化合物の添加比率は、有機電解液に対
して0.001〜10.0質量%の範囲とするのが好ま
しく、また更に0.05〜2.0質量%の含有範囲が最
適である。添加比率が0.001質量%より少ない場
合、化合物の添加による効果は期待できない。逆に1
0.0質量%以上の場合、前記範囲での添加と同様に酸
の発生及び負極表面上での被膜生成による影響は認めら
れず、本願発明による効果が得られる。しかしながら、
二次生成物による電池特性への影響が懸念されると同時
に、添加量に比例した顕著な効果が期待できない。
[0011] The compounding ratio of the compound is preferably in the range of 0.001 to 10.0% by mass relative to the organic electrolyte, and more preferably 0.05 to 2.0% by mass. is there. If the addition ratio is less than 0.001% by mass, the effect of adding the compound cannot be expected. Conversely 1
When the content is 0.0% by mass or more, the effect of the generation of an acid and the formation of a film on the negative electrode surface are not recognized as in the case of the addition in the above range, and the effect of the present invention is obtained. However,
At the same time, there is a concern that the secondary products may affect the battery characteristics, and a remarkable effect in proportion to the amount of addition cannot be expected.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below.

【0013】本発明の有機電解液電池は、正極、負極及
び有機電解液を基本構成とする有機電解液電池であっ
て、有機電解液にヘキサメチルジシアザンを添加したこ
とを特徴とする。このヘキサメチルジシアザンは常温域
で液体であることから、有機電解液に対して容易に添加
する事ができる。また、水との反応性が高く、有機電解
液中に含まれる水分と優先的に反応しアンモニアを発生
するが、電池特性に与える影響は極めて小さい。尚、発
生したアンモニアは電解液中に溶存した状態にある酸と
の中和反応を生じ、酸による正負極材料及び電池構成材
料への影響を大幅に抑制する。
The organic electrolyte battery of the present invention is an organic electrolyte battery having a basic structure of a positive electrode, a negative electrode and an organic electrolyte, characterized in that hexamethyldiciazane is added to the organic electrolyte. Since hexamethyldiciazan is a liquid in a normal temperature range, it can be easily added to an organic electrolytic solution. In addition, it has high reactivity with water and reacts preferentially with water contained in the organic electrolytic solution to generate ammonia, but its effect on battery characteristics is extremely small. The generated ammonia causes a neutralization reaction with an acid dissolved in the electrolytic solution, and significantly suppresses the influence of the acid on the positive and negative electrode materials and the battery constituent materials.

【0014】次に、本発明の電池に適用される各構成要
素について詳細に説明する。
Next, each component applied to the battery of the present invention will be described in detail.

【0015】(正極材料)正極材料としては、MnO2
やWO3等の金属酸化物、CFXのフッカ物、FeS2
TiS2の硫化物が使用可能である。
(Cathode Material) As a cathode material, MnO 2
And metal oxides such as WO 3 , hookers of CF X , FeS 2 ,
Sulfides of TiS 2 can be used.

【0016】正極には、これらの正極活物質の複数種を
混合して使用しても良い。また、先に列挙した正極活物
質を使用して正極を形成する際には、公知の導電剤や結
着剤を添加することができる。
The positive electrode may be used by mixing a plurality of these positive electrode active materials. When forming a positive electrode using the above-listed positive electrode active materials, a known conductive agent or binder can be added.

【0017】(負極材料)負極材料としては、金属リチ
ウム、Li−Al、Li−Si、Li−Sn、Li−N
iSi、Li−Pbなどのリチウム合金、好ましくは負
極材料として金属リチウム、リチウム合金と本発明の添
加剤を組み合わせて使用すると、保存時の電池内部抵抗
上昇が抑制され、良好な結果が得られる。また、このよ
うな負極を使用する際には、公知の導電剤や結着剤を添
加することができる。
(Negative electrode material) As negative electrode materials, lithium metal, Li-Al, Li-Si, Li-Sn, Li-N
When a lithium alloy such as iSi or Li-Pb, preferably lithium metal or a lithium alloy is used in combination with the additive of the present invention as a negative electrode material, an increase in battery internal resistance during storage is suppressed, and good results are obtained. When such a negative electrode is used, a known conductive agent or binder can be added.

