JP2002151090A - Cell for solid polymer type fuel battery - Google Patents

Cell for solid polymer type fuel battery

Info

Publication number
JP2002151090A
JP2002151090A JP2000345220A JP2000345220A JP2002151090A JP 2002151090 A JP2002151090 A JP 2002151090A JP 2000345220 A JP2000345220 A JP 2000345220A JP 2000345220 A JP2000345220 A JP 2000345220A JP 2002151090 A JP2002151090 A JP 2002151090A
Authority
JP
Japan
Prior art keywords
concentration
reaction layer
cell
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000345220A
Other languages
Japanese (ja)
Inventor
Eiki Ito
栄基 伊藤
Toshiro Kobayashi
敏郎 小林
Takuya Moriga
卓也 森賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000345220A priority Critical patent/JP2002151090A/en
Publication of JP2002151090A publication Critical patent/JP2002151090A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To make water management easy to catty out, and to improve CO- resistant nature. SOLUTION: In a cell for solid polymer type fuel batteries, in which a solid high polymer film is sandwiched of its fuel pole side and its air pole with a reaction layer, a battery reaction is controlled by providing one of means at least of making concentration of the catalyst smaller than the concentration in other domains of the above reaction layer 6a, or making concentration of the electrolyte high polymer larger than the concentration in other domains of the above reaction layer 6a, in the above reaction layer domain X near a reaction gas entrance of a fuel pole side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池(PEFC:Polymer Elecrolyt
e Fuel Cell)用セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell (PEFC: Polymer Electrolyt).
e Fuel Cell).

【0002】[0002]

【従来の技術】周知の如く、固体高分子型燃料電池の基
本構成は、図1に示すようになっている。この燃料電池
1は、PEFC用セル2と、このセル2の両端側に配置
されてセル2を挟持するセパレータ3a,3bと、前記
セル2とセパレータ3a,3b間に配置された拡散層4
とから構成されている。
2. Description of the Related Art As is well known, the basic structure of a polymer electrolyte fuel cell is shown in FIG. The fuel cell 1 includes a PEFC cell 2, separators 3 a and 3 b disposed at both ends of the cell 2 to sandwich the cell 2, and a diffusion layer 4 disposed between the cell 2 and the separators 3 a and 3 b.
It is composed of

【0003】前記PEFC用セル2は、固体高分子膜5
と、該膜5の両側に配置された反応層6a,6bとから
構成されている。前記拡散層4は、カーボンペーパ7
と、この一方の主面に形成されたスラリー層8とから構
成されている。前記セパレータ3aのセル側には水素ガ
スを流すための溝9が形成され、他方のセパレータ3b
には空気を流すための溝10が形成されている。
[0003] The PEFC cell 2 comprises a solid polymer film 5.
And reaction layers 6 a and 6 b disposed on both sides of the film 5. The diffusion layer 4 is made of carbon paper 7
And a slurry layer 8 formed on one of the main surfaces. A groove 9 for flowing hydrogen gas is formed on the cell side of the separator 3a.
Is formed with a groove 10 for flowing air.

【0004】こうした構成のPEFCにおいて、前記セ
ルは、触媒(例えばPt)と電解質高分子を混合したイ
ンキを固体高分子膜の両面に塗付した後、乾燥すること
により形成される。
In the PEFC having such a configuration, the cell is formed by applying an ink obtained by mixing a catalyst (for example, Pt) and an electrolyte polymer to both surfaces of a solid polymer film, and then drying.

【0005】従来、PEFC用セルの具体的な例として
は、触媒及びイオノマー(電解質内高分子)からなる多
孔性反応層を両面に施与されたポリマー電解質膜を含む
ポリマー−電解質燃料電池用膜−電極単位が知られてい
る(特開平11−329452)。
Conventionally, a specific example of a cell for PEFC is a membrane for a polymer-electrolyte fuel cell including a polymer electrolyte membrane provided on both sides with a porous reaction layer comprising a catalyst and an ionomer (polymer in the electrolyte). -An electrode unit is known (JP-A-11-329452).

【0006】ところで、こうしたセルの反応層では触媒
及びイオノマーの濃度が均一に形成されているため、水
管理、耐CO性の向上が困難となるという問題があっ
た。つまり、アノード(燃料極)側では反応ガスの入口
で電池反応が大きく発生して水をひきつれるため、高分
子成分が乾燥気味になる。一方、カソード(空気極)側
では上流で水が多く発生し、下流に貯まりやすくなる。
However, since the concentration of the catalyst and the ionomer is formed uniformly in the reaction layer of such a cell, there is a problem that it is difficult to improve water management and CO resistance. In other words, on the anode (fuel electrode) side, a large cell reaction occurs at the inlet of the reaction gas and water is drawn, so that the polymer component tends to be dry. On the other hand, on the cathode (air electrode) side, a large amount of water is generated on the upstream side, and the water is easily stored on the downstream side.

【0007】このことは、第6回燃料電池シンポジウム
(「固体高分子燃料電池の電流密度分布測定と解析」、
豊橋技術科学大学・富家俊充他4名等)による発表によ
っても明らかである。
This is described in the 6th Fuel Cell Symposium (“Measurement and Analysis of Current Density Distribution of Polymer Electrolyte Fuel Cell”,
It is also evident from the presentation by Toyohashi University of Technology, Tomiyashi Tomie and four others).

【0008】[0008]

【発明が解決しようとする課題】本発明はこうした事情
を考慮してなされたもので、燃料極側の反応ガス入口近
くの前記反応層領域では、触媒の濃度を前記反応層の他
の領域における濃度より小さくするか、あるいは電解質
高分子の濃度を前記反応層の他の領域における濃度より
大きくするか、の少なくともいずれか一方の手段を講じ
て電池反応を抑制することにより、反応層全領域におけ
る触媒、電解質高分子の濃度を均一化し、もって水管理
をしやすくし、かつ耐CO性を向上しえる固体高分子型
燃料電池用セルを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances. In the reaction layer region near the reaction gas inlet on the fuel electrode side, the concentration of the catalyst is reduced in other regions of the reaction layer. The concentration is lower than the concentration, or the concentration of the electrolyte polymer is higher than the concentration in the other region of the reaction layer, or by suppressing the battery reaction by taking at least one of the means, in the entire region of the reaction layer It is an object of the present invention to provide a polymer electrolyte fuel cell having a uniform concentration of a catalyst and an electrolyte polymer, thereby facilitating water management and improving CO resistance.

【0009】[0009]

【課題を解決するための手段】本発明は、固体高分子膜
の燃料極側及び空気極側を反応層で挟持した固体高分子
型燃料電池用セルにおいて、燃料極側の反応ガス入口近
くの前記反応層領域では、触媒の濃度を前記反応層の他
の領域における濃度より小さくするか、あるいは電解質
高分子の濃度を前記反応層の他の領域における濃度より
大きくするか、の少なくともいずれか一方の手段を講じ
ることにより電池反応を抑制することを特徴とする固体
高分子型燃料電池用セルである。
SUMMARY OF THE INVENTION The present invention relates to a polymer electrolyte fuel cell having a solid polymer membrane having a fuel electrode side and an air electrode side sandwiched by a reaction layer. In the reaction layer region, the concentration of the catalyst is lower than the concentration in the other region of the reaction layer, or the concentration of the electrolyte polymer is higher than the concentration in the other region of the reaction layer. A cell for a polymer electrolyte fuel cell characterized by suppressing a cell reaction by taking the above measures.

【0010】[0010]

【発明の実施の形態】以下、本発明について更に詳しく
説明する。本発明においては、下記1)、2)、3)の
いずれかの手段を講じることが必要である。 1)燃料極側の反応ガス入口近くの前記反応層領域で
は、触媒の濃度を前記反応層の他の領域における濃度よ
り小さくすること。 2)燃料極側の反応ガス入口近くの前記反応層領域で
は、電解質高分子の濃度を前記反応層の他の領域におけ
る濃度より大きくすること。 3)上記1)及び2)の両方。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, it is necessary to take one of the following measures 1), 2) and 3). 1) In the reaction layer region near the reaction gas inlet on the fuel electrode side, the concentration of the catalyst is lower than the concentration in other regions of the reaction layer. 2) In the reaction layer region near the reaction gas inlet on the fuel electrode side, the concentration of the electrolyte polymer is higher than the concentration in other regions of the reaction layer. 3) Both 1) and 2) above.

【0011】また、本発明においては、上述したよう
に、燃料極側の反応ガス入口近くの前記反応層領域にお
ける触媒、電解質高分子の夫々の濃度を適宜制御する以
外に、空気極側の反応ガス出口近くの前記反応層領域で
は、触媒の濃度を前記反応層の他の領域における濃度よ
り大きくするか、あるいは電解質高分子の濃度を前記反
応層の他の領域における濃度より小さくするか、の少な
くともいずれか一方の手段を講じることにより電池反応
を促進させることが好ましい。
In the present invention, as described above, in addition to appropriately controlling the respective concentrations of the catalyst and the electrolyte polymer in the reaction layer region near the reaction gas inlet on the fuel electrode side, the reaction on the air electrode side is also performed. In the reaction layer region near the gas outlet, whether the concentration of the catalyst is higher than the concentration in the other region of the reaction layer or the concentration of the electrolyte polymer is lower than the concentration in the other region of the reaction layer. It is preferable to promote the battery reaction by taking at least one of the means.

【0012】本発明において、上記のように、燃料極側
の反応ガス入口近くの前記反応層領域における触媒、電
解質高分子の夫々の濃度、空気極側の反応ガス入口近く
の前記反応層における触媒、電解質高分子の夫々の濃度
を調整するのは次のような理由による。
In the present invention, as described above, the catalyst in the reaction layer region near the reaction gas inlet on the fuel electrode side, the respective concentrations of the electrolyte polymer, and the catalyst in the reaction layer near the reaction gas inlet on the air electrode side The respective concentrations of the electrolyte polymer are adjusted for the following reasons.

【0013】燃料極側の反応ガス入口近くの前記反応層
領域における触媒、電解質高分子の夫々の濃度を調節す
ることにより、燃料極側の反応ガス入口近くでの加湿用
水の消費を抑制してセル面内で均一な加湿を行うことが
できるとともに、空気極側への泳動水を抑制することで
空気極側の過加湿を抑制し、面内で均一な発電を実現さ
せることができ、空気極側の反応ガス入口近くの前記反
応層における触媒、電解質高分子の夫々の濃度を調整す
ることにより、空気極側の反応ガス出口での水生成を抑
制しセパレータ溝にたまる水を減少させることができ、
面内で均一な発電を実現させることができるからであ
る。
By controlling the concentration of the catalyst and the concentration of the electrolyte polymer in the reaction layer region near the reaction gas inlet on the fuel electrode side, the consumption of humidifying water near the reaction gas inlet on the fuel electrode side is suppressed. In addition to being able to perform uniform humidification in the cell plane, it is also possible to suppress over-humidification on the air electrode side by suppressing migration water to the air electrode side, and realize uniform power generation in the plane. By adjusting the respective concentrations of the catalyst and the electrolyte polymer in the reaction layer near the reaction gas inlet on the electrode side, the generation of water at the reaction gas outlet on the air electrode side is suppressed, and the water accumulated in the separator groove is reduced. Can be
This is because uniform power generation in the plane can be realized.

【0014】[0014]

【実施例】以下、本発明の実施例に係る固体高分子型燃
料電池(PEFC)用セルについてその製造方法を併記
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a cell for a polymer electrolyte fuel cell (PEFC) according to an embodiment of the present invention will be described together.

【0015】(実施例1)まず、カーボンブラックに、
平均粒径3〜4nmの白金合金粒子を54重量%担持し
たものを、アノード側電極の触媒,カーボンブラック
に、平均粒径2〜3nmの白金粒子を45重量%担持し
たものをカソード側電極の触媒とした。次に、この触媒
粉末をイオン交換水に分散した後、エタノールに分散さ
せた。つづいて、この分散溶液にパーフルオロスルホン
酸樹脂溶液(商品名:SE−5112、DuPont社
製)を混合してスラリを製作した。
(Example 1) First, carbon black was
A catalyst carrying 54% by weight of platinum alloy particles having an average particle diameter of 3 to 4 nm was supported on the catalyst and carbon black of the anode side electrode, and a catalyst carrying 45% by weight of platinum particles having an average particle diameter of 2 to 3 nm was supported on the cathode side electrode. The catalyst was used. Next, this catalyst powder was dispersed in ion-exchanged water, and then dispersed in ethanol. Subsequently, a perfluorosulfonic acid resin solution (trade name: SE-5112, manufactured by DuPont) was mixed with this dispersion solution to produce a slurry.

【0016】次に、固体高分子膜(Nafion膜、商
品名:N112、DuPont社製)を水平になるよう
に配置して、これに前記スラリをエアスプレ法にて塗布
した。この時、カソード側の白金担持量は0.4〜0.
5[mg/cm]となるように調節した。一方、アノ
ード側は、白金担持量が0.4〜0.5[mg/c
]となるように調節したが、流路長方向にガス入り
口から1/6(範囲としては1/24〜1/3)の面積
に相当する部分は0.2〜0.3[mg/cm]とな
るように、またこの部分のカーボンブラックとパーフル
オロスルホン酸樹脂との重量比(C/N)は平均部分の
1/3〜1/2となるように調合した(つまり、パーフ
ルオロスルホン酸樹脂を多くした)。この後、これをホ
ットプレスすることで反応層と高分子膜接合体を得た。
Next, a solid polymer film (Nafion film, quotient
(Product name: N112, manufactured by DuPont)
And apply the slurry to it by air spray method
did. At this time, the supported amount of platinum on the cathode side is 0.4 to 0.1.
5 [mg / cm2]. Meanwhile, Ano
On the metal side, the amount of supported platinum is 0.4 to 0.5 [mg / c
m 2], But gas was introduced in the flow path length direction.
1/6 from the mouth (range 1/24 to 1/3)
Is 0.2 to 0.3 [mg / cm2]
As well as this part of carbon black and perfume
The weight ratio (C / N) to the orosulfonic acid resin is
(1/3 to 1/2)
More fluorosulfonic acid resin). After this,
The reaction layer and the polymer membrane assembly were obtained by hot pressing.

【0017】このようにして得られたPEFC用セル
は、ステレンレス製のセパレータ間に上面にテトラフル
オロエチレンにより撥水化されたカーボンペーパを介し
て挟持して、発電試験を行った。また、アノードには水
素ガスを、カソードには空気を、夫々水素利用率70
%、空気利用率40%となるように供給した。
The thus-obtained PEFC cell was subjected to a power generation test by sandwiching the upper surface of the cell between separators made of stainless steel with carbon paper water-repellent with tetrafluoroethylene. Also, hydrogen gas is used for the anode, air is used for the cathode, and the hydrogen utilization rate is 70%.
% And an air utilization rate of 40%.

【0018】このようにして製造される実施例1に係る
PEFC用セルは、白金担持量を、アノード側に位置す
る反応層入口付近(図2の斜線部分X)でその他の反応
層領域よりも0.2〜0.3[mg/cm]と少なく
した構成となっている。なお、図2中、付番11は水素
ガス供給用穴、付番12は水素ガス排出用穴を夫々示
し、矢印は水素ガスの流れを示す。
The cell for PEFC according to the first embodiment manufactured in this manner has a platinum loading near the reaction layer inlet located on the anode side (shaded area X in FIG. 2) compared to the other reaction layer regions. The configuration is as low as 0.2 to 0.3 [mg / cm 2 ]. In FIG. 2, reference numeral 11 indicates a hydrogen gas supply hole, reference numeral 12 indicates a hydrogen gas discharge hole, and arrows indicate the flow of hydrogen gas.

【0019】(実施例2)まず、カーボンブラックに、
平均粒径3〜4nmの白金合金粒子を54重量%担持し
たものを、アノード側電極の触媒,カーボンブラック
に、平均粒径2〜3nmの白金粒子を45重量%担持し
たものをカソード側電極の触媒とした。次に、この触媒
粉末をイオン交換水に分散した後、エタノールに分散さ
せた。つづいて、この分散溶液にパーフルオロスルホン
酸樹脂溶液(商品名:SE−5112、Dupont社
製)を混合してスラリを製作した。
Example 2 First, carbon black was
A catalyst carrying 54% by weight of platinum alloy particles having an average particle diameter of 3 to 4 nm was supported on the catalyst and carbon black of the anode side electrode, and a catalyst carrying 45% by weight of platinum particles having an average particle diameter of 2 to 3 nm was supported on the cathode side electrode. The catalyst was used. Next, this catalyst powder was dispersed in ion-exchanged water, and then dispersed in ethanol. Subsequently, a perfluorosulfonic acid resin solution (trade name: SE-5112, manufactured by Dupont) was mixed with this dispersion solution to produce a slurry.

【0020】次に、固体高分子膜(Nafion膜、商
品名:N112、DuPont社製)を水平になるよう
に配置して、これに前記スラリをエアスプレ法にて塗布
した。この時、アノード側の白金担持量は0.4〜0.
5[mg/cm]となるように調節した。一方、カソ
ード側は、白金担持量が0.4〜0.5[mg/c
]となるように調節したが、流路長方向にガス出口
から1/6(範囲としては1/24〜1/3)の面積に
相当する部分は0.5〜0.6[mg/cm]となる
ように調節した。この後、これをホットプレスすること
で反応層と高分子膜接合体を得た。
Next, a solid polymer film (Nafion film, quotient
(Product name: N112, manufactured by DuPont)
And apply the slurry to it by air spray method
did. At this time, the supported amount of platinum on the anode side is 0.4 to 0.1.
5 [mg / cm2]. Meanwhile, Caso
On the metal side, the amount of supported platinum is 0.4 to 0.5 [mg / c
m 2], But the gas outlet in the length direction of the flow path
To 1/6 (the range is 1/24 to 1/3)
The corresponding part is 0.5-0.6 [mg / cm2]
Was adjusted as follows. After this, hot press this
As a result, a reaction layer and a polymer membrane assembly were obtained.

【0021】このようにして得られたPEFC用セル
は、ステレンレス製のセパレータ間に上面にテトラフル
オロエチレンにより撥水化されたカーボンペーパを介し
て挟持して、発電試験を行った。また、アノードには水
素ガスを、カソードには空気を、夫々水素利用率70
%、空気利用率40%となるように供給した。
The thus-obtained PEFC cell was subjected to a power generation test by sandwiching the upper surface of the cell between separators made of stainless steel with carbon paper made water-repellent by tetrafluoroethylene. Also, hydrogen gas is used for the anode, air is used for the cathode, and the hydrogen utilization rate is 70%.
% And an air utilization rate of 40%.

【0022】このようにして製造される実施例2に係る
PEFC用セルは、白金担持量を、カソード側に位置す
る反応層出口付近(図3の斜線部分Y)でその他の反応
層領域よりも0.5〜0.6[mg/cm]と多くし
た構成となっている。
The cell for PEFC according to Example 2 manufactured in this manner has a platinum carrying amount near the outlet of the reaction layer located on the cathode side (shaded portion Y in FIG. 3) as compared with the other reaction layer regions. The configuration is increased to 0.5 to 0.6 [mg / cm 2 ].

【0023】(実施例3)まず、カーボンブラックに、
平均粒径3〜4nmの白金合金粒子を54重量%担持し
たものを、アノード側電極の触媒,カーボンブラック
に、平均粒径2〜3nmの白金粒子を45重量%担持し
たものをカソード側電極の触媒とした。次に、この触媒
粉末をイオン交換水に分散した後、エタノールに分散さ
せた。つづいて、この分散溶液にパーフルオロスルホン
酸樹脂溶液(商品名:SE−5112、Dupont社
製)を混合してスラリを製作した。
Example 3 First, carbon black was used.
A catalyst carrying 54% by weight of platinum alloy particles having an average particle diameter of 3 to 4 nm was supported on the catalyst and carbon black of the anode side electrode, and a catalyst carrying 45% by weight of platinum particles having an average particle diameter of 2 to 3 nm was supported on the cathode side electrode. The catalyst was used. Next, this catalyst powder was dispersed in ion-exchanged water, and then dispersed in ethanol. Subsequently, a perfluorosulfonic acid resin solution (trade name: SE-5112, manufactured by Dupont) was mixed with this dispersion solution to produce a slurry.

【0024】次に、固体高分子膜(商品名:N112、
DuPont社製)を水平になるように配置して、これ
に前記スラリをエアスプレ法にて塗布した。この時、カ
ソード側の白金担持量は0.4〜0.5[mg/c
]となるように調節したが、流路長方向にガス出口
から1/6(範囲としては1/24〜1/3)の面積に
相当する部分は0.5〜0.6[mg/cm]となる
ように調節した。一方、アノード側は、白金担持量が
0.4〜0.5[mg/cm]となるように調節した
が、流路長方向にガス入口から1/6(範囲としては1
/24〜1/3)の面積に相当する部分は0.2〜0.
3[mg/cm]となるように、またこの部分のカー
ボンブラックとパーフルオロスルホン酸樹脂との重量比
(C/N)は平均部分の1/3〜1/2となるように調
合した(つまり、パーフルオロスルホン酸樹脂を多くし
た)。この後、これをホットプレスすることで反応層と
高分子膜接合体を得た。
Next, a solid polymer film (trade name: N112,
DuPont) was placed horizontally, and the slurry was applied thereto by an air spray method. At this time, the amount of platinum carried on the cathode side is 0.4 to 0.5 [mg / c
m 2 ], but the portion corresponding to the area of 1/6 (1/24 to 1/3 as the range) from the gas outlet in the flow path length direction is 0.5 to 0.6 [mg] / Cm 2 ]. On the other hand, the anode side was adjusted so that the amount of supported platinum was 0.4 to 0.5 [mg / cm 2 ], but it was 1/6 from the gas inlet in the length direction of the flow path (the range was 1 to 1).
/ 24 to 1/3) is 0.2 to 0.2.
3 [mg / cm 2 ], and the weight ratio (C / N) between carbon black and perfluorosulfonic acid resin in this portion was adjusted to be 1/3 to 1/2 of the average portion. (That is, the perfluorosulfonic acid resin was increased.) Thereafter, this was hot-pressed to obtain a reaction layer and a polymer membrane assembly.

【0025】このようにして得られたPEFC用セル
は、ステレンレス製のセパレータ間に上面にテトラフル
オロエチレンにより撥水化されたカーボンペーパを介し
て挟持して、発電試験を行った。また、アノードには水
素ガスを、カソードには空気を、夫々水素利用率70
%、空気利用率40%となるように供給した。
The thus-obtained PEFC cell was subjected to a power generation test by sandwiching it on a top surface of a separator made of stainless steel via carbon paper made water-repellent by tetrafluoroethylene. Also, hydrogen gas is used for the anode, air is used for the cathode, and the hydrogen utilization rate is 70%.
% And an air utilization rate of 40%.

【0026】このようにして製造される実施例3に係る
PEFC用セルは、白金担持量を、アノード側に位置す
る反応層入口付近でその他の反応層領域よりも0.2〜
0.3[mg/cm]と少なくし、かつ空気極側に位
置する反応層出口付近でその他の反応層領域よりも0.
5〜0.6[mg/cm]と多くした構成となってい
る。
The cell for PEFC according to Example 3 manufactured as described above has a platinum loading of 0.2 to 0.2 times higher than the other reaction layer regions near the reaction layer entrance located on the anode side.
0.3 [mg / cm 2 ], and 0.1% near the exit of the reaction layer located on the air electrode side than other reaction layer regions.
The configuration is as large as 5 to 0.6 [mg / cm 2 ].

【0027】(比較例)まず、カーボンブラックに、平
均粒径3〜4nmの白金合金粒子を54重量%担持した
ものを、アノード側電極の触媒,カーボンブラックに、
平均粒径2〜3nmの白金粒子を45重量%担持したも
のをカソード側電極の触媒とした。次に、この触媒粉末
をイオン交換水に分散した後、エタノールに分散させ
た。つづいて、この分散溶液にパーフルオロスルホン酸
樹脂溶液(商品名:SE−5112、Dupont社
製)を混合してスラリを製作した。
(Comparative Example) First, carbon black loaded with 54% by weight of platinum alloy particles having an average particle size of 3 to 4 nm was used as a catalyst for the anode and carbon black.
A catalyst carrying 45% by weight of platinum particles having an average particle diameter of 2 to 3 nm was used as a catalyst for the cathode electrode. Next, this catalyst powder was dispersed in ion-exchanged water, and then dispersed in ethanol. Subsequently, a perfluorosulfonic acid resin solution (trade name: SE-5112, manufactured by Dupont) was mixed with this dispersion solution to produce a slurry.

【0028】次に、固体高分子膜(商品名:N112、
Dupont社製)を水平になるように配置して、これ
に前記スラリをエアスプレ法にて塗布した。この時、カ
ソード側の白金担持量は0.4〜0.5[mg/c
]となるように調節し、アノード側は白金担持量が
0.4〜0.5[mg/cm]となるように調節し
た。この後、これをホットプレスすることで反応層と高
分子膜接合体を得た。
Next, a solid polymer membrane (trade name: N112,
(Manufactured by Dupont) was placed horizontally, and the slurry was applied thereto by an air spray method. At this time, the amount of platinum carried on the cathode side is 0.4 to 0.5 [mg / c
m 2 ], and the amount of platinum carried on the anode side was adjusted to 0.4 to 0.5 [mg / cm 2 ]. Thereafter, this was hot-pressed to obtain a reaction layer and a polymer membrane assembly.

【0029】このようにして得られたPEFC用セル
は、ステレンレス製のセパレータ間に上面にテトラフル
オロエチレンにより撥水化されたカーボンペーパを介し
て挟持して、発電試験を行った。また、アノードには水
素ガスを、カソードには空気を、夫々水素利用率70
%、空気利用率40%となるように供給した。
The thus-obtained PEFC cell was subjected to a power generation test by sandwiching the upper surface of the cell between separators made of stainless steel with carbon paper made water-repellent by tetrafluoroethylene. Also, hydrogen gas is used for the anode, air is used for the cathode, and the hydrogen utilization rate is 70%.
% And an air utilization rate of 40%.

【0030】このようにして製造される比較例に係るP
EFC用セルは、白金担持量を、アノード側及びカソー
ド側ともに0.4〜0.5[mg/cm]と同じ量に
した構成となっている。
The P according to the comparative example thus manufactured is
The EFC cell is configured such that the amount of supported platinum is the same as 0.4 to 0.5 [mg / cm 2 ] on both the anode side and the cathode side.

【0031】上記実施例1〜3及び比較例1によるセル
電圧(V)を調べたところ、比較例が0.65Vである
のに対し、実施例1〜3は夫々0.68V,0.68
V,0.72Vと高いセル電圧が得られることが確認さ
れた。これより、本発明は比較例と比べて、反応層全領
域における触媒、電解質高分子の濃度を均一化でき、も
って水管理をしやすくし、かつ耐CO性を向上できるこ
とが明らかである。
When the cell voltage (V) according to Examples 1 to 3 and Comparative Example 1 was examined, it was 0.65 V in Comparative Example, and 0.68 V and 0.68 V in Examples 1 to 3, respectively.
It was confirmed that a cell voltage as high as V and 0.72 V was obtained. From this, it is clear that the present invention can make the concentration of the catalyst and the electrolyte polymer in the entire region of the reaction layer uniform, thereby facilitating water management and improving the CO resistance as compared with the comparative example.

【0032】なお、上記実施例では、アノード側の反応
ガス入口、カソード側の反応ガス出口近くの反応層領域
における触媒の量を調整することにより電池反応を抑制
する場合について述べたが、これに限らず、この他、ア
ノード側の反応ガス入口、カソード側の反応ガス出口近
くの反応層領域における電解質高分子の量を調整するこ
とにより電池反応を促進してもよい。
In the above embodiment, the case where the battery reaction is suppressed by adjusting the amount of the catalyst in the reaction layer region near the reaction gas inlet on the anode side and the reaction gas outlet on the cathode side has been described. In addition, the battery reaction may be promoted by adjusting the amount of the electrolyte polymer in the reaction layer region near the reaction gas inlet on the anode side and the reaction gas outlet on the cathode side.

【0033】[0033]

【発明の効果】以上詳記したように本発明によれば、燃
料極側の反応ガス入口近くの前記反応層領域では、触媒
の濃度を前記反応層の他の領域における濃度より小さく
するか、あるいは電解質高分子の濃度を前記反応層の他
の領域における濃度より大きくするか、の少なくともい
ずれか一方の手段を講じて電池反応を抑制することによ
り、反応層全領域における触媒、電解質高分子の濃度を
均一化し、もって水管理をしやすくし、かつ耐CO性を
向上しえる固体高分子型燃料電池用セルを提供できる。
As described above in detail, according to the present invention, in the reaction layer region near the reaction gas inlet on the fuel electrode side, the concentration of the catalyst is made smaller than the concentration in the other region of the reaction layer. Alternatively, the concentration of the electrolyte polymer is made higher than the concentration in the other region of the reaction layer, or by suppressing the battery reaction by taking at least one of the means, the catalyst in the entire region of the reaction layer, the electrolyte polymer. It is possible to provide a cell for a polymer electrolyte fuel cell capable of making the concentration uniform, facilitating water management, and improving the CO resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はPEFCの説明図。FIG. 1 is an explanatory diagram of a PEFC.

【図2】本発明に係るPEFC用セルの燃料極側に位置
する反応層の状態の説明図。
FIG. 2 is an explanatory view of a state of a reaction layer located on a fuel electrode side of a cell for PEFC according to the present invention.

【図3】本発明に係るPEFC用セルの空気極側に位置
する反応層の状態の説明図。
FIG. 3 is an explanatory diagram of a state of a reaction layer located on the air electrode side of the PEFC cell according to the present invention.

【符号の説明】[Explanation of symbols]

1…燃料電池、 2…PEFC用セル、 3a,3b…セパレータ、 4…拡散層、 5…固体高分子膜、 6a,6b…反応層、 7…カーボンペーパー、 8…スラリー層、 9,10…溝、 11…水素ガス供給用穴、 12…水素ガス排出用穴。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... PEFC cell, 3a, 3b ... Separator, 4 ... Diffusion layer, 5 ... Solid polymer membrane, 6a, 6b ... Reaction layer, 7 ... Carbon paper, 8 ... Slurry layer, 9, 10 ... Groove, 11: hydrogen gas supply hole, 12: hydrogen gas discharge hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森賀 卓也 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 5H018 AA06 AS02 AS03 BB08 EE03 EE05 EE17 HH05 5H026 AA06 HH05  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Takuya Moriga 4-22, Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima F-term in Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. 5H018 AA06 AS02 AS03 BB08 EE03 EE05 EE17 HH05 5H026 AA06 HH05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子膜の燃料極側及び空気極側を
反応層で挟持した固体高分子型燃料電池用セルにおい
て、 燃料極側の反応ガス入口近くの前記反応層領域では、触
媒の濃度を前記反応層の他の領域における濃度より小さ
くするか、あるいは電解質高分子の濃度を前記反応層の
他の領域における濃度より大きくするか、の少なくとも
いずれか一方の手段を講じることにより電池反応を抑制
することを特徴とする固体高分子型燃料電池用セル。
1. A solid polymer electrolyte fuel cell having a solid polymer membrane having a fuel electrode side and an air electrode side sandwiched by a reaction layer, wherein the reaction layer region near a reaction gas inlet on the fuel electrode side has a catalyst. The battery reaction is performed by taking at least one of a method of making the concentration smaller than the concentration in the other region of the reaction layer and a method of making the concentration of the electrolyte polymer larger than the concentration in the other region of the reaction layer. A cell for a polymer electrolyte fuel cell, characterized by suppressing the above.
【請求項2】 空気極側の反応ガス出口近くの前記反応
層領域では、触媒の濃度を前記反応層の他の領域におけ
る濃度より大きくするか、あるいは電解質高分子の濃度
を前記反応層の他の領域における濃度より小さくする
か、の少なくともいずれか一方の手段を講じることによ
り電池反応を促進させることを特徴とする請求項1記載
の固体高分子型燃料電池用セル。
2. In the reaction layer region near the reaction gas outlet on the air electrode side, the concentration of the catalyst is made higher than the concentration in the other region of the reaction layer, or the concentration of the electrolyte polymer is changed in the other region. 2. The cell for a polymer electrolyte fuel cell according to claim 1, wherein the cell reaction is promoted by taking at least either one of the following methods.
JP2000345220A 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery Withdrawn JP2002151090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345220A JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345220A JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Publications (1)

Publication Number Publication Date
JP2002151090A true JP2002151090A (en) 2002-05-24

Family

ID=18819289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345220A Withdrawn JP2002151090A (en) 2000-11-13 2000-11-13 Cell for solid polymer type fuel battery

Country Status (1)

Country Link
JP (1) JP2002151090A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
JP2008243548A (en) * 2007-03-27 2008-10-09 Toyota Motor Corp Electrode catalyst layer for fuel cell, and its manufacturing method
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
US7612665B2 (en) 2003-09-19 2009-11-03 Ntn Corporation Wireless sensor system and bearing assembly having built-in wireless sensor
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
US7851095B2 (en) 2004-05-26 2010-12-14 Johnson Matthey Public Limited Company Anode structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP2005078975A (en) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd Polymer electrolyte membrane-electrode junction and polymer electrolyte fuel cell using this
US7612665B2 (en) 2003-09-19 2009-11-03 Ntn Corporation Wireless sensor system and bearing assembly having built-in wireless sensor
JP2010251331A (en) * 2003-11-03 2010-11-04 General Motors Corp <Gm> Variable catalytic amount based on flow region shape
EP1575105A2 (en) 2004-03-11 2005-09-14 Honda Motor Co., Ltd. Polymer electrolyte fuel cell
JP2005259525A (en) * 2004-03-11 2005-09-22 Honda Motor Co Ltd Solid polymer fuel cell
US7601454B2 (en) 2004-03-11 2009-10-13 Honda Motor Co. Ltd. Polymer electrolyte fuel cell
US7851095B2 (en) 2004-05-26 2010-12-14 Johnson Matthey Public Limited Company Anode structure
US20100062305A1 (en) * 2007-03-27 2010-03-11 Satoshi Kadotani Electrode catalyst layer for fuel cell and method of producing the same
WO2008123486A1 (en) 2007-03-27 2008-10-16 Toyota Jidosha Kabushiki Kaisha Electrode catalyst layer for fuel cell and method for producing the same
JP2008243548A (en) * 2007-03-27 2008-10-09 Toyota Motor Corp Electrode catalyst layer for fuel cell, and its manufacturing method
WO2008153152A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Membrane-electrode assembly, and membrane-electrode-(gas diffusion layer) assembly and solid polymer fuel cell each comprising the same
WO2008153145A1 (en) 2007-06-15 2008-12-18 Sumitomo Chemical Company, Limited Film-electrode assembly, film-electrode gas diffusion layer assembly having the same, solid state polymer fuel cell, and film-electrode assembly manufacturing method

Similar Documents

Publication Publication Date Title
Song et al. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method
Watanabe et al. Self‐humidifying polymer electrolyte membranes for fuel cells
Liu et al. Development of novel self-humidifying composite membranes for fuel cells
Antolini et al. Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells
Hwang et al. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells
Yoon et al. Effects of channel and rib widths of flow field plates on the performance of a PEMFC
Wang et al. Durability studies on performance degradation of Pt/C catalysts of proton exchange membrane fuel cell
Antoine et al. Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
Avcioglu et al. Effect of PTFE nanoparticles in catalyst layer with high Pt loading on PEM fuel cell performance
JP4839211B2 (en) Fuel cell and fuel cell manufacturing method
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP4207120B2 (en) Catalytic electrode and electrochemical device
Yang et al. Impact of dummy load shut-down strategy on performance and durability of proton exchange membrane fuel cell stack
JP2008311064A (en) Fuel cell system and activation method of fuel cell
Xu et al. Combined activation methods for proton-exchange membrane fuel cells
Avcioglu et al. Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading
JP2002151090A (en) Cell for solid polymer type fuel battery
JP2005235706A (en) Electrode for solid polymer fuel cell
JP6543671B2 (en) Fuel cell output inspection method
JP2002164057A (en) Solid high molecular fuel cell and method of manufacturing the same
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JP2020077581A (en) Catalyst layer
Lo et al. Electrophoretic deposited Pt/C/SiO2 anode for self-humidifying and improved catalytic activity in PEMFC
JP2002100367A (en) Solid high polymer molecule type fuel cell
JP2008181753A (en) Electrode for fuel cell, membrane electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205