JP2002131326A - Post column reagent mixing reactor - Google Patents

Post column reagent mixing reactor

Info

Publication number
JP2002131326A
JP2002131326A JP2000324804A JP2000324804A JP2002131326A JP 2002131326 A JP2002131326 A JP 2002131326A JP 2000324804 A JP2000324804 A JP 2000324804A JP 2000324804 A JP2000324804 A JP 2000324804A JP 2002131326 A JP2002131326 A JP 2002131326A
Authority
JP
Japan
Prior art keywords
reagent
flow path
reaction
reagent mixing
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000324804A
Other languages
Japanese (ja)
Inventor
Junichi Masuda
潤一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000324804A priority Critical patent/JP2002131326A/en
Publication of JP2002131326A publication Critical patent/JP2002131326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a post column reagent mixing reactor with enhanced detection sensitivity by inhibiting an objective peak from widening and suppressing a baseline noise. SOLUTION: A large-diameter part 14 with an increased passage cross-section is coupled to the rear stage of a T-joint 13 and a small-diameter part 16 for securing chemical reaction time is coupled to the large-diameter part 4. A sample liquid is mixed with a reagent liquid by swirling in the large-diameter part 14 and their reaction time is secured by the small-diameter part 16, and thus the mixing and reaction are sufficiently conducted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体クロマトグラ
フ法におけるオンラインポストカラム反応等の、あるい
はフローインジェクション法に代表されるオンライン反
応手法において用いられるポストカラム試薬混合反応装
置に関し、さらに詳細にはポストカラム試薬混合反応装
置において試料液(溶出液)と試薬液とを適切に混合さ
せかつ化学反応させるための試薬混合反応部の構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a post-column reagent mixing reaction apparatus used in an on-line post-column reaction in liquid chromatography, or in an on-line reaction technique represented by a flow injection method. The present invention relates to a structure of a reagent mixing reaction section for appropriately mixing a sample liquid (eluate) and a reagent liquid and causing a chemical reaction in a column reagent mixing reaction apparatus.

【0002】[0002]

【従来の技術】図4は液体クロマトグラフィで用いる、
従来からのポストカラム試薬混合反応装置の全体構成を
示す図である。図において1は移動相溶液が蓄積された
移動相容器、2は送液ポンプ、3は送液される移動相中
に試料を注入するためのインジェクタ、4は試料を成分
ごとに分離する分離カラム、5は分離カラムを一定温度
に維持するためのカラム恒温槽である。6は試薬液が蓄
積された試薬容器、7は送液ポンプ、8は分離カラムか
ら溶出してきた試料と試薬液とを反応させるための温調
機能を備えた反応恒温槽、9は反応恒温槽で生じた反応
生成物の検出を行う検出器、10は検出器からの検出信
号をデータ処理するデータ処理装置、11は検出器を通
過した後の排液を廃棄するドレインである。
2. Description of the Related Art FIG.
FIG. 2 is a diagram showing the overall configuration of a conventional post-column reagent mixing reaction device. In the figure, 1 is a mobile phase container in which a mobile phase solution is stored, 2 is a liquid sending pump, 3 is an injector for injecting a sample into a mobile phase to be sent, and 4 is a separation column for separating the sample into components. Reference numerals 5 and 5 denote column constant temperature baths for maintaining the separation column at a constant temperature. 6 is a reagent container in which a reagent solution is stored, 7 is a solution sending pump, 8 is a reaction thermostat provided with a temperature control function for reacting a sample eluted from the separation column with the reagent solution, and 9 is a reaction thermostat. Is a detector for detecting the reaction product generated in the above, 10 is a data processing device for performing data processing of a detection signal from the detector, and 11 is a drain for discarding waste liquid after passing through the detector.

【0003】反応恒温槽8内には、試薬容器6から送ら
れる試薬液を予め加熱しておく試薬予熱部12、分離カ
ラム4から試料液(溶出液)と試薬予熱部12からの試
薬液とを合流するT字ジョイント13、合流された試料
液と試薬液とを加熱することにより、積極的に反応させ
る試薬混合反応部14とが配管接続されている。試薬予
熱部12は反応恒温槽8に設けられている図示しないヒ
ータとの熱交換を一定時間確保できるようにするため、
コイル形状にしてある。同様に、試薬混合反応部14も
コイル形状としてあり、液体が内部を通過するのに要す
る時間を一定以上保てるようにしてある。この試薬混合
反応部14のコイル形状部分の流路長さ及び容量(体
積)は、溶出液と試薬液との混合が十分行われ、かつ化
学反応が十分に行われるのに十分な時間となるように設
定される。
[0003] In a reaction thermostat 8, a reagent preheating section 12 for preheating a reagent solution sent from the reagent container 6, a sample solution (eluate) from the separation column 4 and a reagent solution from the reagent preheating section 12 are stored. And a T-shaped joint 13 for connecting the sample liquid and the reagent liquid, which are heated by heating the combined sample liquid and reagent liquid, to positively react with each other. The reagent preheating unit 12 is configured to secure heat exchange with a heater (not shown) provided in the reaction thermostat 8 for a certain period of time.
It has a coil shape. Similarly, the reagent mixing and reacting section 14 is also formed in a coil shape so that the time required for the liquid to pass through the inside can be maintained for a certain time or more. The flow path length and the volume (volume) of the coil-shaped portion of the reagent mixing and reacting section 14 are sufficient for mixing the eluate and the reagent liquid sufficiently and for performing the chemical reaction sufficiently. It is set as follows.

【0004】また、試料液と試薬液との混合をより完全
に行うための工夫として、試薬混合反応部14の流路内
に球状物、粒子状物を充填したもの、流路の形状を往復
型として流路長(流路体積)を大きくしたものも考えら
れている。
In order to more completely mix the sample liquid and the reagent liquid, the flow path of the reagent mixing and reaction section 14 is filled with spherical or particulate matter, and the flow path is reciprocated. A mold having a large flow path length (flow path volume) is also considered.

【0005】[0005]

【発明が解決しようとする課題】通常、試薬混合反応に
より生成された反応生成物は、試薬混合反応部の後段に
取り付けられている検出器(例えばUV検出器、蛍光検
出器等)に導かれて検出され、その応答は電気信号変化
(レスポンス)として確認することができる。検出器の
信号強度変化を縦軸、時間を横軸としてプロットした出
力波形(クロマトグラム)上に現れる目的成分によるレ
スポンス(目的ピーク)を、時間方向に積分することに
より、目的成分の定量計算が行われる。
Usually, the reaction product generated by the reagent mixing reaction is led to a detector (eg, a UV detector, a fluorescence detector, etc.) attached to the downstream of the reagent mixing reaction section. The response can be confirmed as an electric signal change (response). Quantitative calculation of the target component can be performed by integrating the response (target peak) of the target component appearing on the output waveform (chromatogram) in which the signal intensity change of the detector is plotted on the vertical axis and time on the horizontal axis in the time direction. Done.

【0006】従来のポストカラム試薬混合反応装置で
は、試料液と試薬液とを低流量で流して混合反応を実行
する場合(例えば0.5mL/min)、以下に示すよ
うな問題が生じていた。 (1)試薬混合反応部の容量(体積)が大きい場合、混
合及び化学反応は十分に行われるのであるが、この容量
部分での目的成分の拡散現象により、クロマトグラム上
に現れる目的ピークに広がりが生じ、相対的な検出感度
低下の原因となる。特に、試薬混合反応部での混合状態
を改善する目的で、コイル内に球状物、粒子状物を充填
したもの、流路形状を往復型としたものは、試薬混合反
応部の容量が大きくなり、目的ピークの広がりが顕著に
なる。図6(a)は、試薬混合状態を十分にするため
に、試薬混合反応部の容量を大きくする目的で流路の断
面積を大きくした場合におけるクロマトグラムである。
この場合には、図に見られるように各ピークは拡散現象
によりブロードな波形になっている。 (2)試薬混合反応部の容量が小さい場合、目的成分の
拡散現象は低減できるのでクロマトグラム上に現れる目
的ピークの広がりを抑えることは可能である。しかしな
がら、溶出液と試薬液との混合が不十分となり、クロマ
トグラム上のベースラインノイズが増大して、その結
果、目的ピークの相対的な感度は低下する。図6(b)
は、ピーク拡散の影響を小さくするために、試薬混合反
応部の容量を減らす目的で流路の断面積を小さくした場
合におけるクロマトグラムである。この場合には、図に
見られるように試薬混合が不十分であるために、ベース
ラインノイズが顕著に現れている。
[0006] In a conventional post-column reagent mixing reaction apparatus, when a sample solution and a reagent solution are caused to flow at a low flow rate to perform a mixing reaction (for example, 0.5 mL / min), the following problems occur. . (1) When the volume (volume) of the reagent mixing reaction part is large, mixing and chemical reaction are sufficiently performed, but due to the diffusion of the target component in this volume part, the target component appears on the chromatogram and spreads. Occurs, which causes a relative decrease in detection sensitivity. In particular, for the purpose of improving the mixing state in the reagent mixing reaction section, the coil filled with spherical or particulate matter, or the reciprocating flow path shape has a large capacity of the reagent mixing reaction section. The spread of the target peak becomes remarkable. FIG. 6A is a chromatogram in the case where the cross-sectional area of the flow path is increased for the purpose of increasing the capacity of the reagent mixing reaction section in order to sufficiently mix the reagents.
In this case, as shown in the figure, each peak has a broad waveform due to the diffusion phenomenon. (2) When the capacity of the reagent mixing reaction section is small, the diffusion phenomenon of the target component can be reduced, so that the spread of the target peak appearing on the chromatogram can be suppressed. However, the mixing of the eluate and the reagent solution becomes insufficient, and the baseline noise on the chromatogram increases, and as a result, the relative sensitivity of the target peak decreases. FIG. 6 (b)
Is a chromatogram in the case where the cross-sectional area of the flow path is reduced for the purpose of reducing the capacity of the reagent mixing reaction section in order to reduce the influence of peak diffusion. In this case, as shown in the figure, due to insufficient mixing of the reagents, the baseline noise appears remarkably.

【0007】そこで、本発明はポストカラム試薬混合反
応装置を低流量のもとで用いる場合であっても、拡散現
象によるクロマトグラム上の目的ピークの広がりを抑え
ることができ、しかも、ベースラインノイズも低く抑え
ることができるようにして、従来問題となっていた感度
の低下を改善するようにしたポストカラム試薬混合反応
装置を提供することを目的とする。
Accordingly, the present invention can suppress the spread of the target peak on the chromatogram due to the diffusion phenomenon even when the post-column reagent mixing reactor is used at a low flow rate, It is an object of the present invention to provide a post-column reagent mixing and reaction apparatus capable of reducing the sensitivity, which has been a problem in the past, so as to reduce the sensitivity.

【0008】[0008]

【課題を解決するための手段】上記問題を解決するため
になされた本発明のポストカラム試薬混合反応装置は、
試薬液が流れる管状の試薬流路と、液体クロマトグラフ
装置の分離カラムからの試料液が流れる管状の試料流路
とが連結部で合流し、連結部後段の試薬混合反応部で両
液を反応させた上で検出器に送り出すポストカラム試薬
混合反応装置において、試薬混合反応部は、流路断面積
が試薬流路および試料流路よりも大きくかつ流路長が短
い大径部と、流路断面積が前記大径部よりも小さくかつ
流路長が長い小径部とがこの順で連結されていることを
特徴とする。
Means for Solving the Problems A post-column reagent mixing and reaction apparatus of the present invention made to solve the above-mentioned problems is provided by the following:
The tubular reagent flow path through which the reagent liquid flows and the tubular sample flow path through which the sample liquid flows from the separation column of the liquid chromatograph merge at the connection part, and the two liquids react in the reagent mixing reaction part downstream of the connection part. In the post-column reagent mixing reaction device that is sent to the detector after the reaction, the reagent mixing reaction section has a large-diameter portion having a flow path cross-sectional area larger than the reagent flow path and the sample flow path and a shorter flow path length, and a flow path. A small-diameter portion having a smaller cross-sectional area than the large-diameter portion and a longer flow path length is connected in this order.

【0009】即ち、本発明では試薬混合反応部の前半部
分を流路断面積を大きくし、後半部分を流路断面積を小
さくし、これらを連結するようにしている。このように
すると、前半部分では圧力差、流速差により前半部分の
流路内において渦流が発生する。この渦流により試料液
と試薬液との混合が十分に行われる。続いて十分に混合
された溶液は、後半の流路断面積が小さい部分を化学反
応が十分に行われる滞留時間をかけて流れるようにな
る。なお、前半部分は渦流発生の原因となる流体の流れ
方向での圧力変化が急峻となるように(又拡散現象を低
減させる点からも)この部分の流路長を短くしている。
一方、後半部分は化学反応に必要な滞留時間を確保でき
るように流路容量をとる必要があるが、この部分を断面
積の小さな配管とすることにより(流路長さを長くして
も、容量が極端に大きくならない範囲では)拡散現象の
影響によるピークの広がりを最小限に抑えることができ
る。
That is, in the present invention, the first half of the reagent mixing and reaction section has a larger flow path cross-sectional area, and the second half has a smaller flow path cross-sectional area, and these are connected. In this case, a vortex is generated in the flow path of the first half due to the pressure difference and the flow velocity difference in the first half. The vortex sufficiently mixes the sample liquid and the reagent liquid. Subsequently, the sufficiently mixed solution flows in the latter half portion where the cross-sectional area of the flow channel is small with a residence time during which the chemical reaction is sufficiently performed. In the first half, the flow path length of this portion is shortened so that the pressure change in the flow direction of the fluid causing the eddy flow becomes steep (and also from the viewpoint of reducing the diffusion phenomenon).
On the other hand, in the latter half, it is necessary to take the flow path capacity so as to secure the residence time necessary for the chemical reaction, but by making this part a pipe with a small cross-sectional area (even if the flow path length is increased, The peak broadening due to the effect of the diffusion phenomenon can be minimized (as long as the capacity does not become extremely large).

【0010】図3は、本発明の原理を示すための図であ
る。溶出液Aと試薬液Bとが連結部Cにおいて合流し、
大径で短い管路長の前半部分Dに送られた後、小径で長
い管路長である後半部分Eに至る。従来のように、もし
も連結部C以降が単一断面積の細管である場合には流路
内を流れる流体は層流となり両液の混合は主に分子拡散
のみによるため、十分な混合を行うことができない。し
かし図3に見られるように、前半部分Dが大径にしてあ
り、後半部分Eが小径にしてあると、流路断面積の変化
に起因して流路内に圧力差が生じ、前半部分(大径部
分)に渦流が生じる。この渦流は両液の混合を促進させ
ることになり、混合状態の改善に役立つ。続いて後半部
分(小径部分)では入口近傍の断面積が変化する部分で
縮流が生じるものの、それ以降は流れが層流となり、分
子拡散以外の影響による拡散現象は生じにくい。従って
小径部分を化学反応に必要な滞留時間を確保するため長
くしたとしても、(容量が極端に大きくならない範囲で
は)ピークの広がりを最小限に抑えることができる。
FIG. 3 is a diagram showing the principle of the present invention. The eluate A and the reagent solution B join at the connection part C,
After being sent to the first half D of the large diameter and short pipe length, it reaches the second half E which is the small diameter and long pipe length. As in the conventional case, if the connecting portion C and subsequent portions are thin tubes having a single cross-sectional area, the fluid flowing in the flow path becomes laminar and the two liquids are mixed mainly by molecular diffusion only, so that sufficient mixing is performed. Can not do. However, as shown in FIG. 3, when the first half D has a large diameter and the second half E has a small diameter, a pressure difference occurs in the flow path due to a change in the flow path cross-sectional area, and the first half D has a large diameter. A swirl occurs in the (large diameter portion). This vortex promotes the mixing of the two liquids, and helps to improve the mixing state. Subsequently, in the latter half portion (small diameter portion), although a contraction occurs at a portion where the cross-sectional area near the inlet changes, the flow thereafter becomes laminar, and diffusion phenomena due to effects other than molecular diffusion hardly occur. Therefore, even if the small diameter portion is lengthened to secure the residence time required for the chemical reaction, the spread of the peak can be minimized (as long as the capacity does not become extremely large).

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図を用い
て説明する。図1は本発明の一実施例を示すポストカラ
ム反応装置の反応恒温槽部分の構成を示す図である。図
において1は移動相容器、2は送液ポンプ、3はインジ
ェクタ、4は分離カラム、5はカラム恒温槽、6は試薬
容器、7は送液ポンプ、8は反応恒温槽、9は検出器、
10はデータ処理装置、11はドレイン、12は試薬予
熱部、13はT字ジョイントである。以上の構成は従来
例と同様であるので図4の従来例と同符号を付すことに
より、ここでの説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a reaction thermostatic chamber portion of a post-column reactor showing one embodiment of the present invention. In the figure, 1 is a mobile phase container, 2 is a liquid feed pump, 3 is an injector, 4 is a separation column, 5 is a column thermostat, 6 is a reagent container, 7 is a liquid feed pump, 8 is a reaction thermostat, and 9 is a detector. ,
Reference numeral 10 denotes a data processing device, 11 denotes a drain, 12 denotes a reagent preheating unit, and 13 denotes a T-shaped joint. Since the above configuration is the same as that of the conventional example, the same reference numerals as in the conventional example of FIG.

【0012】本装置では試薬混合反応部14を改良し
て、流路断面積が大きくかつ流路長が短い大径部15
と、流路断面積が大径部より小さくかつ流路長が長い小
径部16とをこの順で連結した構造としている。
In the present apparatus, the reagent mixing / reaction section 14 is improved so that a large-diameter section 15 having a large channel cross-sectional area and a short channel length.
And a small-diameter portion 16 having a smaller flow-path cross-sectional area than the large-diameter portion and a longer flow-path length.

【0013】図2は試薬混合反応部14近傍を拡大して
示した図である。T字ジョイント13には3つの端部が
あり、分離カラム4からの試料流路がその1つに接続さ
れ、試薬予熱部12からの試薬流路が他の1つに接続さ
れ、残りの端部に大径部15が直結される。なお、T字
ジョイント13内部の流路径は試料流路や試薬流路に用
いる配管径と略同径のものが用いられている。
FIG. 2 is an enlarged view showing the vicinity of the reagent mixing and reacting section 14. The T-joint 13 has three ends, the sample flow path from the separation column 4 is connected to one of them, the reagent flow path from the reagent preheating unit 12 is connected to the other, and the other end is connected. The large diameter portion 15 is directly connected to the portion. The flow path diameter inside the T-shaped joint 13 is substantially the same as the pipe diameter used for the sample flow path and the reagent flow path.

【0014】この大径部15での流路断面積はT字ジョ
イント13の径(即ち、試料流路や試薬流路の径でもあ
る)よりもはるかに大きくしてある。一方、大径部15
に続く小径部16は流路断面積を大径部より小さくして
ある。具体的に各部の管路寸法を例示すると、大径部1
5は内径0.76mmで長さ110mm(内容量約50
μL)、小径部16は内径0.25mmで長さ3000
mm(内容量約150μL)である。なお、試料流路、
試薬流路は内径0.125mmのものを用いている。
The cross-sectional area of the flow path at the large diameter portion 15 is much larger than the diameter of the T-shaped joint 13 (that is, the diameter of the sample flow path or the reagent flow path). On the other hand, the large diameter portion 15
The small-diameter portion 16 following the cross-section has a smaller cross-sectional area than the large-diameter portion. If the pipe size of each part is specifically illustrated, the large diameter part 1
5 has an inner diameter of 0.76 mm and a length of 110 mm (with a capacity of about 50
μL), the small diameter portion 16 has an inner diameter of 0.25 mm and a length of 3000
mm (content of about 150 μL). The sample channel,
The reagent flow path has an inner diameter of 0.125 mm.

【0015】[0015]

【実施例】次に、セミミクロスケールの液体クロマトグ
ラフ法にポストカラム反応法を組み合わせたシステムに
よる臭素酸イオン分析の例を用いて、本発明の実施例を
説明する。なお、臭素酸イオンの分析は、食品化学、水
分析、環境分析等の種々の分野において必要とされる手
法である。
EXAMPLES Next, examples of the present invention will be described using an example of bromate ion analysis by a system in which a post-column reaction method is combined with a semi-micro scale liquid chromatography method. The analysis of bromate ion is a technique required in various fields such as food chemistry, water analysis, and environmental analysis.

【0016】分析に使用した装置構成は図1に示したも
のである。本装置では通常、移動相流量が1.0mL/
min、試薬液流量0.5mL/minの標準流量で使
用するいわゆるコンベンショナルスケールにて行われる
のが一般的であるが、移動相流量や試薬液流量を減少さ
せることによって有害試薬の消費量を減少させることが
可能となり、環境面への配慮、安全性、経済性側面で有
利であるので、移動相流量を0.25mL/min、試
薬液流量を0.125mL/minとして薬品消費量を
減少させたいわゆるセミミクロスケールでの分析を行う
ものである。別の見方をすれば、セミミクロスケールに
よる分析を行う場合、コンベンショナルスケールでの分
析と同量の薬品消費量で、それより長時間の連続分析が
可能となり、長時間モニタリングの応用分析への適用が
可能になる。
The apparatus configuration used for the analysis is shown in FIG. In this device, the mobile phase flow rate is usually 1.0 mL /
In general, this is performed on a so-called conventional scale using a standard flow rate of 0.5 mL / min for the reagent solution, but the consumption of harmful reagents is reduced by reducing the mobile phase flow rate and the reagent solution flow rate. It is possible to reduce the consumption of chemicals by setting the mobile phase flow rate to 0.25 mL / min and the reagent solution flow rate to 0.125 mL / min. The analysis is performed on a so-called semi-micro scale. From another point of view, when conducting analysis on the semi-micro scale, continuous analysis can be performed for a longer period of time with the same amount of chemical consumption as analysis on the conventional scale. Will be possible.

【0017】次に分析条件について、以下に説明する。 分析分離条件: 分離カラム:shim-pack IC-A3(S) (内径2mm長さ15
0mm) 移動相:5mM硝酸水溶液 流量:0.25mL/min 温度:摂氏40度 注入量:50μL 反応条件: 反応試薬溶液A/B=1/1 A:4mM ο−ジアニシジン塩酸塩(20%エタノー
ル水溶液) B:200mM 臭化カリウム含有2M硝酸水溶液 反応溶液流量: 0.125mL/min 反応コイル材質:PEEK(ポリエーテルエーテルケト
ン) 反応温度:摂氏80度 検出器:UV検出器(検出波長450nm)
Next, the analysis conditions will be described below. Analytical separation conditions: Separation column: shim-pack IC-A3 (S) (inner diameter 2 mm, length 15
Mobile phase: 5 mM nitric acid aqueous solution Flow rate: 0.25 mL / min Temperature: 40 ° C. Injection volume: 50 μL Reaction conditions: Reaction reagent solution A / B = 1/1 A: 4 mM o-dianisidine hydrochloride (20% ethanol aqueous solution) B) 2 M nitric acid aqueous solution containing 200 mM potassium bromide Reaction solution flow rate: 0.125 mL / min Reaction coil material: PEEK (polyether ether ketone) Reaction temperature: 80 degrees Celsius Detector: UV detector (detection wavelength 450 nm)

【0018】流量の多いコンベンショナルスケールでの
分析時には特に問題が生じないが、セミミクロスケール
での分析の場合は、クロマトグラム上の目的ピークの広
がり、ベースラインノイズの増大による検出感度低下が
生じていた。(図6(a)(b)参照)。これに対し
て、本装置による結果を図5に示す。目的成分である臭
素酸イオンは、分離カラムにて分離され、流路断面積の
大きい大径部15において生じた渦流、縮流により試薬
液と十分に混合され、続く小径部16において化学反応
が行われる。本例では化学反応が起きるまで摂氏80度で
30秒以上の加熱が必要であるが、断面積の小さい小径
部16では混合溶液の流れは層流となるので、分子拡散
以外の影響による拡散現象は生じにくい。従って、小径
部分を化学反応に必要な滞留時間を確保するため長くし
たとしても、(容量が極端に大きくならない範囲では)
ピークの広がりを最小限に抑えることができるため、本
実施例においてはピークレスポンスの低下に伴う相対的
な感度低下を抑えることができる。本例により、セミミ
クロスケールの液体クロマトグラフ法とポストカラム反
応法との組み合わせにて臭素酸イオンとしてng/mL
(=ppb)レベルまでの高感度分析が可能となること
が確認できた。この感度水準はコンベンショナルスケー
ルによる場合と同一水準であり、分析感度としては十分
なものである。
There is no particular problem when analyzing on a conventional scale with a large flow rate. However, in the case of analyzing on a semi-micro scale, the detection peak is reduced on the chromatogram due to the spread of the target peak and the increase in the baseline noise. . (See FIGS. 6A and 6B). On the other hand, the results obtained by the present apparatus are shown in FIG. The bromate ion, which is the target component, is separated by the separation column, and is sufficiently mixed with the reagent solution by vortex and contraction generated in the large-diameter portion 15 having a large channel cross-sectional area. Done. In this example, heating for 30 seconds or more at 80 degrees Celsius is required until a chemical reaction occurs. However, in the small-diameter portion 16 having a small cross-sectional area, the flow of the mixed solution becomes laminar, so that diffusion phenomena due to effects other than molecular diffusion are caused. Is unlikely to occur. Therefore, even if the small-diameter portion is lengthened to secure the residence time required for the chemical reaction (as long as the capacity does not become extremely large).
Since the spread of the peak can be minimized, in this embodiment, a relative decrease in sensitivity due to a decrease in the peak response can be suppressed. According to this example, ng / mL as bromate ion was obtained by a combination of semi-micro scale liquid chromatography and post-column reaction.
It was confirmed that high-sensitivity analysis up to the (= ppb) level was possible. This sensitivity level is the same level as that on the conventional scale, and is sufficient for analysis sensitivity.

【0019】[0019]

【発明の効果】以上のように本発明のポストカラム試薬
混合反応装置によれば、低流量で分析を行うセミミクロ
スケールにおいても、従来技術で問題となっていた目的
ピークの広がり、ベースラインノイズの増大に起因する
感度低下を抑えることができる。これにより、移動相、
試薬液等の有害薬品の消費量を減らすことができ、環境
面、安全面、経済面から有利な分析を行うことができ
る。また、オンラインモニタリングシステムのように長
時間にわたって稼動することが必要なシステムにおいて
も試薬の補充を低減することができる。
As described above, according to the post-column reagent mixing reaction apparatus of the present invention, the spread of the target peak and the reduction of the baseline noise, which are problems in the prior art, even in the semi-micro scale where analysis is performed at a low flow rate. A decrease in sensitivity due to the increase can be suppressed. This allows the mobile phase,
It is possible to reduce the consumption of harmful chemicals such as reagent solutions, and it is possible to perform an analysis that is advantageous in terms of environment, safety and economy. In addition, the replenishment of reagents can be reduced even in a system that needs to operate for a long time, such as an online monitoring system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例であるポストカラム試薬混合
反応装置を用いた分析システムを示す図。
FIG. 1 is a diagram showing an analysis system using a post-column reagent mixing reaction apparatus according to one embodiment of the present invention.

【図2】本発明の一実施例であるポストカラム試薬混合
反応装置の試薬混合分析部を拡大表示した図。
FIG. 2 is an enlarged view of a reagent mixing / analyzing section of a post-column reagent mixing / reaction apparatus according to an embodiment of the present invention.

【図3】本発明のポストカラム試薬混合反応装置の原理
図。
FIG. 3 is a principle diagram of a post-column reagent mixing reaction device of the present invention.

【図4】従来からのポストカラム試薬混合反応装置を用
いた分析システムの構成図。
FIG. 4 is a configuration diagram of an analysis system using a conventional post-column reagent mixing reaction device.

【図5】本発明を用いた装置によるクロマトグラムの
例。
FIG. 5 shows an example of a chromatogram obtained by an apparatus using the present invention.

【図6】従来からの装置によるクロマトグラムの例。FIG. 6 shows an example of a chromatogram obtained by a conventional apparatus.

【符号の説明】[Explanation of symbols]

1:移動相容器 3:インジェクタ 4:分離カラム 6:試薬容器 8:反応恒温槽 9:検出器 12:試薬予熱部 13:T字ジョイント 14:試薬混合反応部 15:大径部(混合部) 16:小径部(反応部) 1: Mobile phase container 3: Injector 4: Separation column 6: Reagent container 8: Reaction thermostat 9: Detector 12: Reagent preheating section 13: T-shaped joint 14: Reagent mixing reaction section 15: Large diameter section (mixing section) 16: small diameter part (reaction part)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 35/10 G01N 35/06 K ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 35/10 G01N 35/06 K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試薬液が流れる管状の試薬流路と、分離
カラムからの試料液が流れる管状の試料流路とが連結部
で合流し、連結部後段の試薬混合反応部で両液を反応さ
せた上で検出器に送り出すポストカラム試薬混合反応装
置において、試薬混合反応部は、流路断面積が試薬流路
および試料流路よりも大きくかつ流路長が短い大径部
と、流路断面積が前記大径部よりも小さくかつ流路長が
長い小径部とがこの順で連結されていることを特徴とす
るポストカラム試薬混合反応装置。
A tubular reagent flow path through which a reagent solution flows and a tubular sample flow path through which a sample solution flows from a separation column merge at a connecting portion, and the two liquids react in a reagent mixing reaction section downstream of the connecting portion. In the post-column reagent mixing reaction device that is sent to the detector after the reaction, the reagent mixing reaction section has a large-diameter portion having a flow path cross-sectional area larger than the reagent flow path and the sample flow path and a shorter flow path length, and a flow path. A post-column reagent mixing and reaction device, wherein a small-diameter portion having a smaller cross-sectional area than the large-diameter portion and a longer flow path is connected in this order.
JP2000324804A 2000-10-25 2000-10-25 Post column reagent mixing reactor Pending JP2002131326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000324804A JP2002131326A (en) 2000-10-25 2000-10-25 Post column reagent mixing reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000324804A JP2002131326A (en) 2000-10-25 2000-10-25 Post column reagent mixing reactor

Publications (1)

Publication Number Publication Date
JP2002131326A true JP2002131326A (en) 2002-05-09

Family

ID=18802271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000324804A Pending JP2002131326A (en) 2000-10-25 2000-10-25 Post column reagent mixing reactor

Country Status (1)

Country Link
JP (1) JP2002131326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513707A (en) * 2008-02-22 2011-04-28 ダイオネックス コーポレイション Ion chromatography system with flow-delay eluent recycling
WO2011136165A1 (en) * 2010-04-28 2011-11-03 日本ケミカルリサーチ株式会社 Sugar analysis device and analysis method
JP2015194499A (en) * 2015-07-15 2015-11-05 株式会社日立ハイテクノロジーズ Fluid mixer and fluid mixing method
CN107870219A (en) * 2016-09-26 2018-04-03 中国科学院大连化学物理研究所 A kind of small chemical derivatization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513707A (en) * 2008-02-22 2011-04-28 ダイオネックス コーポレイション Ion chromatography system with flow-delay eluent recycling
WO2011136165A1 (en) * 2010-04-28 2011-11-03 日本ケミカルリサーチ株式会社 Sugar analysis device and analysis method
CN102859352A (en) * 2010-04-28 2013-01-02 日本化学研究株式会社 Sugar analysis device and analysis method
US8673648B2 (en) 2010-04-28 2014-03-18 Jcr Pharmaceuticals Co., Ltd. Sugar analysis device and analysis method
JP2015194499A (en) * 2015-07-15 2015-11-05 株式会社日立ハイテクノロジーズ Fluid mixer and fluid mixing method
CN107870219A (en) * 2016-09-26 2018-04-03 中国科学院大连化学物理研究所 A kind of small chemical derivatization device

Similar Documents

Publication Publication Date Title
Saverwyns et al. Speciation of six arsenic compounds using high-performance liquid chromatography-inductively coupled plasma mass spectrometry with sample introduction by thermospray nebulization
Alexovič et al. An automatic, vigorous-injection assisted dispersive liquid–liquid microextraction technique for stopped-flow spectrophotometric detection of boron
CN102262163B (en) Rapid and automatic determination method and device for tripolycyanamide content in dairy products
US7624626B2 (en) Dynamic flow liquid chromatography
Kubáň et al. Flow/sequential injection sample treatment coupled to capillary electrophoresis. A review
Pons et al. Multi-pumping flow system for the determination, solid-phase extraction and speciation analysis of iron
US6902937B2 (en) Method for the determination of low-concentration anions in the presence of an excess of another anion
JP2002131326A (en) Post column reagent mixing reactor
Mavrakis et al. Chip-based microfluidics on-line with inductively coupled plasma-mass spectrometry for standard dilution analysis
EP1317667A1 (en) Sequential detection ion chromatography
Opekar et al. Coaxial flow‐gating interface for capillary electrophoresis
Stoll et al. Where Has My Efficiency Gone? Impacts of Extracolumn Peak Broadening on Performance, Part III: Tubing and Detectors
Alvarez-Llamas et al. An alternative interface for CE–ICP–MS cadmium speciation in metallothioneins based on volatile species generation
Sun et al. Millifluidic chip with a modular design used as a sample pretreatment cartridge for flour and flour food products
CN103869021A (en) High performance liquid chromatography detection method and device based on surface enhanced Raman spectroscopy
JP4082309B2 (en) Solution mixer for liquid chromatography
CRAIG Flow-Injection Analysis: A new approach to near-real-time process monitoring
Kuban et al. Design of a multi-channel dropping segmenter for liquid-liquid extraction continuous flow-injection analysis
Caliamanis et al. Enhanced conductometric detection of cyanide in suppressed ion chromatography
Spence et al. Capillary flow injection: Performance under pressure
JPH0560056B2 (en)
JP3358691B2 (en) Iron measurement device
JPH076966B2 (en) Saccharide analysis method and device
JP2000193649A (en) Analytical method for trace amount of boron and device therefor
JP2000146942A (en) Device for measuring concentration of nitrogen in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302