【0018】(非水電解質)非水電解質を構成する溶質
としては、LiPF6、LiBF4、LiClO4、Li
CF3SO3、LiN(CF3SO22、LiN(C25
SO22、LiN(CF3SO2)(C49SO2)など
の単体あるいは複数成分を混合して使用することができ
る。
(Non-Aqueous Electrolyte) As a solute constituting the non-aqueous electrolyte, LiPF 6 , LiBF 4 , LiClO 4 , Li
CF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5
SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), or a mixture of a plurality of components can be used.

【0019】有機電解液の溶媒としてはこの種の電池に
用いられる公知の溶媒を挙げることができる。例えばエ
チレンカーボネート(EC)、プロピレンカーボネート
(PC)、ブチレンカーボネート(BC)、γ−ブチロ
ラクトン(GBL)、ヴィニレンカーボネート(V
C)、1,2ジメトキシエタン(DME)、1,2ジエ
トキシエタン(DEE)、1,3ジオキソラン(DO
L)、ジメチルカーボネート(DMC)、エチルメチル
カーボネート(EMC)、ジエチルカーボネート(DE
C)、スルホラン、テトラヒドロフラン等をそれぞれ単
独で使用しても、複数の溶媒を組み合わせて使用しても
よいが、これに限定されるものでない。
Examples of the solvent for the organic electrolyte include known solvents used for batteries of this type. For example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (GBL), vinylene carbonate (V
C), 1,2 dimethoxyethane (DME), 1,2 diethoxyethane (DEE), 1,3 dioxolane (DO
L), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DE
C), sulfolane, tetrahydrofuran or the like may be used alone or in combination with a plurality of solvents, but is not limited thereto.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。本実施例では、図1に示す扁平形の電池ケ
ースに発電要素を収容した有機電解液電池を作成し、電
池特性の検討を行った。正極1と負極2はセパレータ3
を介して接しており、これら発電要素は絶縁パッキング
6を備えた負極缶5と正極缶4によってかしめ密閉され
ている。なお、電池の寸法は外径20mm、高さ25m
mである。
Embodiments of the present invention will be described below with reference to the drawings. In the present example, an organic electrolyte battery in which a power generation element was housed in the flat battery case shown in FIG. 1 was prepared, and the battery characteristics were examined. Positive electrode 1 and negative electrode 2 have separator 3
These power generating elements are caulked and sealed by a negative electrode can 5 and a positive electrode can 4 provided with an insulating packing 6. The dimensions of the battery are 20 mm in outer diameter and 25 m in height.
m.

【0021】(実施例1)実施例1として、正極に二酸
化マンガンを用い、負極にリチウム金属を用いた有機電
解液一次電池にて検討を行った。
Example 1 As Example 1, a study was conducted on an organic electrolyte primary battery using manganese dioxide for the positive electrode and lithium metal for the negative electrode.

【0022】正極1は400℃で熱処理した二酸化マン
ガンを活物質として用い、これに導電剤として炭素粉
末、結着剤としてフッ素樹脂を80:10:10の質量
比で混錬し、打錠成型した後、250℃にて乾燥を施す
ことで作成した。一方、負極2はリチウム金属を用い、
リチウム圧延板を所定の形状に打ち抜き、負極缶5の内
面に圧着・固定している。
For the positive electrode 1, manganese dioxide heat-treated at 400 ° C. is used as an active material, and carbon powder as a conductive agent and a fluororesin as a binder are kneaded at a mass ratio of 80:10:10, followed by tableting. After that, it was prepared by drying at 250 ° C. On the other hand, the negative electrode 2 uses lithium metal,
The rolled lithium plate is punched into a predetermined shape, and is pressed and fixed to the inner surface of the negative electrode can 5.

【0023】有機電解液は、プロピレンカーボネートと
ジメトキシエタンを50:50の体積比で混合した溶媒
に、溶質としてLiCF3SO3を1.0モル/リットル
の割合で溶解して調整した。この有機電解液にヘキサメ
チルジシアザンを有機電解液に対して0.1質量%の比
率にて添加し、これを電池に注入することで本発明電池
を作成した。なお、比較例として、添加剤を含まないも
のを作成し、比較電池とした。
The organic electrolytic solution was prepared by dissolving LiCF 3 SO 3 as a solute at a ratio of 1.0 mol / liter in a solvent in which propylene carbonate and dimethoxyethane were mixed at a volume ratio of 50:50. Hexamethyldisiazane was added to this organic electrolyte at a ratio of 0.1% by mass based on the organic electrolyte, and the mixture was injected into a battery to prepare a battery of the present invention. As a comparative example, a battery containing no additive was prepared and used as a comparative battery.

【0024】これらの電池を用い、各電池を60℃の恒
温槽中に2ケ月間保存し、保存前後の電池内部抵抗を交
流1kHz法にて測定し、内部抵抗を比較した。この結
果を(表1)に示す。
Using these batteries, each battery was stored in a thermostat at 60 ° C. for 2 months, and the internal resistance of the battery before and after storage was measured by an AC 1 kHz method, and the internal resistance was compared. The results are shown in (Table 1).

【0025】[0025]

【表1】 [Table 1]

【0026】これより、ヘキサメチルジシアザンからな
る添加剤を加えた本発明電池は、従来の添加物を含まな
い比較電池に比べ、保存時における内部抵抗の上昇が抑
制されていることがわかる。
From this, it can be seen that the battery of the present invention to which the additive consisting of hexamethyldisiazane was added was suppressed from increasing in internal resistance during storage as compared with the comparative battery containing no conventional additive.

【0027】(実施例2)実施例2として、実施例1と
同様に図1に示す有機電解液一次電池を作成し、添加剤
の添加比率について検討を行った。本実施例では、実施
例1における本発明電池において、本発明に係る添加剤
であるヘキサメチルジシアザンを0.0005〜15.
0質量%の割合で添加したものを作成した。
Example 2 As Example 2, an organic electrolyte primary battery shown in FIG. 1 was prepared in the same manner as in Example 1, and the addition ratio of additives was examined. In the present example, in the battery of the present invention in Example 1, hexamethyldiciazane, which is an additive according to the present invention, was used in an amount of 0.0005 to 15.
A material added at a ratio of 0% by mass was prepared.

【0028】これらの電池を用い、各電池を60℃の恒
温槽中で2ケ月間保存し、保存前後の電池内部抵抗(交
流1kHz法)を比較した。この結果を(表2)に示
す。
Using these batteries, each battery was stored in a thermostat at 60 ° C. for two months, and the internal resistance of the battery (1 kHz AC method) before and after storage was compared. The results are shown in (Table 2).

【0029】[0029]

【表2】 [Table 2]

【0030】(表2)から明らかなように、添加剤を加
えた電池は、添加物を含まない比較電池に比べ保存時の
電池内部抵抗上昇が抑制されている。さらに添加比率に
ついては、添加量が0.001〜10.0質量%の範囲
で効果があることがわかる。尚、添加量が0.001質
量%未満の場合、本発明による効果は発揮されていな
い。一方、添加量が10.0質量%以上の場合、添加物
による内部抵抗上昇が懸念される結果を示している。こ
のことから明らかなように、本実施例ではヘキサメチル
ジシアザンの添加量が0.01〜1.0質量%の範囲に
ある時、最も良好な結果を示した。
As is clear from Table 2, the battery to which the additive was added suppresses an increase in the internal resistance of the battery during storage compared to the comparative battery containing no additive. Further, as for the addition ratio, it is understood that the effect is effective when the added amount is in the range of 0.001 to 10.0% by mass. When the amount is less than 0.001% by mass, the effect of the present invention is not exhibited. On the other hand, when the addition amount is 10.0% by mass or more, the results show that the internal resistance may be increased by the additive. As is clear from this, in this example, the best results were obtained when the amount of hexamethyldiciazane was in the range of 0.01 to 1.0% by mass.

【0031】尚、本実施例では電池の形状としてはコイ
ン型のみについて述べたが、本発明は電池の形状に関係
なく、その効果を発揮することができ、円筒や角形など
さまざまな形状の電池に応用することが可能である。
In this embodiment, only the coin shape is described as the battery shape. However, the present invention can exert its effects regardless of the battery shape, and can be used in various shapes such as cylinders and prisms. It is possible to apply to.

【0032】[0032]

【発明の効果】上述した如く、本発明の有機電解液電池
は、有機電解液にヘキサメチルジシアザンが添加されて
いるため、内部抵抗上昇が抑制され、保存特性に優れ
る。その工業的価値は極めて大きい。
As described above, in the organic electrolyte battery of the present invention, since hexamethyldiciazane is added to the organic electrolyte, an increase in internal resistance is suppressed and the storage characteristics are excellent. Its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例における扁平形電池の断面図FIG. 1 is a cross-sectional view of a flat battery according to an embodiment.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 絶縁パッキング DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Insulation packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小柴 信晴 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H024 AA02 AA03 AA06 AA07 AA11 AA12 BB07 CC03 CC14 DD00 FF15 FF16 FF19 FF33 FF34 FF38 FF40 HH02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuharu Koshiba 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. F-term (reference) FF40 HH02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウム金属、リチウム合金あ
るいはリチウムの吸蔵・放出が可能な材料からなる負極
と、有機電解液とを基本構成とする有機電解液電池であ
って、 該有機電解液に(化1)で示されるヘキサメチルジシア
ザンを添加したことを特徴とする有機電解液電池。 【化1】
An organic electrolyte battery comprising a positive electrode, a negative electrode made of a lithium metal, a lithium alloy or a material capable of inserting and extracting lithium, and an organic electrolyte as basic components. An organic electrolyte battery to which hexamethyldiciazan represented by the following formula (1) is added. Embedded image
【請求項2】 ヘキサメチルジシアザンが、有機電解液
の質量に対して0.001〜10.0質量%の比率にて
添加された請求項1記載の有機電解液電池。
2. The organic electrolyte battery according to claim 1, wherein hexamethyldiciazane is added in a ratio of 0.001 to 10.0% by mass based on the mass of the organic electrolyte.
JP2000343275A 2000-11-10 2000-11-10 Organic electrolyte cell Pending JP2002151093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343275A JP2002151093A (en) 2000-11-10 2000-11-10 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343275A JP2002151093A (en) 2000-11-10 2000-11-10 Organic electrolyte cell

Publications (1)

Publication Number Publication Date
JP2002151093A true JP2002151093A (en) 2002-05-24

Family

ID=18817670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343275A Pending JP2002151093A (en) 2000-11-10 2000-11-10 Organic electrolyte cell

Country Status (1)

Country Link
JP (1) JP2002151093A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182570A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Nonaqueous air secondary battery
US20100316904A1 (en) * 2009-06-11 2010-12-16 Gui Ping Zhang Self flame-retardant lithium ion battery and case thereof made of plastic with helogens
US20130302668A1 (en) * 2012-04-18 2013-11-14 Lg Chem, Ltd. Electrolyte for secondary battery and the secondary battery comprising the same
US20210194052A1 (en) * 2017-11-30 2021-06-24 Lg Chem, Ltd. Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182570A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Nonaqueous air secondary battery
US20100316904A1 (en) * 2009-06-11 2010-12-16 Gui Ping Zhang Self flame-retardant lithium ion battery and case thereof made of plastic with helogens
US20130302668A1 (en) * 2012-04-18 2013-11-14 Lg Chem, Ltd. Electrolyte for secondary battery and the secondary battery comprising the same
US20210194052A1 (en) * 2017-11-30 2021-06-24 Lg Chem, Ltd. Composition for gel polymer electrolyte, gel polymer electrolyte prepared therefrom, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
US7709157B2 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
JP3617447B2 (en) Lithium secondary battery
CN105870501B (en) A kind of high voltage functionality electrolyte and preparation method and application
JP2004165151A (en) Nonaqueous electrolyte secondary battery and electrolyte used therein
JP2004241339A (en) Electrolyte liquid for secondary battery, and secondary battery of nonaqueous electrolyte liquid
KR100414718B1 (en) Non-aqueous electrolyte cell
CN102738511A (en) Lithium ion battery and electrolyte thereof
CN103367804A (en) Non-aqueous electrolyte for lithium ion battery and lithium ion battery using same
JP2001243981A (en) Lithium secondary battery
CN111900481A (en) Electrolyte for high-nickel anode material lithium ion battery
JP2006156230A (en) Nonaqueous electrolyte secondary battery and its charging method
JPH07254436A (en) Lithium secondary battery and manufacture thereof
JPH09147910A (en) Lithium secondary battery
JP2001319653A (en) Non-aqueous secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2005183116A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP2001052698A (en) Lithium secondary battery
JP2003163029A (en) Secondary non-aqueous electrolyte battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2001052752A (en) Lithium secondary battery
JP2002151093A (en) Organic electrolyte cell
JP4253921B2 (en) Lithium secondary battery