JP2002131199A - Method for filling gas inside thin-walled cylinder with internal pressure and internal pressure-filled test piece - Google Patents

Method for filling gas inside thin-walled cylinder with internal pressure and internal pressure-filled test piece

Info

Publication number
JP2002131199A
JP2002131199A JP2000325389A JP2000325389A JP2002131199A JP 2002131199 A JP2002131199 A JP 2002131199A JP 2000325389 A JP2000325389 A JP 2000325389A JP 2000325389 A JP2000325389 A JP 2000325389A JP 2002131199 A JP2002131199 A JP 2002131199A
Authority
JP
Japan
Prior art keywords
gas
pressure
thin
cylinder
gas inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000325389A
Other languages
Japanese (ja)
Other versions
JP3423682B2 (en
Inventor
Masafumi Nakatsuka
司 雅 文 中
Masaki Seiken
見 雅 樹 青
Takayoshi Yasuda
田 隆 芳 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Nuclear Fuel Japan Co Ltd filed Critical Global Nuclear Fuel Japan Co Ltd
Priority to JP2000325389A priority Critical patent/JP3423682B2/en
Publication of JP2002131199A publication Critical patent/JP2002131199A/en
Application granted granted Critical
Publication of JP3423682B2 publication Critical patent/JP3423682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a simple method for easily filling a thin-walled cylinder internally with gas, also for having the internal pressure of excellent reliability and an internal pressure-filled test tube, when the measurement of the high temperature deformation in cylinder material is done by loading the cylinder with internal pressure for many hours. SOLUTION: In the thin-walled cylinder internal pressure filling method for measuring the high temperature deformation in such a thin-walled cylinder resulting from the time-dependence or the like by allowing the cylinder to be loaded internally with gas pressure and also allowing the gas pressure-loaded cylinder to be kept at high temperatures for many hours, it has, thus, a process for letting in high pressure gas from a gas introducing port inside the cylinder having the gas introducing port therein, a process for mechanically blocking the above gas introducing port in the high pressure ambience, and a process, thereafter, for seal-welding the above gas introducing port in the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用済み燃料被覆
管のような薄肉円筒に内圧を長時間負荷して高温変形の
測定を行うための薄肉円筒への内圧封入方法、および内
圧封入試験管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal pressure sealing method for a thin cylinder such as a spent fuel cladding tube for measuring the high temperature deformation by applying an internal pressure for a long time, and an internal pressure sealing test tube. About.

【0002】[0002]

【従来の技術】一般に、使用済み燃料被覆管の如き放射
能を有する薄肉円筒が高温に曝されたときのクリープ変
形のような高温変形特性を求めるためには、その薄肉円
筒に一定の内圧を長時間負荷し変形量の負荷時間依存性
を測定することが行われている。
2. Description of the Related Art Generally, in order to obtain high-temperature deformation characteristics such as creep deformation when a thin-walled cylinder having radioactivity such as a spent fuel cladding tube is exposed to a high temperature, a constant internal pressure is applied to the thin-walled cylinder. It has been practiced to measure the load time dependence of the amount of deformation under a long load.

【0003】図3は、上記クリープ試験を行う装置の概
略構成を示す図であって、使用済み燃料被覆管の一端に
密封用端栓を溶接し、他端に圧力ガス導入口を有する端
栓を溶接することによりクリープ試験片1が構成されて
おり、その試験片1が他の複数の試験片とともに電気炉
2内で加熱されるようにしてある。上記電気炉2には、
試験片からの放射能を遮蔽可能なように設計・施工され
た部屋(セルと称呼される)の壁3を貫通された高圧ガ
ス供給管4が接続されており、その高圧ガス供給管4が
上記試験片1の圧力ガス導入口に接続される。
FIG. 3 is a view showing a schematic configuration of an apparatus for performing the above creep test, in which a sealing end plug is welded to one end of a spent fuel cladding tube and an end plug having a pressure gas inlet at the other end. Is welded to form a creep test piece 1, and the test piece 1 is heated together with a plurality of other test pieces in the electric furnace 2. In the electric furnace 2,
A high-pressure gas supply pipe 4 penetrating a wall 3 of a room (referred to as a cell) designed and constructed so as to be able to shield the radioactivity from the test piece is connected. The test piece 1 is connected to the pressure gas inlet.

【0004】また、試験片1を加圧する気体(例えばア
ルゴンガス)5は圧縮機6によって加圧され、安全弁7
や圧力計8を経て高圧ガス蓄圧器9内に貯められ、さら
に前記セルの壁3を貫通された高圧ガス供給管4により
セル内に設置された整圧タンク10に蓄えられた後、前
記高圧ガス供給管4を経て各試験片1内に供給される。
整圧タンク10は室温の変化を受けないように恒温槽1
1内に収納されており、整圧タンク10内の圧力は所定
の試験条件に従って定められ、セル内のバルブによって
内圧が調整されるようにしてある。
A gas (for example, argon gas) 5 for pressurizing the test piece 1 is pressurized by a compressor 6 and a safety valve 7 is provided.
After being stored in a high-pressure gas accumulator 9 via a pressure gauge 8 and further stored in a pressure-regulating tank 10 installed in the cell by a high-pressure gas supply pipe 4 penetrating the cell wall 3, The gas is supplied into each test piece 1 via the gas supply pipe 4.
The pressure-regulating tank 10 is kept at a constant temperature
1, the pressure in the pressure regulating tank 10 is determined according to predetermined test conditions, and the internal pressure is adjusted by a valve in the cell.

【0005】ところで、前述のように薄肉円筒のクリー
プ変形の如き高温変形特性を求めるためには、薄肉円筒
内を高圧状態に保持する必要があるため、上記試験片に
高圧ガスが導入され所定圧になった後、上記ガス導入口
部を密閉する必要がある。そこで、レーザー光の入射が
可能なように設計された耐圧性窓付きの容器内に、ガス
導入口を具備する試験片をセットし、所定の圧力の加圧
ガスを容器および試験片内に充填させ、その高圧ガス雰
囲気内にレーザー光を入射し、ガス導入口を溶融させ密
封することが行われている。
As described above, in order to obtain high-temperature deformation characteristics such as creep deformation of a thin cylinder, it is necessary to maintain the inside of the thin cylinder in a high pressure state. After that, it is necessary to seal the gas inlet. Therefore, a test piece with a gas inlet is set in a container with a pressure-resistant window designed to allow laser light to enter, and the container and test piece are filled with a pressurized gas of a predetermined pressure. Then, laser light is injected into the high-pressure gas atmosphere to melt and seal the gas inlet.

【0006】また、別の技術として、高圧ガスを充満さ
せた容器内で、ガス導入口の近傍に電極を設置し、レー
ザー光の代わりに放電によってガス導入口を溶融し閉鎖
させ、内圧封入型試験片を得るようにすることも考えら
れる。
As another technique, an electrode is installed near a gas inlet in a container filled with a high-pressure gas, and the gas inlet is melted and closed by electric discharge instead of laser light. It is also conceivable to obtain a test strip.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記変形量
の負荷時間依存性の測定に供される試験片は、放射線を
遮蔽可能な限られた空間内で、遠隔操作によって使用済
み燃料被覆管に圧力ガスを封入する必要があるため、技
術的に困難であるとともに、封入圧力の確認が不可能で
ある等の問題があり、さらに、図3から明らかなよう
に、放射線遮蔽施設に多くの付帯施設を設ける必要があ
り、多額の新規投資と運転費が必要とされ、経済的に好
ましくない等の問題がある。
However, the test piece used for measuring the load time dependence of the deformation amount is used to remotely control the used fuel cladding tube in a limited space capable of shielding radiation. Since it is necessary to fill the pressurized gas, it is technically difficult, and there are problems such as the inability to check the filling pressure. Further, as is apparent from FIG. There is a problem that it is necessary to provide facilities, a large amount of new investment and operation costs are required, and it is economically unfavorable.

【0008】また、ガス導入口部を密封するためにレー
ザー溶接技術を応用する場合には、レーザー光を照射可
能な窓を設けた高圧容器の製作が必須であるだけでな
く、レーザー光発生装置のみならずレーザー光誘導管を
放射線防護壁を貫通配置させる必要があり、経済面で困
難である等の問題がある。さらに、試験対象となる薄肉
円筒に内圧を負荷したまま放電させることにより溶接・
密閉する従来の技術では、高圧ガス雰囲気下では放電が
十分に発生しないために溶接が不安定になり、製品の信
頼性が低下するという技術上の問題がある。
When the laser welding technique is applied to seal the gas inlet, not only is it necessary to manufacture a high-pressure container provided with a window through which laser light can be irradiated, but also a laser light generator. In addition, it is necessary to dispose the laser light guide tube through the radiation protection wall, which is problematic in that it is economically difficult. Furthermore, welding and discharging are performed by discharging the thin cylinder under test while applying internal pressure.
In the conventional technique of sealing, there is a technical problem that welding does not become stable due to insufficient discharge in a high-pressure gas atmosphere, and the reliability of a product is reduced.

【0009】本発明は、このような点に鑑み、信頼性に
優れ、且つ簡便な内圧封入方法および内圧封入試験管を
得ることを目的とする。
In view of the foregoing, an object of the present invention is to provide an internal pressure sealing method and an internal pressure sealing test tube which are excellent in reliability and simple.

【0010】[0010]

【課題を解決するための手段】請求項1に係る発明は、
薄肉円筒の内部にガス圧を負荷して、且つ長時間高温に
保持することによってその薄肉円筒の変形の時間依存性
等の高温変形を測定するための薄肉円筒内圧挿入方法に
おいて、ガス導入口を備えた薄肉円筒内にそのガス導入
口から高圧ガスを導入する工程と、高圧雰囲気内で上記
ガス導入口を機械的に閉塞する工程と、その後上記ガス
導入口を大気圧雰囲気内で密封溶接する工程とを有する
ことを特徴とする。
The invention according to claim 1 is
In the thin cylinder internal pressure insertion method for measuring high-temperature deformation such as time dependency of deformation of the thin cylinder by applying a gas pressure to the inside of the thin cylinder and maintaining a high temperature for a long time, a gas inlet is provided. A step of introducing a high-pressure gas from the gas inlet into the thin cylinder provided, a step of mechanically closing the gas inlet in a high-pressure atmosphere, and then sealingly welding the gas inlet in an atmospheric pressure atmosphere And a process.

【0011】請求項2に係る発明は、請求項1に係る発
明において、薄肉円筒の一端に密封用の端栓を溶接によ
り固着するとともに、他端にガス導入口が貫通された端
栓を溶接により固着し、そのガス導入口に端栓材と同一
の材質からなる挿入ピンを上記ガス導入口と間隙を有す
るように挿入することを特徴とする。
According to a second aspect of the present invention, in the first aspect, a sealing end plug is fixed to one end of the thin-walled cylinder by welding, and an end plug having a gas inlet port penetrated to the other end is welded. And an insertion pin made of the same material as the end plug material is inserted into the gas inlet so as to have a gap with the gas inlet.

【0012】請求項3に係る発明は、請求項2に係る発
明において、薄肉円筒内にガス導入口から高圧ガスを導
入した後、上記挿入ピンをガス導入口に圧入することに
よりガス導入口を機械的に閉塞することを特徴とする。
According to a third aspect of the present invention, in the invention according to the second aspect, after the high-pressure gas is introduced into the thin cylinder from the gas inlet, the gas inlet is inserted by pressing the insertion pin into the gas inlet. It is characterized by mechanical closure.

【0013】請求項4に係る発明は、請求項1乃至3の
いずれかに係る発明において、ガス封入時のガス内圧と
封入後のガス内圧計算値とを比較し、封入が妥当に行わ
れたことを確認する工程を有することを特徴とする。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the gas internal pressure at the time of gas filling and the calculated value of the gas internal pressure after the gas filling are compared, and the filling is properly performed. It is characterized by having a step of confirming the above.

【0014】請求項5に係る発明は、請求項1乃至4に
いずれかに係る発明において、薄肉円筒が原子炉で使用
された燃料被覆管であり、封入ガスがアルゴンガス、も
しくはヘルウムガス等の不活性ガスであり、密封溶接が
大気中でのレーザ溶接もしくは不活性ガス雰囲気下の放
電による溶接であることを特徴とする。
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the thin-walled cylinder is a fuel cladding tube used in a nuclear reactor, and the filling gas is an unfilled gas such as argon gas or helium gas. An active gas, wherein the sealing welding is laser welding in the air or welding by electric discharge in an inert gas atmosphere.

【0015】請求項6に係る発明は、薄肉円筒の内部に
ガス圧を負荷して、且つ長時間高温に保持することによ
ってその薄肉円筒の変形の時間依存性等の高温変形を測
定するための内圧封入試験管において、ガス導入口を備
えた薄肉円筒内にそのガス導入口から高圧ガスを導入し
た後、高圧雰囲気内で上記ガス導入口を機械的に閉塞
し、その後上記ガス導入口を大気圧雰囲気内で密封溶接
したことを特徴とする。
A sixth aspect of the present invention is to measure a high temperature deformation such as a time dependency of a deformation of the thin cylinder by applying a gas pressure to the inside of the thin cylinder and maintaining the high temperature for a long time. In an internal pressure sealed test tube, after introducing a high-pressure gas from a gas inlet into a thin-walled cylinder having a gas inlet, the gas inlet is mechanically closed in a high-pressure atmosphere, and then the gas inlet is enlarged. It is characterized in that it is sealed and welded in a pressure atmosphere.

【0016】請求項7に係る発明は、請求項6に係る発
明において、薄肉円筒が原子炉で使用された燃料被覆管
を所定の長さに切断したものであることを特徴とする。
The invention according to claim 7 is characterized in that, in the invention according to claim 6, the thin cylinder is obtained by cutting a fuel cladding tube used in a nuclear reactor into a predetermined length.

【0017】[0017]

【発明の実施の形態】図1は、本発明の内圧封入試験片
およびその封入方法を用いて使用済み燃料被覆管に内圧
を封入する実施の形態を示すフローチャートであり、ま
ず、放射線を十分に防護可能な施設内で、燃料集合体を
解体して高温変形特性を求めようとする核燃料棒をその
燃料集合体から取り出し、その核燃料棒を所定の長さ
(例えば90mm)に切断する。切断された燃料棒には
燃料ペレットが含まれているのでそれらを機械的に取り
除き、円筒状の燃料被覆管のみを得る。この場合、必要
に応じて被覆管を回転させながら切削することによっ
て、切断面が管の長手方向に対して直角になるように切
断面を仕上げる。そして、使用済み燃料被覆管の内表面
には核***生成物が付着しているので、放射能を低下す
るために沸騰濃硝酸中で洗浄する。また、使用済み燃料
被覆管の内外表面は一般にジルカロイの酸化膜に覆われ
ているので、燃料被覆管の両端において内外面を数mm
の長さにわたって金属表面が得られるまで機械研磨を施
す。
FIG. 1 is a flow chart showing an embodiment in which an internal pressure is sealed in a spent fuel cladding tube using the internal pressure sealing test piece and the method for sealing the same according to the present invention. In a facility capable of protection, the fuel assembly is disassembled and a nuclear fuel rod whose high-temperature deformation characteristics are to be obtained is removed from the fuel assembly, and the nuclear fuel rod is cut into a predetermined length (for example, 90 mm). Since the cut fuel rods contain fuel pellets, they are mechanically removed to obtain only a cylindrical fuel cladding tube. In this case, if necessary, the cut surface is cut by rotating the cladding tube so that the cut surface is perpendicular to the longitudinal direction of the tube. Since the fission products adhere to the inner surface of the spent fuel cladding, the spent fuel cladding is washed in boiling concentrated nitric acid in order to reduce radioactivity. In addition, since the inner and outer surfaces of the spent fuel cladding are generally covered with an oxide film of zircaloy, the inner and outer surfaces at both ends of the fuel cladding are several mm.
Mechanical polishing until a metal surface is obtained over the length of.

【0018】このようにして得られた燃料被覆管の各端
に密封用端栓とガス導入口を有する端栓とをそれぞれ溶
接して、図2に示す試験片を得る。即ち、燃料被覆管2
0には密封用端栓21とガス導入口22を有する端栓2
3がそれぞれ溶接部24によって一体化される(S
1)。また、ガス導入口22内に挿入される挿入ピン2
5を端栓と同一組成からなるジルカロイ−2から製作す
る。
A sealing end plug and an end plug having a gas inlet are welded to each end of the fuel cladding tube thus obtained to obtain a test piece shown in FIG. That is, the fuel cladding tube 2
0 is an end plug 2 having a sealing end plug 21 and a gas inlet 22.
3 are integrated by a weld 24 (S
1). Further, an insertion pin 2 inserted into the gas inlet 22 is provided.
5 is manufactured from Zircaloy-2 having the same composition as the end plug.

【0019】そこで、被覆管内部への封入ガス導入は以
下の様に実施する。図2に示す端栓溶接後の試験片のガ
ス導入口22内に挿入ピン25を緩く差し込み、同挿入
ピン25を機械的に圧入する機構を具備した封入ガス導
入治具(図示せず)を端栓22に密着させ、管内部に封
入ガス(高純度アルゴンガス、或いはヘリウムガス)を
導入する(S2)。そして、その封入ガスの圧力を圧力
計で計測し(S3)、その後、試験片内の温度が室温に
なるまで、所定の時間内圧を保持し温度を記録したの
ち、同内圧が負荷されたまま挿入ピン25を端栓23の
ガス導入口22に強固に圧入することによってガス導入
口を機械的に閉塞させる(S4)。そこで、封入ガス導
入治具を端栓23から分離させ、大気中において、不活
性ガスを吹き付けながら挿入ピン25の頂部と上記端栓
23の頂部とを放電により、或いは大気中でのレーザー
溶接により両者を溶融し結合させることにより内圧を封
入した試験片を作製する(S5)。次に試験片の全重量
を測定するとともに(S6)、ガス封入前における試験
片部材重量の測定値(S7)と上記ガス封入後の試験片
の全重量とを比較して、封入後のガス圧を計算し(S
8)、その後ガス封入前後のガス圧を比較して、ガスの
封入が妥当に行われたことを確認する(S10)。
Therefore, the introduction of the sealed gas into the cladding tube is performed as follows. An insertion gas introducing jig (not shown) having a mechanism for inserting the insertion pin 25 loosely into the gas introduction port 22 of the test piece after the end plug welding shown in FIG. 2 and mechanically press-fitting the insertion pin 25 is used. A sealing gas (high-purity argon gas or helium gas) is introduced into the inside of the tube by closely contacting the end plug 22 (S2). Then, the pressure of the sealed gas is measured by a pressure gauge (S3). After that, the internal pressure is maintained for a predetermined time until the temperature in the test piece reaches room temperature, the temperature is recorded, and then the internal pressure is applied. The gas inlet is mechanically closed by firmly pressing the insertion pin 25 into the gas inlet 22 of the end plug 23 (S4). Therefore, the sealing gas introduction jig is separated from the end plug 23, and the top of the insertion pin 25 and the top of the end plug 23 are discharged in the air while blowing an inert gas, or by laser welding in the air. A test piece in which the internal pressure is sealed is produced by fusing and combining the two (S5). Next, while measuring the total weight of the test piece (S6), the measured value of the weight of the test piece before gas filling (S7) is compared with the total weight of the test piece after gas filling, and the gas after filling is filled. Calculate the pressure (S
8) Then, by comparing the gas pressures before and after gas filling, it is confirmed that gas filling was properly performed (S10).

【0020】封入後圧力の算出には種々の実在気体の状
態式の内から条件に適合するものを選択する。ここで
は、加圧ガスとして不活性カ゛スの内からアルゴンガスを
選択した場合の、Redlich-Kwongの状態式による計算を
示す。
For calculation of the pressure after filling, one that meets the conditions is selected from among various state equations of the actual gas. Here, a calculation based on the Redlich-Kwong state equation when an argon gas is selected from inert gases as the pressurized gas is shown.

【0021】今この工程で、加圧ガスとしてアルゴンガ
スを使用する場合には、封入ガスのモル数n(mol)は、ア
ルゴンの原子量(39.948 g/mol)および封入ガスの重量w
(g)より、 n =w / 39.948 である。ここで、封入時のカ゛ス圧Pを測定しておく。
When argon gas is used as a pressurized gas in this step, the number of moles n (mol) of the sealing gas is determined by the atomic weight of argon (39.948 g / mol) and the weight w of the sealing gas.
From (g), n = w / 39.948. Here, a measurement of gas pressure P 1 at the time of encapsulation.

【0022】次に、封入後の試験片カ゛ス圧を算出する。
試験片内容積をV(m)、封入時のガス温度をT
(K)、封入後のカ゛ス圧をP(Pa)、試験時のガス
温度をT (K)、および試験温度でのカ゛ス圧をP(P
a)とする。このとき、PRおよびP Tは公知のRedlich-Kwo
ngの状態式より、それぞれ PR = nRTR/(V-nb) - n2a/[TR 0.5V(V+nb)] ‥‥‥‥‥‥‥‥‥(1) PT = nRTT/(V-nb) - n2a/[TT 0.5V(V+nb)] ‥‥‥‥‥‥‥‥‥(2) で表される。ここで、Rは、気体定数(8.314 Jk-1mol-1) a = 0.4278R2Tc2.5/Pc = 1.695 b = 0.08664RTc/Pc = 2.231×10-5 Tcは、Arの臨界温度(150.7 K) Pcは、Arの臨界圧力(4.865 MPa) である。
Next, the test piece gas pressure after the sealing is calculated.
The volume of the test piece is V (m3), The gas temperature at the time of filling is T
R(K), the gas pressure after filling is PR(Pa), gas at the time of test
Temperature T T(K), and the gas pressure at the test temperature is PT(P
a). At this time, PRAnd P TIs a known Redlich-Kwo
From the state formula of ng, PR = nRTR/ (V-nb)-nTwoa / [TR 0.5V (V + nb)] ‥‥‥‥‥‥‥‥‥ (1) PT = nRTT/ (V-nb)-nTwoa / [TT 0.5V (V + nb)] ‥‥‥‥‥‥‥‥‥ (2) Where R is the gas constant (8.314 Jk-1mol-1) a = 0.4278RTwoTc2.5 / Pc = 1.695 b = 0.08664RTc/ Pc = 2.231 × 10-Five Tc is the critical temperature of Ar (150.7 K). Pc is the critical pressure of Ar (4.865 MPa).

【0023】このように、アルゴンガス封入時圧力P
を、封入後溶接した後の試験片カ゛ス圧の計算値Pと比
較することによって、試験片内のカ゛ス圧を高精度で確認
することが可能である。
As described above, the pressure P 1 when argon gas is charged is used.
And by comparing the calculated value P R of the test piece mosquito Bu scan pressure after welding After encapsulation, it is possible to confirm the mosquitoes Bu scan pressure in the test piece with high accuracy.

【0024】このようにして高圧のガスが封入された試
験片を、セル内の高温に管理された電気炉内で所定時間
加熱し、その後遠隔操作によって炉外に取り出し、室温
で形状の変化を測定する。
The test piece filled with the high-pressure gas in this manner is heated for a predetermined time in an electric furnace controlled at a high temperature in the cell, and thereafter, is taken out of the furnace by remote control, and the shape changes at room temperature. Measure.

【0025】上述のように、本発明においては、従来技
術の課題であった薄肉円筒内の圧力を長時間一定に保つ
ための各種の技術的な困難を取り除くとともに、試験装
置を簡略化することによって経済的および技術的にその
信頼性を向上することができる。
As described above, according to the present invention, various technical difficulties for maintaining the pressure in a thin-walled cylinder constant for a long time, which were problems of the prior art, are eliminated, and the testing apparatus is simplified. Thereby, its reliability can be improved economically and technically.

【0026】次に、本発明の実施例を示す。前述のよう
にして形成された試験片部材に高純度アルゴンガスから
なる封入ガスを導入する。このときのガス圧Pは配管
の途中の(図示していない)圧力計で計測され149kg/cm
2(15.10MPa)であった。試験片内の温度が室温(27
℃、300K)になるまで、所定の時間内圧を保持し温度を
記録したのち、同内圧が負荷されたまま挿入ピン25を
端栓23に強固に圧入することによってガス導入口を機
械的に閉塞させる。その後、封入ガス導入治具を端栓2
3から分離させ、大気中において、不活性ガスを吹き付
けながら挿入ピンの頂部と上記端栓23の頂部とを放電
により両者を溶融し結合させることにより内圧を封入し
た試験片を作製する。そしてその試験片の全重量を測定
した結果、40.6849gでありこれを記録した。
Next, an embodiment of the present invention will be described. A sealing gas made of high-purity argon gas is introduced into the test piece member formed as described above. Gas pressure P 1 at this time is the middle of the pipe (not shown) measured by the pressure gauge 149 kg / cm
2 (15.10 MPa). When the temperature inside the specimen is room temperature (27
(300 ° C, 300 K), the internal pressure is maintained for a predetermined time, the temperature is recorded, and the gas inlet is mechanically closed by firmly pressing the insertion pin 25 into the end plug 23 while the internal pressure is being applied. Let it. After that, insert the gas injection jig into the end plug 2
3 and the top of the insertion pin and the top of the end plug 23 are melted and discharged by discharging the top of the insertion pin and the top of the end plug 23 in the air while blowing an inert gas to produce a test piece in which the internal pressure is sealed. The total weight of the test piece was measured and found to be 40.6849 g, which was recorded.

【0027】一方、図2に示す端栓付きの燃料被覆管と
挿入ピン25の形状寸法を測定した結果、室温での試験
片内径、肉厚、内容積はそれぞれ10.55mm、0.
86mmおよび6.99cmであり、ガス封入前の部
材の封入ピンを含む全重量を求めた結果、38.887
2gであった。
On the other hand, as a result of measuring the shape and dimensions of the fuel cladding tube with end plug and the insertion pin 25 shown in FIG. 2, the inner diameter, wall thickness, and inner volume of the test piece at room temperature were 10.55 mm and 0.15 mm, respectively.
86 mm and 6.99 cm 3 , and the total weight of the member before gas charging including the sealing pin was 38.887.
2 g.

【0028】次に、試験片内に封入されたガスの圧力を
以下の計算で求めた。即ち、試験内容積(V)は6.9
9cm、ガス温度Tは27℃(300K)、封入カ゛スの重
量は40.6849-38.8872=1.7977gであるので、封入されたカ
゛スのモル数nは、 n = w / 39.948 = 4.500×10-2 mol である。ここで、前述の公知のRedlich-Kwongの状態式
((1)式)より、封入後の試験片のガス圧Pは、 PR = nRTR/(V-nb) - n2a/[TR 0.5V(V+nb)] = 15.20 MPa と計算される。ここで、 Rは、気体定数(8.314 Jk-1mol-1) a = 0.4278R2Tc2.5/Pc = 1.695 b = 0.08664RTc/Pc = 2.231×10-5 Tcは、Arの臨界温度(150.7 K) Pcは、Arの臨界圧力(4.865 MPa) である。
Next, the pressure of the gas sealed in the test piece was determined by the following calculation. That is, the test internal volume (V) is 6.9.
9cm 3, the gas temperature T R is 27 ℃ (300K), the weight of the fill gas is a 40.6849-38.8872 = 1.7977g, moles n of the encapsulated gas, n = w / 39.948 = 4.500 × 10 -2 mol. Here, from the state equation of the known Redlich-Kwong described above ((1)), the gas pressure P R of the test piece after encapsulation, P R = nRT R / ( V-nb) - n 2 a / [ T R 0.5 V (V + nb)] = 15.20 MPa. Where R is the gas constant (8.314 Jk -1 mol -1 ) a = 0.4278R 2 T c 2.5 / P c = 1.695 b = 0.08664RT c / P c = 2.231 × 10 -5 Tc is the criticality of Ar Temperature (150.7 K) Pc is the critical pressure of Ar (4.865 MPa).

【0029】計算の結果より、アルゴンガス封入時圧力
のP1 =149 kg/cm2(15.10 MPa)と、封入後溶接した後
の試験片カ゛ス圧の計算値P = 15.20 MPaとを比較する
ことによって、試験片内の内圧を確認する。本試験片で
は、前者と後者の差異は0.7%程度と小さく、工学的な
試験に供する試験片としては、目標とした内圧が充填さ
れたと判断され試験片が完成した。
[0029] From the results of the calculations are compared with the P 1 = 149 kg / cm 2 of pressure at the argon gas filled (15.10 MPa), and a calculated value P R = 15.20 MPa specimens mosquito Bu scan pressure after welding after encapsulation This confirms the internal pressure in the test piece. In this test piece, the difference between the former and the latter was as small as about 0.7%, and it was judged that the target internal pressure was filled as the test piece to be subjected to the engineering test, and the test piece was completed.

【0030】なお、上記実施の形態においては、使用済
みの燃料被覆管について説明したが、その他の薄肉円筒
に適用できることは勿論である。
In the above embodiment, the used fuel cladding tube has been described. However, it is needless to say that the present invention can be applied to other thin cylinders.

【0031】[0031]

【発明の効果】以上説明したように、本発明において
は、まず封入ガスを機械的に密封し、次に大気圧下の不
活性ガス雰囲気内での放電、或いは大気中でのレーザー
溶接により密閉するようにしたので、セル内のような狭
い空間内での作業が可能であるだけでなく、大気圧で溶
接するので技術的にも容易であり、信頼性を向上させる
ことができる。しかも、大気圧下の不活性ガス雰囲気で
溶接する場合、封入ガスが水素のような可燃性/爆発
性、酸素のような強力な酸化性ガスであっても、また各
種の腐食性ガスの場合にも適用可能である等の効果を奏
する。
As described above, in the present invention, the sealed gas is first sealed mechanically, and then sealed in an inert gas atmosphere under atmospheric pressure or by laser welding in the atmosphere. As a result, work can be performed not only in a narrow space such as in a cell, but also because the welding is performed at atmospheric pressure, it is technically easy and reliability can be improved. In addition, when welding in an inert gas atmosphere under atmospheric pressure, even if the filling gas is a flammable / explosive gas such as hydrogen, a strong oxidizing gas such as oxygen, or a variety of corrosive gases And the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄肉円筒内への内圧封入方法を示すフ
ローチャート。
FIG. 1 is a flowchart showing a method for sealing internal pressure into a thin cylinder according to the present invention.

【図2】本発明で用いる試験片の部品図。FIG. 2 is a component diagram of a test piece used in the present invention.

【図3】従来の試験装置の概念図。FIG. 3 is a conceptual diagram of a conventional test apparatus.

【符号の説明】 20 試験用燃料被覆管 22 ガス導入口 23 ガス導入口付き端栓 25 挿入ピン[Description of Symbols] 20 Test fuel cladding tube 22 Gas inlet 23 End plug with gas inlet 25 Insertion pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安 田 隆 芳 神奈川県横須賀市内川二丁目3番1号 日 本ニユクリア・フユエル株式会社内 Fターム(参考) 2G061 AA06 AC03 CA01 CA16 CB04 CB20 EA02 2G075 CA43 CA45 DA04 DA20 EA01 FA03 FA10 FC13 FC20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takayoshi Yasuda 2-3-1 Kawakami, Yokosuka City, Kanagawa Japan F-term in Niuclear / Fuyell Co., Ltd. (Reference) 2G061 AA06 AC03 CA01 CA16 CB04 CB20 EA02 2G075 CA43 CA45 DA04 DA20 EA01 FA03 FA10 FC13 FC20

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】薄肉円筒の内部にガス圧を負荷して、且つ
長時間高温に保持することによってその薄肉円筒の変形
の時間依存性等の高温変形を測定するための薄肉円筒内
圧封入方法において、ガス導入口を備えた薄肉円筒内に
そのガス導入口から高圧ガスを導入する工程と、高圧雰
囲気内で上記ガス導入口を機械的に閉塞する工程と、そ
の後上記ガス導入口を大気圧雰囲気内で密封溶接する工
程とを有することを特徴とする、薄肉円筒内圧封入方
法。
A thin cylinder internal pressure sealing method for measuring a high temperature deformation such as a time dependency of deformation of the thin cylinder by applying a gas pressure to the inside of the thin cylinder and maintaining the temperature at a high temperature for a long time. Introducing a high-pressure gas from the gas inlet into a thin-walled cylinder provided with a gas inlet, mechanically closing the gas inlet in a high-pressure atmosphere, and then setting the gas inlet to an atmospheric pressure atmosphere. And hermetically sealing the inside of the thin cylinder.
【請求項2】薄肉円筒の一端に密封用の端栓を溶接によ
り固着するとともに、他端にガス導入口が貫通された端
栓を溶接により固着し、そのガス導入口に端栓材と同一
の材質からなる挿入ピンを上記ガス導入口と間隙を有す
るように挿入することを特徴とする、請求項1記載の薄
肉円筒内圧封入方法。
2. A sealing end plug is fixed to one end of the thin-walled cylinder by welding, and an end plug having a gas inlet port penetrated to the other end is fixed by welding, and the same end plug material as the end plug material is fixed to the gas inlet port. 2. The method according to claim 1, wherein an insertion pin made of the above material is inserted so as to have a gap with the gas inlet.
【請求項3】薄肉円筒内にガス導入口から高圧ガスを導
入した後、上記挿入ピンをガス導入口に圧入することに
よりガス導入口を機械的に閉塞することを特徴とする、
請求項2記載の薄肉円筒内圧封入方法。
3. A gas inlet is mechanically closed by introducing a high-pressure gas from a gas inlet into a thin-walled cylinder and then press-fitting the insertion pin into the gas inlet.
The method for sealing pressure in a thin cylinder according to claim 2.
【請求項4】ガス封入時のガス内圧と封入後のガス内圧
計算値とを比較し、封入が妥当に行われたことを確認す
る工程を有することを特徴とする、請求項1乃至3のい
ずれかに記載の薄肉円筒内圧封入方法。
4. The method according to claim 1, further comprising the step of comparing the gas internal pressure at the time of gas filling with a calculated value of the gas internal pressure after gas filling to confirm that the gas filling has been properly performed. The thin-walled cylinder internal pressure sealing method according to any one of the above.
【請求項5】薄肉円筒が原子炉で使用された燃料被覆管
であり、封入ガスがアルゴンガス、もしくはヘルウムガ
ス等の不活性ガスであり、密封溶接が大気中でのレーザ
溶接もしくは不活性ガス雰囲気下の放電による溶接であ
ることを特徴とする、請求項1乃至4のいずれかに記載
の薄肉円筒内圧封入方法。
5. A thin-walled cylinder is a fuel cladding tube used in a nuclear reactor, an enclosed gas is an inert gas such as an argon gas or a helium gas, and the sealing welding is performed by laser welding in an atmosphere or an inert gas atmosphere. The method according to any one of claims 1 to 4, wherein the welding is performed by the following electric discharge.
【請求項6】薄肉円筒の内部にガス圧を負荷して、且つ
長時間高温に保持することによってその薄肉円筒の変形
の時間依存性等の高温変形を測定するための内圧封入試
験管において、ガス導入口を備えた薄肉円筒内にそのガ
ス導入口から高圧ガスを導入した後、高圧雰囲気内で上
記ガス導入口を機械的に閉塞し、その後上記ガス導入口
を大気圧雰囲気内で密封溶接したことを特徴とする、薄
肉円筒内圧封入試験管。
6. An internal pressure sealed test tube for measuring high-temperature deformation such as time dependency of deformation of a thin-walled cylinder by applying a gas pressure to the inside of the thin-walled cylinder and maintaining a high temperature for a long time, After introducing a high-pressure gas from the gas inlet into a thin cylinder having a gas inlet, the gas inlet is mechanically closed in a high-pressure atmosphere, and then the gas inlet is sealed and welded in an atmospheric pressure atmosphere. A thin-walled cylindrical pressure-filled test tube, characterized in that:
【請求項7】薄肉円筒が原子炉で使用された燃料被覆管
を所定の長さに切断したものであることを特徴とする、
請求項6記載の薄肉円筒内圧封入試験管。
7. A thin cylinder obtained by cutting a fuel cladding tube used in a nuclear reactor into a predetermined length.
A test tube for sealing a pressure in a thin-walled cylinder according to claim 6.
JP2000325389A 2000-10-25 2000-10-25 Thin-walled cylinder internal pressure sealing method and internal pressure sealed test piece Expired - Fee Related JP3423682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325389A JP3423682B2 (en) 2000-10-25 2000-10-25 Thin-walled cylinder internal pressure sealing method and internal pressure sealed test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325389A JP3423682B2 (en) 2000-10-25 2000-10-25 Thin-walled cylinder internal pressure sealing method and internal pressure sealed test piece

Publications (2)

Publication Number Publication Date
JP2002131199A true JP2002131199A (en) 2002-05-09
JP3423682B2 JP3423682B2 (en) 2003-07-07

Family

ID=18802763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325389A Expired - Fee Related JP3423682B2 (en) 2000-10-25 2000-10-25 Thin-walled cylinder internal pressure sealing method and internal pressure sealed test piece

Country Status (1)

Country Link
JP (1) JP3423682B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197783A (en) * 2002-12-17 2004-07-15 Nippon Tansan Gas Co Ltd High pressure gas filling method, device and filling port structure used for the method
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod
CN104568596A (en) * 2015-01-08 2015-04-29 江苏中宏机械制造有限公司 Full-automatic gas bottle inner-measurement hydraulic testing device
CN105092334A (en) * 2015-08-25 2015-11-25 成都理工大学 Resin casting system for effective storage spaces of oil and gas reservoir cores and implementation method of resin casting system
CN105300802A (en) * 2015-10-20 2016-02-03 哈尔滨工业大学 Bidirectional stress state stress-strain measurement device and method for thin-walled tube
CN108195691A (en) * 2017-12-20 2018-06-22 广东核电合营有限公司 A kind of cladding tubes internal pressure explosion bulge test device
CN112859946A (en) * 2021-01-15 2021-05-28 四川大学 Pressure overall control system for calibration platform and control method thereof
CN112985796A (en) * 2021-03-04 2021-06-18 铜陵市宏飞科技有限公司 Pressure test equipment for special-shaped shell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568622B (en) * 2016-10-12 2019-10-25 河海大学 For the water saturated experimental rig of high-intensitive rock sample positive pressure and application method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117778B2 (en) 1992-03-13 2000-12-18 日本ニユクリア・フユエル株式会社 Pipe sealing welding method and apparatus
JP2587530Y2 (en) 1992-07-24 1998-12-16 日本ニユクリア・フユエル株式会社 Seam welding equipment for end plugs

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197783A (en) * 2002-12-17 2004-07-15 Nippon Tansan Gas Co Ltd High pressure gas filling method, device and filling port structure used for the method
JP4482272B2 (en) * 2002-12-17 2010-06-16 日本炭酸瓦斯株式会社 High-pressure gas filling method and filling port structure of apparatus used for the method
JP2007286036A (en) * 2005-12-01 2007-11-01 National Institute For Materials Science Material testing device and material test piece
JP2014059193A (en) * 2012-09-18 2014-04-03 Japan Atomic Energy Agency Method and jig for manufacturing cladding tube specimen of fuel rod
CN104568596A (en) * 2015-01-08 2015-04-29 江苏中宏机械制造有限公司 Full-automatic gas bottle inner-measurement hydraulic testing device
CN105092334A (en) * 2015-08-25 2015-11-25 成都理工大学 Resin casting system for effective storage spaces of oil and gas reservoir cores and implementation method of resin casting system
CN105300802A (en) * 2015-10-20 2016-02-03 哈尔滨工业大学 Bidirectional stress state stress-strain measurement device and method for thin-walled tube
CN108195691A (en) * 2017-12-20 2018-06-22 广东核电合营有限公司 A kind of cladding tubes internal pressure explosion bulge test device
CN108195691B (en) * 2017-12-20 2024-03-22 广东核电合营有限公司 Internal pressure explosion test device for cladding tube
CN112859946A (en) * 2021-01-15 2021-05-28 四川大学 Pressure overall control system for calibration platform and control method thereof
CN112985796A (en) * 2021-03-04 2021-06-18 铜陵市宏飞科技有限公司 Pressure test equipment for special-shaped shell

Also Published As

Publication number Publication date
JP3423682B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JP2002131199A (en) Method for filling gas inside thin-walled cylinder with internal pressure and internal pressure-filled test piece
US2941933A (en) Fuel element for nuclear reactor
US3836431A (en) Nuclear fuel rods having end plugs with bores therethrough sealed by frangible membranes
US5345488A (en) Nuclear fuel rod having concave weld across pressurization hole in end plug
Mayuzumi et al. Creep deformation of an unirradiated Zircaloy nuclear fuel cladding tube under dry storage conditions
US11555236B2 (en) Mechanically-assisted gaseous addition of hydrogen to metal alloys
Einziger et al. Low-temperature rupture behavior of Zircaloy-clad pressurized water reactor spent fuel rods under dry storage conditions
US4411861A (en) Method for protecting the casing tubes of nuclear reactor fuel rods
JPS6250799B2 (en)
Gilbert et al. Tritium permeation and related studies on barrier treated 316 stainless steel
US4336226A (en) Vanadium hydride deuterium-tritium generator
US20020148558A1 (en) Leak-tight junction for use in extreme environments, a method of making the same and devices using the same
Hood HEAVY WATER MODERATED POWER REACTORS PROGRESS REPORT, SEPTEMBER 1961
Nocetti et al. Fabrication in Mexico of Fuel Rods for Irradiation in a BWR Reactor
Nemoto et al. Study on Loss-of-Cooling and Loss-of-Coolant Accidents in Spent Fuel Pool,(2) Fuel cladding oxidation
Desquines et al. Characterization of radial hydride precipitation in Zy-4 using “C”-Shaped samples
Marshall et al. YTTRIUM HYDRIDE MODERATOR EVALUATION--IN-PILE THERMAL STABILITY
KR820000310B1 (en) Method for verifying the pressure in a nuclear reactor fuel rod
Lee et al. End Plug Welding of SFR Fuel Rodlet for Irradiation Test in HANARO
Ring et al. SAFE‐100 Module Fabrication and Test
Kohli et al. The behavior of breached boiling water reactor fuel rods on long-term exposure to air and argon at 598 K
Croucher Behavior of defective PWR fuel rods during power ramp and film boiling operation
Zielenbach et al. DESIGN OF A CAPSULE FOR IRRADIATION NEAR 2000 C.
Vesely et al. Creep properties of non-irradiated Zr1Nb cladding tubes under normal and abnormal storage conditions
Nobile et al. Inertial confinement fusion target filling at Los Alamos National Laboratory

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

R150 Certificate of patent or registration of utility model

Ref document number: 3423682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees