JP2002143771A - Ground-coil electromagnetic excitation test apparatus - Google Patents

Ground-coil electromagnetic excitation test apparatus

Info

Publication number
JP2002143771A
JP2002143771A JP2000346016A JP2000346016A JP2002143771A JP 2002143771 A JP2002143771 A JP 2002143771A JP 2000346016 A JP2000346016 A JP 2000346016A JP 2000346016 A JP2000346016 A JP 2000346016A JP 2002143771 A JP2002143771 A JP 2002143771A
Authority
JP
Japan
Prior art keywords
ground coil
coil
test
ground
electromagnetic excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000346016A
Other languages
Japanese (ja)
Other versions
JP3732735B2 (en
Inventor
Toshiaki Murai
敏昭 村井
Takeshi Fujimoto
健 藤本
Masao Suzuki
正夫 鈴木
Masayuki Aeba
雅之 饗庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2000346016A priority Critical patent/JP3732735B2/en
Publication of JP2002143771A publication Critical patent/JP2002143771A/en
Application granted granted Critical
Publication of JP3732735B2 publication Critical patent/JP3732735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground-coil electromagnetic excitation test apparatus wherewith a test for generating an electromagnetic force in a ground coil can be conducted just like in actual running without influencing a superconducting magnet. SOLUTION: A ground coil 3 is caused to face an excited superconducting magnet 5; an electric current is caused to pass through the coil 3; and the coil 3 is covered with an aluminum screening plate 4. Thus, a durability verification test of the coil 3 is conducted by generating an electromagnetic force in the conductor part of the coil 3 without influencing the superconducting magnet 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上コイル電磁加
振試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground coil electromagnetic excitation test apparatus.

【0002】[0002]

【従来の技術】従来、このような分野の文献としては、
以下に開示されるものがあった。 〔1〕吉川高雄、相原直樹、佐藤勉、諏訪博:浮上式鉄
道地上コイル用モールド樹脂の耐久性評価、鉄道総研報
告、Vol.8,No.10,pp.35〜40,19
94.10 〔2〕鈴木正夫、藤本健、諏訪博:反応射出成形方式浮
上コイルの開発、鉄道総研報告、Vol.13,No.
9,pp.9〜14,1999.9 地上コイルの開発においてその耐久性検証は重要な課題
であり、現在、営業線にて想定される30年相当の耐久
性を目標として、材料試験〔1〕、実機検証試験
〔2〕、実機使用条件調査等が進められている。これら
のうち、特に実機による耐久性検証は重要であり、これ
まで主として地上コイル表面に機械的に荷重を加える試
験方法で行い、温度、湿度などの環境劣化因子も含めた
試験を実施して、既に一定の成果を得ている。
2. Description of the Related Art Conventionally, documents in such a field include:
Some were disclosed below. [1] Takao Yoshikawa, Naoki Aihara, Tsutomu Sato, Hiroshi Suwa: Durability evaluation of mold resin for floating railway ground coil, Railway Technical Research Institute, Vol. 8, No. 10, pp. 35-40, 19
94.10 [2] Masao Suzuki, Ken Fujimoto, Hiroshi Suwa: Development of Reaction Injection Molding Type Flying Coil, Railway Technical Research Institute Report, Vol. 13, No.
9, pp. 9-14, 19999.9 Durability verification is an important issue in the development of ground coils, and material testing [1] and actual equipment verification have been conducted with the goal of durability equivalent to 30 years, which is currently assumed on commercial lines. Testing [2], investigation of the conditions for using the actual machine, and the like are in progress. Of these, durability verification using actual equipment is especially important.Until now, tests were conducted mainly by applying a mechanical load to the ground coil surface, and tests including environmental degradation factors such as temperature and humidity were conducted. Some success has already been achieved.

【0003】[0003]

【発明が解決しようとする課題】さらに、この度、励磁
した超電導磁石に地上コイルを対向させて、地上コイル
に通電し、地上コイル(導体部)に電磁力を発生させる
装置(電磁力利用地上コイル加振試験装置)を検討し
た。
Further, a device for generating an electromagnetic force in the ground coil (conductor portion) by causing the ground coil to face the excited superconducting magnet and generating an electromagnetic force in the ground coil (conductor portion) has been proposed. Excitation test equipment) was studied.

【0004】そこでは、実走行時の地上コイルとほぼ等
価な電磁力を地上コイル(導体部)に発生でき、通電に
よる温度上昇も模擬できるようにした。また、電気的な
載荷方法により、容易に走行時と同じ100Hz程度の
周波数を確保することができ、載荷回数および動的な現
象把握においても有利である。
In this case, an electromagnetic force substantially equivalent to that of the ground coil during actual running can be generated in the ground coil (conductor portion), and a temperature rise due to energization can be simulated. In addition, the frequency of about 100 Hz, which is the same as when traveling, can be easily secured by the electric loading method, which is advantageous for the number of loading times and for grasping dynamic phenomena.

【0005】しかしながら、地上コイルに作用する電磁
力の反力が超電導磁石に作用するため、その低減が重要
な課題であり、地上コイルの交流磁界を遮蔽し、超電導
磁石に動的な電磁力を発生させない方法が望まれる。
[0005] However, since the reaction force of the electromagnetic force acting on the ground coil acts on the superconducting magnet, reduction of the reaction is an important issue. The AC magnetic field of the ground coil is shielded, and the dynamic electromagnetic force is applied to the superconducting magnet. A method that does not cause this is desired.

【0006】本発明は、上記状況に鑑みて、超電導磁石
へ影響を与えず、しかも実際の走行時と同様に地上コイ
ルに電磁力を発生させる試験を実施することができる地
上コイル電磁加振試験装置を提供することを目的とす
る。
In view of the above circumstances, the present invention provides a ground coil electromagnetic excitation test which does not affect the superconducting magnet and can perform a test for generating an electromagnetic force on the ground coil in the same manner as during actual running. It is intended to provide a device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕地上コイル電磁加振試験装置において、電源と、
この電源に接続される試験用地上コイルと、この試験用
地上コイルに対向する励磁した超電導磁石と、前記試験
用地上コイルの取付架台および地上コイルを覆うアルミ
遮蔽板とを備え、前記超電導磁石に動的な電磁力を発生
させないようして前記試験用地上コイルに通電し、この
地上コイルの導体部に浮上式鉄道車両の実際の走行時と
ほぼ等価な、高い周波数の電磁力を発生させることを特
徴とする 〔2〕上記〔1〕記載の地上コイル電磁加振試験装置に
おいて、前記アルミ遮蔽板と地上コイル取付架台を一体
構成となし、動的な電磁力を内力として打ち消すことに
より前記地上コイル取付架台の設置を容易にすることを
特徴とする。
According to the present invention, in order to achieve the above object, [1] a ground coil electromagnetic excitation test apparatus includes:
A ground coil for test connected to the power supply, a superconducting magnet excited to face the ground coil for test, and an aluminum shield plate that covers a mounting stand for the ground coil for test and the ground coil, the superconducting magnet includes: Energizing the test ground coil so as not to generate a dynamic electromagnetic force, and generating a high-frequency electromagnetic force in the conductor of the ground coil substantially equivalent to the actual running of the floating railway vehicle; [2] In the ground coil electromagnetic excitation test apparatus according to the above [1], the aluminum shield plate and the ground coil mounting base are integrally formed, and the dynamic electromagnetic force is canceled as an internal force to cancel the ground. It is characterized by facilitating the installation of the coil mounting base.

【0008】〔3〕上記〔1〕記載の地上コイル電磁加
振試験装置において、前記地上コイル取付架台とアルミ
遮蔽板に囲まれた試験用地上コイル設置空間に、各種環
境条件を付加することを特徴とする。
[3] In the ground coil electromagnetic excitation test apparatus according to the above [1], various environmental conditions are added to the test ground coil installation space surrounded by the ground coil mounting base and the aluminum shield plate. Features.

【0009】〔4〕上記〔3〕記載の地上コイル電磁加
振試験装置において、前記各種環境条件が温度または湿
度であることを特徴とする。
[4] The ground coil electromagnetic excitation test apparatus according to the above [3], wherein the various environmental conditions are temperature or humidity.

【0010】〔5〕上記〔1〕から〔4〕のいずれか1
項記載の地上コイル電磁加振試験装置において、前記電
源はインバータを有し、交流と直流が重畳した電流を通
電することを特徴とする。
[5] Any one of the above [1] to [4]
The terrestrial coil electromagnetic excitation test device according to the above paragraph, wherein the power supply has an inverter and supplies a current in which alternating current and direct current are superimposed.

【0011】〔6〕上記〔1〕から〔5〕のいずれか1
記載の地上コイル電磁加振試験装置において、前記超電
導磁石と試験用地上コイルの間隔を狭くし、この試験用
地上コイルに通電することを特徴とする。
[6] Any one of the above [1] to [5]
The above ground coil electromagnetic excitation test apparatus is characterized in that the distance between the superconducting magnet and the test ground coil is reduced, and the test ground coil is energized.

【0012】このように、通電する試験用地上コイルを
アルミ遮蔽板で覆い、励磁した超電導磁石に動的な電磁
力を発生させないようにすることにより、超電導磁石に
影響を与えずに、試験用地上コイルの導体部に浮上式鉄
道車両の実際の走行時とほぼ等価な、高い周波数の電磁
力を発生させることができる。
Thus, by covering the energized test ground coil with the aluminum shield plate so as not to generate a dynamic electromagnetic force in the excited superconducting magnet, the superconducting magnet is not affected and the test ground is not affected. It is possible to generate a high-frequency electromagnetic force in the conductor portion of the upper coil, which is almost equivalent to that in the actual operation of the floating railway vehicle.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0014】まず、本発明にかかる電磁力利用地上コイ
ル加振試験装置の基本構成について説明する。
First, the basic configuration of an electromagnetic force ground coil vibration test apparatus according to the present invention will be described.

【0015】図1は本発明の実施例を示す電磁力利用地
上コイル加振試験装置の模式図である。
FIG. 1 is a schematic view of a ground coil vibration test apparatus using electromagnetic force according to an embodiment of the present invention.

【0016】この図において、1は電源(インバータ1
00Hz,1000A)、2は地上コイル取付架台、3
は地上コイル、4はアルミ遮蔽板、5は超電導磁石(超
電導コイル)である。
In FIG. 1, reference numeral 1 denotes a power supply (inverter 1).
00Hz, 1000A), 2 is a ground coil mounting base, 3
Is a ground coil, 4 is an aluminum shielding plate, and 5 is a superconducting magnet (superconducting coil).

【0017】ここで、地上コイル3の温度上昇を等価に
するため、地上コイル3のrms電流および通電パター
ンはできるだけ実機と同じものとする。試験期間を考慮
すると、実使用時の回数の載荷は現実的でないため、モ
ールド樹脂におけるS−N特性から加速劣化させること
にする。
Here, in order to make the temperature rise of the ground coil 3 equivalent, the rms current and energization pattern of the ground coil 3 are made as close as possible to the actual machine. In consideration of the test period, the number of times of loading during actual use is not realistic, and therefore, the deterioration is accelerated from the SN characteristics of the mold resin.

【0018】また、地上コイル3に作用する荷重を増加
させるために、超電導コイル5と地上コイル3の間隔を
狭く(縮小)し、さらに電流を増加させる。
Further, in order to increase the load acting on the ground coil 3, the distance between the superconducting coil 5 and the ground coil 3 is reduced (reduced), and the current is further increased.

【0019】そこで、地上コイル3と超電導コイル5の
間にアルミ遮蔽板4を設けることによって、地上コイル
3の交流磁界を遮蔽する。そのため、地上コイル3に作
用する電磁力の反力はアルミ遮蔽板4に作用し、アルミ
遮蔽板4と地上コイル取付架台2を一体構成とすれば、
動的な電磁力を内力として打ち消すことができる。
Therefore, an AC magnetic field of the ground coil 3 is shielded by providing an aluminum shielding plate 4 between the ground coil 3 and the superconducting coil 5. Therefore, the reaction force of the electromagnetic force acting on the ground coil 3 acts on the aluminum shielding plate 4, and if the aluminum shielding plate 4 and the ground coil mounting base 2 are integrally configured,
Dynamic electromagnetic force can be canceled as internal force.

【0020】また、電気的な耐久性を確認するために、
地上コイル取付架台2およびアルミ遮蔽板4を接地し
て、地上コイル課電を行う。また、地上コイル取付架台
2とアルミ遮蔽板4に囲まれた地上コイル設置空間に、
各種環境条件(温度、湿度)を付加する。
Also, in order to confirm the electrical durability,
The ground coil mounting base 2 and the aluminum shield plate 4 are grounded, and ground coil power is applied. Also, in the ground coil installation space surrounded by the ground coil mounting base 2 and the aluminum shield plate 4,
Various environmental conditions (temperature, humidity) are added.

【0021】以下、電磁力検討例について述べる。Hereinafter, an example of studying electromagnetic force will be described.

【0022】0.45mピッチ浮上コイルを例に、加振
試験時の通電電流および電磁力を計算する。
Using a 0.45 m pitch levitation coil as an example, a current and an electromagnetic force during a vibration test are calculated.

【0023】まず、通電電流について説明する。First, the energizing current will be described.

【0024】図2は本発明にかかる実走行時の通電電流
を示す図であり、横軸に位置(m)、縦軸に実走行時浮
上コイルへの電流のピーク値に対する電流の比を示して
いる。
FIG. 2 is a diagram showing the current flowing during actual running according to the present invention. The horizontal axis indicates the position (m), and the vertical axis indicates the ratio of the current to the peak value of the current flowing to the levitating coil during actual running. ing.

【0025】一方、加振試験において、実走行時と同様
な上下力およびロールモーメントを発生させるために
は、浮上コイルを超電導磁石前後中心に設置し、その電
流波形を直流+交流とする必要がある。そのため、実走
行時と同じ実効値になる加振試験における通電電流は、
図2に示すようになる。
On the other hand, in the vibration test, in order to generate a vertical force and a roll moment similar to those during actual running, it is necessary to install a levitation coil in the center of the superconducting magnet before and after, and to make the current waveform DC + AC. is there. Therefore, the energizing current in the vibration test that becomes the same effective value as during actual running is
As shown in FIG.

【0026】次に、浮上コイルに作用する電磁力につい
て説明する。
Next, the electromagnetic force acting on the flying coil will be described.

【0027】実走行時の浮上コイルに作用する電磁力の
例として、発生応力への影響が大きいと考えられる、左
右力、上下力、ロールモーメントの計算値を図3に示
す。
FIG. 3 shows calculated values of the lateral force, the vertical force, and the roll moment, which are considered to have a large influence on the generated stress, as examples of the electromagnetic force acting on the levitation coil during actual running.

【0028】図3はその浮上コイルに作用する電磁力お
よびモーメント(実走行時)を示す図であり、横軸に位
置(m)、左縦軸に左右力ピーク値に対する電磁力の
比、右縦軸にロールモーメントピーク値に対するロール
モーメントの比を示している。
FIG. 3 is a diagram showing the electromagnetic force and moment (actual traveling) acting on the levitation coil. The horizontal axis represents the position (m), the left vertical axis represents the ratio of the electromagnetic force to the right and left force peak value, The vertical axis indicates the ratio of the roll moment to the roll moment peak value.

【0029】一方、前項の電流を用いた加振試験〔超電
導コイル中心と地上コイル中心の間隔が標準間隔の場合
および縮小間隔(60mm縮小)の場合〕における値を
図4に示す。
On the other hand, FIG. 4 shows values in the vibration test using the current described in the preceding paragraph (when the distance between the center of the superconducting coil and the center of the ground coil is the standard distance and when the distance is the reduced distance (60 mm reduced)).

【0030】図4は本発明にかかる浮上コイルに作用す
る電磁力およびモーメント(加振試験)を示す図であ
り、図4(a)は浮上コイル中心間が標準間隔の場合、
図4(b)は浮上コイル中心間が縮小間隔の場合であ
り、それぞれ横軸に位置(m)、左縦軸に実走行左右力
ピーク値に対する電磁力の比、右縦軸に実走行ロールモ
ーメントピーク値に対するロールモーメントの比を示し
ている。
FIG. 4 is a view showing an electromagnetic force and a moment (excitation test) acting on the levitation coil according to the present invention. FIG.
FIG. 4B shows a case where the distance between the centers of the levitating coils is a reduction interval. The horizontal axis represents the position (m), the left vertical axis represents the ratio of the electromagnetic force to the actual running left / right force peak value, and the right vertical axis represents the actual running roll. The ratio of the roll moment to the moment peak value is shown.

【0031】なお、電磁力の符号は、左右力については
側壁向きを正、上下力については上向きを正、ロールモ
ーメントについてはコイル上部を車両側へ、コイル下部
を側壁側へ回転させる向きを正とした。
The sign of the electromagnetic force is such that the side wall direction is positive for left and right forces, the upward direction is positive for up and down forces, the direction for rotating the coil upper part to the vehicle side and the coil lower part to the side wall side is positive for the roll moment. And

【0032】図4より、加振試験では、左右力、上下
力、ロールモーメントは実走行時とほぼ等価となる。な
お、その他の方向の電磁力、モーメントは0となる。ま
た、コイル中心間縮小時は、実走行時における上下力
(4つのピーク値の平均)の1.83倍、左右力の1
倍、ロールモーメントの1.27倍となる。
As shown in FIG. 4, in the vibration test, the lateral force, the vertical force, and the roll moment are substantially equivalent to those during actual running. Note that the electromagnetic force and moment in other directions are zero. When the distance between the coil centers is reduced, 1.83 times the vertical force (average of four peak values) and 1 time of the lateral force during actual running.
Times and 1.27 times the roll moment.

【0033】次に、本発明の地上コイル電磁加振試験に
ついて説明する。
Next, the ground coil electromagnetic excitation test of the present invention will be described.

【0034】ここでは、電磁力利用地上コイル加振試験
装置を開発するにあたって、以下のような基本的な課題
を確認するために、地上コイル電磁加振試験を行った。
Here, in developing a ground coil vibration test device using electromagnetic force, a ground coil electromagnetic vibration test was performed to confirm the following basic problems.

【0035】(1)超電導磁石への影響(振動、発熱
量)を確認する。
(1) Check the influence (vibration and heat generation) on the superconducting magnet.

【0036】(2)地上コイルに設計通りの電磁力が発
生していることを確認する。
(2) Confirm that the designed electromagnetic force is generated in the ground coil.

【0037】(3)地上コイル取付架台および電源にお
ける問題の有無を確認する。
(3) Check whether there is any problem in the ground coil mounting base and the power supply.

【0038】〔試験装置の構成〕本発明における試験装
置は、図1に示したように、地上コイル取付架台2、試
験用地上コイル3、電源1、超電導磁石5にて構成され
る。各構成要素の特徴を以下に示す。
[Configuration of Test Apparatus] As shown in FIG. 1, the test apparatus according to the present invention includes a ground coil mounting base 2, a test ground coil 3, a power supply 1, and a superconducting magnet 5. The features of each component are shown below.

【0039】(1)地上コイル取付架台 試験用地上コイル3が発生する交流磁界を遮蔽するため
に、試験用地上コイル3を囲むアルミ遮蔽板4を設け
る。
(1) Ground coil mounting base In order to shield the AC magnetic field generated by the test ground coil 3, an aluminum shield plate 4 surrounding the test ground coil 3 is provided.

【0040】(2)試験用地上コイル 図5は試験に使用した試験用地上コイルを示す図であ
り、図5(a)はその試験用地上コイルの正面図、図5
(b)はその試験用地上コイルの側面図である。
(2) Test Ground Coil FIG. 5 is a view showing a test ground coil used in the test, and FIG. 5A is a front view of the test ground coil.
(B) is a side view of the test ground coil.

【0041】この試験用地上コイル3は、浮上電流と同
じ向きの電流が通電できるような巻線構成となってい
る。これらの図において、11は樹脂体、12は2個の
8字形地上コイル、13は導出端子である。
The test ground coil 3 has a winding structure such that a current in the same direction as the floating current can flow. In these figures, 11 is a resin body, 12 is two figure-eight ground coils, and 13 is a lead terminal.

【0042】(3)電源 電源1として使用したインバータは、交流と直流が重畳
した電流が通電できるようになっている。
(3) Power Supply The inverter used as the power supply 1 is capable of supplying a current in which AC and DC are superimposed.

【0043】(4)超電導磁石 試験に使用した超電導磁石5は、内槽、シールド板、お
よび外槽に加速度計が設けられている。
(4) Superconducting Magnet The superconducting magnet 5 used in the test has an accelerometer provided in the inner tank, the shield plate, and the outer tank.

【0044】次に、地上コイルに作用する電磁力につい
て説明する。
Next, the electromagnetic force acting on the ground coil will be described.

【0045】(1)遮蔽板の渦電流による電磁力 試験用地上コイル3を荷重変換器を介して地上コイル取
付架台2に取り付けて、超電導磁石5に対向させ、試験
用地上コイル3に通電して発生する電磁力を測定した。
(1) Electromagnetic force due to eddy current of shield plate The test ground coil 3 is mounted on the ground coil mounting base 2 via a load converter, is opposed to the superconducting magnet 5, and the test ground coil 3 is energized. The generated electromagnetic force was measured.

【0046】試験用地上コイルが作る磁界によりアルミ
遮蔽板には渦電流が発生し、これによる電磁力が試験用
地上コイルに発生する。そこで、本試験における試験用
地上コイルに対する影響を確認するために、アルミ遮蔽
板があって励磁した超電導コイルに対向させた場合の条
件に対して、アルミ遮蔽板がない場合、および超電導コ
イルを励磁しない場合の電磁力を比較したものを図6に
示す。
An eddy current is generated in the aluminum shielding plate by a magnetic field generated by the test ground coil, and an electromagnetic force due to the eddy current is generated in the test ground coil. Therefore, in order to confirm the effect on the test ground coil in this test, the condition when there was an aluminum shield plate and the superconductive coil was opposed to the excited superconducting coil was compared with the condition when there was no aluminum shield plate and when the superconducting coil was excited. FIG. 6 shows a comparison of the electromagnetic force in the case of not performing.

【0047】図6は遮蔽板なし・無励磁条件における電
磁力の比較を示す図であり、図6(a)は左右力の特性
図、図6(b)は上下力の特性図、図6(c)はロール
モーメントの特性図である。なお、それぞれの図におい
て、遮蔽板有り、励磁条件での平均(絶対値)を1とし
た比で表している。
FIG. 6 is a diagram showing a comparison of the electromagnetic force under the condition of no shielding plate and no excitation, FIG. 6 (a) is a characteristic diagram of the right and left force, FIG. 6 (b) is a characteristic diagram of the vertical force, FIG. (C) is a characteristic diagram of the roll moment. In each of the figures, the ratio is represented by setting the average (absolute value) under excitation conditions to 1 with the shielding plate.

【0048】ここで、アルミ遮蔽板の有無による電磁力
の差は小さい。
Here, the difference in electromagnetic force between the presence and absence of the aluminum shielding plate is small.

【0049】(2)コイル中心間隔の違いによる電磁力 地上コイル取付用架台の位置を変えることにより、超電
導コイル中心と地上コイル中心の間隔を変えた場合の電
磁力(平均値+基本波成分)を比較したものを、計算値
と共に図7に示す。
(2) Electromagnetic force due to difference in coil center distance Electromagnetic force when the distance between the superconducting coil center and the ground coil center is changed by changing the position of the ground coil mounting base (average value + fundamental wave component) 7 are shown in FIG. 7 together with the calculated values.

【0050】図7はコイル中心間隔の違いによる電磁力
を示す図であり、横軸にコイル中心間隔縮小量(m
m)、左縦軸に標準間隔での左右力測定値に対する電磁
力の比、右縦軸に標準間隔でのロールモーメント測定値
に対するロールモーメントの比を示している。
FIG. 7 is a graph showing the electromagnetic force due to the difference between the coil center intervals.
m), the left vertical axis shows the ratio of the electromagnetic force to the measured lateral force at the standard interval, and the right vertical axis shows the ratio of the roll moment to the measured roll moment at the standard interval.

【0051】ここでは、コイル中心間隔が小さくなるに
つれて電磁力が大きくなっており、コイル中心間隔が標
準間隔の場合に対し、縮小間隔(60mm縮小)の場合
では、左右力は約1.4倍、上下力は約1.5倍、ロー
ルモーメントは約1.3倍となった。また、測定値と計
算値はほぼ一致している。
Here, the electromagnetic force increases as the coil center interval decreases, and when the coil center interval is the standard interval, the lateral force is approximately 1.4 times larger at the reduced interval (60 mm reduction). The vertical force was about 1.5 times and the roll moment was about 1.3 times. Further, the measured value and the calculated value are almost the same.

【0052】次に、超電導磁石への影響について説明す
る。
Next, the effect on the superconducting magnet will be described.

【0053】(1)遮蔽板の有無による振動・発熱量 地上コイル電磁加振試験時における、超電導磁石の内槽
振動加速度最大値(レーストラック中央部にて発生)お
よび液体ヘリウム発熱量の定常発熱量に対する増分(最
大値)を図8に示す。
(1) Vibration and heat generation due to the presence or absence of the shield plate The maximum value of the inner tank vibration acceleration of the superconducting magnet (generated at the center of the race track) and the steady heat generation of liquid helium during the electromagnetic excitation test of the ground coil The increment (maximum) for the amount is shown in FIG.

【0054】その結果、超電導コイルの共振周波数に近
い周波数での加振試験において、アルミ遮蔽板がない場
合に対してアルミ遮蔽板がある場合は、振動加速度、発
熱量増分共に、大幅に低減することを確認することがで
きた。また、地上コイルに作用する電磁力を増加させる
ために、超電導コイル中心と地上コイル中心の間隔を縮
小する場合においても、振動加速度、発熱量増分共に、
問題のない値であることを確認することができた。
As a result, in the vibration test at a frequency close to the resonance frequency of the superconducting coil, when the aluminum shielding plate is provided, when the aluminum shielding plate is not provided, both the vibration acceleration and the increase in the calorific value are greatly reduced. I was able to confirm that. In addition, even when the distance between the center of the superconducting coil and the center of the ground coil is reduced in order to increase the electromagnetic force acting on the ground coil, both the vibration acceleration and the heating value increase,
I was able to confirm that the value was acceptable.

【0055】上記したように、励磁した超電導磁石に地
上コイルを対向させて地上コイルに通電し、地上コイル
導体部に電磁力を発生させる電磁力利用地上コイル加振
試験を行った。その結果、超電導磁石へ影響を与えず
に、試験用地上コイルに実走行時の地上コイルとほぼ等
価な電磁力を発生させることができ、以下のことが明ら
かとなった。
As described above, a ground coil excitation test was conducted by applying an electromagnetic force to the ground coil by causing the ground coil to face the excited superconducting magnet and generating an electromagnetic force in the ground coil conductor. As a result, without affecting the superconducting magnet, it was possible to generate an electromagnetic force on the test ground coil that was almost equivalent to the ground coil during actual running, and the following became clear.

【0056】(1)地上コイルに発生する電磁力を、平
均値と基本波成分で整理した結果、計算値とほぼ一致し
ている。
(1) As a result of arranging the electromagnetic force generated in the terrestrial coil by the average value and the fundamental wave component, the values almost match the calculated values.

【0057】(2)地上コイルを囲む遮蔽板を設けるこ
とにより、遮蔽板外部(超電導磁石側)の磁界を低減す
ることができ、超電導コイルの共振周波数に近い周波数
での加振試験や、超電導コイル中心と地上コイル中心の
間隔を縮小する場合においても、超電導磁石内槽振動加
速度、液体ヘリウム発熱量増分は、共に大幅に低減し、
超電導磁石の運転上問題のない値である。
(2) By providing the shielding plate surrounding the ground coil, the magnetic field outside the shielding plate (on the superconducting magnet side) can be reduced, and the vibration test at a frequency close to the resonance frequency of the superconducting coil, Even when the distance between the coil center and the ground coil center is reduced, the superconducting magnet inner tank vibration acceleration and the liquid helium calorific value increase are both significantly reduced,
This is a value that causes no problem in operation of the superconducting magnet.

【0058】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0059】[0059]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0060】〔A〕超電導磁石へ影響を与えずに試験が
行える。
[A] The test can be performed without affecting the superconducting magnet.

【0061】〔B〕実際の走行時と同様に地上コイルに
電磁力を発生させる試験ができる。
[B] A test for generating an electromagnetic force on the ground coil can be performed in the same manner as during actual running.

【0062】〔C〕実際の走行時と同じ周波数で加振試
験ができ、動的な現象の把握ができる。
[C] A vibration test can be performed at the same frequency as during actual running, and a dynamic phenomenon can be grasped.

【0063】〔D〕超電導磁石と地上コイルとの間隔縮
小や、地上コイルへの通電電流増加等で容易に加速試験
条件設定が可能である。
[D] Acceleration test conditions can be easily set by reducing the distance between the superconducting magnet and the ground coil, increasing the current supplied to the ground coil, and the like.

【0064】〔E〕高い周波数での試験が可能であるた
め、機械的載荷試験に比べて試験時間が短縮できる。
[E] Since the test at a high frequency is possible, the test time can be shortened as compared with the mechanical loading test.

【0065】〔F〕電磁加振と同時に通電による温度上
昇を模擬することができる。
[F] Simultaneously with electromagnetic excitation, a temperature rise due to energization can be simulated.

【0066】〔G〕アルミ遮蔽板を地上コイル取付架台
と一体構成とすることにより、動的な電磁力が内力とし
て打ち消され、地上コイル取付架台の設置が容易にな
る。
[G] By forming the aluminum shield plate and the ground coil mounting base integrally, the dynamic electromagnetic force is canceled as an internal force, and the ground coil mounting base can be easily installed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す電磁力利用地上コイル加
振試験装置の模式図である。
FIG. 1 is a schematic view of a ground coil vibration test device using electromagnetic force according to an embodiment of the present invention.

【図2】本発明にかかる実走行時の通電電流を示す図で
ある。
FIG. 2 is a diagram showing an energizing current during actual running according to the present invention.

【図3】浮上コイルに作用する電磁力およびモーメント
(実走行時)を示す図である。
FIG. 3 is a diagram illustrating an electromagnetic force and a moment (at the time of actual running) acting on a levitation coil.

【図4】本発明にかかる浮上コイルに作用する電磁力お
よびモーメント(加振試験)を示す図である。
FIG. 4 is a diagram showing an electromagnetic force and a moment (excitation test) acting on a levitation coil according to the present invention.

【図5】本発明にかかる試験用地上コイルの外形図であ
る。
FIG. 5 is an external view of a test ground coil according to the present invention.

【図6】遮蔽板なし・無励磁条件における電磁力の比較
を示す図である。
FIG. 6 is a diagram showing a comparison of electromagnetic force under no-excitation conditions with no shielding plate.

【図7】コイル中心間隔の違いによる電磁力を示す図で
ある。
FIG. 7 is a diagram illustrating an electromagnetic force due to a difference in coil center interval.

【図8】超電導磁石内槽振動加速度および液体ヘリウム
発熱量増分を示す図である。
FIG. 8 is a diagram showing the vibration acceleration of the inner tank of the superconducting magnet and the increase in the amount of heat generated by liquid helium.

【符号の説明】[Explanation of symbols]

1 電源(インバータ100Hz,1000A) 2 地上コイル取付架台 3 地上コイル 4 アルミ遮蔽板 5 超電導磁石(超電導コイル) 11 樹脂体 12 2個の8字形地上コイル 13 導出端子 DESCRIPTION OF SYMBOLS 1 Power supply (inverter 100Hz, 1000A) 2 Ground coil mounting base 3 Ground coil 4 Aluminum shield plate 5 Superconducting magnet (superconducting coil) 11 Resin body 12 Two figure eight ground coils 13 Derivation terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正夫 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 (72)発明者 饗庭 雅之 東京都国分寺市光町二丁目8番地38 財団 法人 鉄道総合技術研究所内 Fターム(参考) 2G017 AA09 BA01 5D107 AA09 BB09 CC09 CD05 5H113 AA09 CC07 DB03 DB14  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masao Suzuki 2-8-8 Hikaricho, Kokubunji-shi, Tokyo Inside the Railway Technical Research Institute (72) Inventor Masayuki Aiba 2-38 Hikaricho, Kokubunji-shi, Tokyo 38 F-term in the Railway Technical Research Institute (reference) 2G017 AA09 BA01 5D107 AA09 BB09 CC09 CD05 5H113 AA09 CC07 DB03 DB14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(a)電源と、(b)該電源に接続される
試験用地上コイルと、(c)該試験用地上コイルに対向
する励磁した超電導磁石と、(d)前記試験用地上コイ
ルの取付架台および地上コイルを覆うアルミ遮蔽板とを
備え、(e)前記超電導磁石に動的な電磁力を発生させ
ないようにして前記試験用地上コイルに通電し、該地上
コイルの導体部に浮上式鉄道車両の実際の走行時とほぼ
等価な、高い周波数の電磁力を発生させることを特徴と
する地上コイル電磁加振試験装置。
1. A power supply, (b) a test ground coil connected to the power supply, (c) an excited superconducting magnet facing the test ground coil, and (d) the test ground. (E) energizing the test ground coil so as not to generate a dynamic electromagnetic force in the superconducting magnet, and applying a current to the conductor of the ground coil. A ground coil electromagnetic excitation test device, which generates a high frequency electromagnetic force substantially equivalent to the actual operation of a floating railway vehicle.
【請求項2】 請求項1記載の地上コイル電磁加振試験
装置において、前記アルミ遮蔽板と地上コイル取付架台
を一体構成となし、動的な電磁力を内力として打ち消す
ことにより前記地上コイル取付架台の設置を容易にする
ことを特徴とする地上コイル電磁加振試験装置。
2. The terrestrial coil mounting test apparatus according to claim 1, wherein the aluminum shield plate and the terrestrial coil mounting pedestal are integrally formed, and a dynamic electromagnetic force is canceled as an internal force. A ground coil electromagnetic excitation test apparatus characterized by facilitating installation of a ground coil.
【請求項3】 請求項1記載の地上コイル電磁加振試験
装置において、前記地上コイル取付架台とアルミ遮蔽板
に囲まれた試験用地上コイル設置空間に、各種環境条件
を付加することを特徴とする地上コイル電磁加振試験装
置。
3. The ground coil electromagnetic excitation test apparatus according to claim 1, wherein various environmental conditions are added to a test ground coil installation space surrounded by the ground coil mounting base and an aluminum shield plate. Terrestrial coil electromagnetic excitation test equipment.
【請求項4】 請求項3記載の地上コイル電磁加振試験
装置において、前記各種環境条件が温度または湿度であ
ることを特徴とする地上コイル電磁加振試験装置。
4. The ground coil electromagnetic excitation test apparatus according to claim 3, wherein said various environmental conditions are temperature or humidity.
【請求項5】 請求項1から4項のいずれか1項記載の
地上コイル電磁加振試験装置において、前記電源はイン
バータを有し、交流と直流が重畳した電流を通電するこ
とを特徴とする地上コイル電磁加振試験装置。
5. The ground coil electromagnetic excitation test apparatus according to claim 1, wherein the power supply has an inverter, and supplies a current in which alternating current and direct current are superimposed. Ground coil electromagnetic excitation test equipment.
【請求項6】 請求項1から5項のいずれか1項記載の
地上コイル電磁加振試験装置において、前記超電導磁石
と試験用地上コイルの間隔を狭くし、該試験用地上コイ
ルに通電することを特徴とする地上コイル電磁加振試験
装置。
6. The ground coil electromagnetic excitation test apparatus according to claim 1, wherein a distance between the superconducting magnet and the test ground coil is reduced, and power is supplied to the test ground coil. A ground coil electromagnetic excitation test apparatus characterized by the following.
JP2000346016A 2000-11-14 2000-11-14 Ground coil electromagnetic vibration test equipment Expired - Fee Related JP3732735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000346016A JP3732735B2 (en) 2000-11-14 2000-11-14 Ground coil electromagnetic vibration test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000346016A JP3732735B2 (en) 2000-11-14 2000-11-14 Ground coil electromagnetic vibration test equipment

Publications (2)

Publication Number Publication Date
JP2002143771A true JP2002143771A (en) 2002-05-21
JP3732735B2 JP3732735B2 (en) 2006-01-11

Family

ID=18819955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000346016A Expired - Fee Related JP3732735B2 (en) 2000-11-14 2000-11-14 Ground coil electromagnetic vibration test equipment

Country Status (1)

Country Link
JP (1) JP3732735B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209282A (en) * 2007-02-27 2008-09-11 Railway Technical Res Inst Load transducing device for measuring load working on ground coil
JP2011038816A (en) * 2009-08-07 2011-02-24 Railway Technical Res Inst Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field
JP2011038817A (en) * 2009-08-07 2011-02-24 Railway Technical Res Inst Frequency variable fatigue testing device using electrically operated vibration generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209282A (en) * 2007-02-27 2008-09-11 Railway Technical Res Inst Load transducing device for measuring load working on ground coil
JP2011038816A (en) * 2009-08-07 2011-02-24 Railway Technical Res Inst Electromagnetic excitation fatigue testing device utilizing superconducting magnet magnetic field
JP2011038817A (en) * 2009-08-07 2011-02-24 Railway Technical Res Inst Frequency variable fatigue testing device using electrically operated vibration generator

Also Published As

Publication number Publication date
JP3732735B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
CN101495882A (en) MRI gradient coil assembly with reduced acoustic noise
CN109725221A (en) A kind of magnetic floats test macro and electromagnet test method
CN110369246A (en) Halbach permanent magnet array-based inertial vibration exciter and design method thereof
JP2002143771A (en) Ground-coil electromagnetic excitation test apparatus
Zhang et al. Analysis of electromechanical characteristics in air-core integrated linear synchronous motor for EDS maglev train with pitching operation condition
CN114694468B (en) Full-simulation ground dynamic test device for rotor magnet of superconducting magnetic suspension linear motor
CN214202898U (en) Full simulation ground dynamic test device for rotor magnet of superconducting magnetic suspension linear motor
Wang et al. Multi-field coupling simulation and experimental study on transformer vibration caused by DC bias
Romaric et al. Investigation on vibration characteristics of amorphous metal alloy core dry-type distribution transformer
CN115343006A (en) Electric magnetic levitation magnet vibration and impact test device
JPS6452443A (en) Magnetic resonance diagnostic apparatus
Suzuki Heating phenomena in the superconducting magnet of a maglev vehicle caused by electromagnetic vibration
Gastli Improved field oriented control of an LIM having joints in its secondary conductors
JP3316328B2 (en) Superconducting magnet test apparatus and superconducting magnet test method
Thompson et al. Flux-canceling electrodynamic maglev suspension. II. Test results and scaling laws
Li et al. The Design of a Testing Platform for Dynamic Stability of Superconducting Null-Flux Electrodynamic Suspension Systems
Sakamoto et al. Development of a MAGLEV superconducting magnet for the Yamanashi test line in Japan: Vibration characteristics and analysis for design
Wang et al. Finite Element Analysis of Electromagnetic Vibration in Large Capacity On-board Transformer
Rote Passive damping in EDS maglev systems.
CN110277940A (en) A kind of linear electric generator control method and device
JP3918623B2 (en) Electromagnet device
CN216955102U (en) Passive damping performance test device
CN113418669B (en) Method for determining parameters of non-contact electromagnetic excitation system of power transmission line
JP3704630B2 (en) Magnetically levitated train with torsional vibration detection coil of superconducting magnet
Kreischer Modern methods to monitor end winding vibrations in turbo-generators

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Ref document number: 3732735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees