JP2002129909A - Starting control method of single-shaft compound electric power plant - Google Patents

Starting control method of single-shaft compound electric power plant

Info

Publication number
JP2002129909A
JP2002129909A JP2000330676A JP2000330676A JP2002129909A JP 2002129909 A JP2002129909 A JP 2002129909A JP 2000330676 A JP2000330676 A JP 2000330676A JP 2000330676 A JP2000330676 A JP 2000330676A JP 2002129909 A JP2002129909 A JP 2002129909A
Authority
JP
Japan
Prior art keywords
steam
pressure
low
turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000330676A
Other languages
Japanese (ja)
Other versions
JP4162371B2 (en
Inventor
Masahiko Kainuma
正彦 甲斐沼
Makoto Yamatoki
誠 山時
Satoshi Akimaru
智 秋丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2000330676A priority Critical patent/JP4162371B2/en
Publication of JP2002129909A publication Critical patent/JP2002129909A/en
Application granted granted Critical
Publication of JP4162371B2 publication Critical patent/JP4162371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a single-shaft compound electric power plant capable of minimizing an auxiliary steam supply from the other electric power plant as well as effectively using the steam when ensuring the steam used for low pressure steam turbine cooling steam in an exhaust heat recovery boiler. SOLUTION: When a low pressure drum pressure of an own can is confirmed to have a steam with necessary degree of superheat as a low pressure steam turbine cooling steam prior to starting a gas turbine, a low pressure super heater delivery valve opens prior to an auxiliary steam supply and a low pressure of the own can is supplied as the steam turbine cooling steam. This minimizes the auxiliary steam supply from the other electric power station and permits to minimize an operating limitation due to the auxiliary steam supply of the electric power plant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンと蒸
気タービンとが直結され排熱回収ボイラを有した一軸型
複合発電プラントの起動制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a startup control method for a single-shaft combined cycle power plant having an exhaust heat recovery boiler which is directly connected to a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】近年の火力発電プラントは、コンベンシ
ョナル発電プラントと比較し、プラント熱効率が高い点
および起動特性に優れている点等が評価されコンバイン
ドサイクル発電プラントが主流を占めるようになってき
ている。このコンバインドサイクル発電プラントは、ガ
スタービンプラントに蒸気タービンプラントおよび排熱
回収ボイラを組み合わせたもので、設置面積の縮小化を
考慮して、ガスタービンと蒸気タービンとを直結させた
一軸型複合発電プラントが多い。
2. Description of the Related Art Combined cycle power plants have come to dominate in recent years because of their high thermal efficiency and excellent start-up characteristics compared to conventional power plants. . This combined cycle power plant combines a gas turbine plant with a steam turbine plant and an exhaust heat recovery boiler. In consideration of a reduction in installation area, a single-shaft combined power plant with a gas turbine and a steam turbine directly connected There are many.

【0003】この一軸型複合発電プラントは、ガスター
ビン起動時には、ガスタービンから発生する動力を駆動
源として、一軸に直結された発電機、空気圧縮機および
蒸気タービンを回転駆動させている。その際、蒸気ター
ビンは空回しとなるため、蒸気タービンの最終段および
排気室に風損による異常加熱を生じさせる。この蒸気タ
ービンの異常加熱を防止するため、ガスタービンの起動
時は低圧蒸気タービンに冷却蒸気を供給するようにして
いる。
[0003] In this single-shaft combined cycle power plant, when the gas turbine is started, a power generator, an air compressor, and a steam turbine, which are directly connected to a single shaft, are rotationally driven using power generated from the gas turbine as a drive source. At that time, since the steam turbine runs idle, abnormal heating due to windage damage occurs in the final stage and the exhaust chamber of the steam turbine. In order to prevent abnormal heating of the steam turbine, cooling steam is supplied to the low-pressure steam turbine when the gas turbine is started.

【0004】図8は、従来の一軸型複合発電プラントの
低圧蒸気タービン冷却蒸気供給系統の系統図である。ガ
スタービン18の起動により、直結配置された空気圧縮
機19、低圧蒸気タービン14、中圧蒸気タービン1
5、高圧蒸気タービン16が回転する。ガスタービン1
8の回転数が上昇するに伴い、風損による低圧蒸気ター
ビン14最終段および排気室の加熱が発生する。
FIG. 8 is a system diagram of a low-pressure steam turbine cooling steam supply system of a conventional single-shaft combined cycle power plant. When the gas turbine 18 is started, the air compressor 19, the low-pressure steam turbine 14, and the medium-pressure steam turbine 1, which are directly connected, are arranged.
5. The high-pressure steam turbine 16 rotates. Gas turbine 1
As the rotation speed of the turbine 8 increases, the final stage of the low-pressure steam turbine 14 and the exhaust chamber are heated by windage.

【0005】これを防止するため、ガスタービン18が
予め設定した規定回転数に達した段階で、低圧蒸気ター
ビン冷却蒸気供給弁25を開し、補助蒸気系統からの補
助蒸気を低圧蒸気タービン冷却蒸気流量調整用オリフィ
ス26を介して低圧蒸気タービン14に供給し低圧蒸気
タービン14を冷却する。
In order to prevent this, when the gas turbine 18 reaches a predetermined specified number of revolutions, the low-pressure steam turbine cooling steam supply valve 25 is opened, and the auxiliary steam from the auxiliary steam system is supplied to the low-pressure steam turbine cooling steam. The low-pressure steam turbine 14 is supplied to the low-pressure steam turbine 14 through the flow control orifice 26 to cool the low-pressure steam turbine 14.

【0006】なお、低圧蒸気タービン冷却蒸気供給に先
立ち、低圧主蒸気止め弁加減弁11は一次側圧力制御に
より開しており、また、低圧蒸気タービン冷却蒸気供給
に伴う、低圧蒸気タービン14へのドレン持ち込みを防
止するため、当該系統に設置される低圧蒸気タービン冷
却蒸気供給弁前ドレン弁43、低圧主蒸気止め弁加減弁
前ドレン弁44および低圧主蒸気リード管ドレン弁45
を開している。なお、42は低圧過熱器出口弁前ドレン
弁である。
Prior to the supply of the low-pressure steam turbine cooling steam, the low-pressure main steam stop valve control valve 11 is opened by primary-side pressure control, and the low-pressure steam turbine cooling steam supply to the low-pressure steam turbine 14 is performed. In order to prevent the introduction of a drain, a drain valve 43 in front of a low-pressure steam turbine cooling steam supply valve, a low-pressure main steam stop valve, a drain valve 44 in front of a control valve, and a low-pressure main steam lead pipe drain valve 45 are installed in the system.
Is open. Reference numeral 42 denotes a drain valve in front of a low-pressure superheater outlet valve.

【0007】低圧蒸気タービン冷却蒸気は軸補助蒸気母
管20より分岐されており、補助蒸気源は他の発電設備
58から補助蒸気供給圧力調節弁59および補助蒸気供
給弁60を介して賄われ、補助蒸気圧力伝送器61によ
り補助蒸気供給圧力調節弁59を減圧調整し、軸補助蒸
気温度調節弁22および軸補助蒸気減温器21により適
正エンタルピに調整の上使用されている。軸補助蒸気温
度調節弁22は軸補助蒸気温度検出器24からの温度に
より調整される。従って、他の発電設備58は軸起動の
度に低圧蒸気タービン冷却蒸気用の補助蒸気供給を余儀
なくされる。
[0007] The low-pressure steam turbine cooling steam is branched from the shaft auxiliary steam main pipe 20, and the auxiliary steam source is supplied from another power generation facility 58 through an auxiliary steam supply pressure control valve 59 and an auxiliary steam supply valve 60. The auxiliary steam supply pressure control valve 59 is depressurized and adjusted by the auxiliary steam pressure transmitter 61, and is adjusted to an appropriate enthalpy by the shaft auxiliary steam temperature control valve 22 and the shaft auxiliary steam desuperheater 21. The shaft auxiliary steam temperature control valve 22 is adjusted by the temperature from the shaft auxiliary steam temperature detector 24. Therefore, the other power generation equipment 58 is required to supply the auxiliary steam for the low-pressure steam turbine cooling steam every time the shaft is started.

【0008】一方、ガスタービン18の起動の後、その
排ガスを熱源とし排熱回収ボイラが蒸気を発生する。低
圧系統においては、低圧過熱器出口弁6は閉止されてお
り、低圧ドラム1にて発生した蒸気は低圧過熱器2を介
して低圧タービンバイパス弁前弁8および低圧タービン
バイパス弁9により、復水器17へ蒸気を排出しなが
ら、低圧過熱器2にて過熱度を高めていく。低圧タービ
ンバイパス弁9は低圧タービンバイパス弁前圧力伝送器
10からの圧力により調整される。また、低圧過熱器2
からの蒸気は、蒸気圧力は低圧過熱器出口圧力伝送器3
で、蒸気温度は低圧過熱器出口温度検出器4で、蒸気流
量は低圧過熱器出口流量伝送器5で検出され監視され
る。
On the other hand, after the gas turbine 18 is started, the exhaust heat recovery boiler generates steam using the exhaust gas as a heat source. In the low-pressure system, the low-pressure superheater outlet valve 6 is closed, and steam generated in the low-pressure drum 1 is condensed by the low-pressure turbine bypass valve front valve 8 and the low-pressure turbine bypass valve 9 via the low-pressure superheater 2. The superheat degree is increased by the low-pressure superheater 2 while discharging steam to the heater 17. The low pressure turbine bypass valve 9 is regulated by the pressure from the pressure transmitter 10 before the low pressure turbine bypass valve. In addition, low pressure super heater 2
From the low pressure superheater outlet pressure transmitter 3
The steam temperature is detected and monitored by a low-pressure superheater outlet temperature detector 4 and the steam flow is detected by a low-pressure superheater outlet flow transmitter 5.

【0009】ここで、ガスタービン起動時の低圧タービ
ンバイパス弁9の制御圧力設定値は、低圧主蒸気止め弁
加減弁11の制御圧力設定値に所定値αを加算した値
(制御圧力設定値+α)としている。これは、低圧過熱
器出口弁6を開する時の低圧過熱器出口蒸気と、予め供
給されている補助蒸気系統からの低圧蒸気タービン冷却
蒸気との合流時の圧力差を最小限とするためである。
Here, the control pressure set value of the low-pressure turbine bypass valve 9 at the time of starting the gas turbine is a value obtained by adding a predetermined value α to the control pressure set value of the low-pressure main steam stop valve control valve 11 (control pressure set value + α). ). This is to minimize the pressure difference when the low-pressure superheater outlet steam at the time of opening the low-pressure superheater outlet valve 6 and the low-pressure steam turbine cooling steam from the auxiliary steam system supplied in advance. is there.

【0010】なお、この低圧タービンバイパス弁9の圧
力制御は、ガスタービン18の起動前に開始される。従
って、ガスタービン起動時に低圧ドラム圧力が、低圧タ
ービンバイパス弁9の制御圧力設定値である低圧主蒸気
止め弁加減弁11の制御圧力設定値より所定値αだけ高
い場合、設定値以上の蒸気は全て復水器17へ排出され
ることとなる。
[0010] The pressure control of the low-pressure turbine bypass valve 9 is started before the gas turbine 18 is started. Therefore, when the low-pressure drum pressure is higher than the control pressure set value of the low-pressure main steam stop valve control valve 11 which is the control pressure set value of the low-pressure turbine bypass valve 9 by the predetermined value α at the time of starting the gas turbine, All will be discharged to the condenser 17.

【0011】その後、低圧過熱器出口蒸気が規定の過熱
度および流量を満足した時点で、低圧過熱器出口弁6を
開し低圧過熱器出口逆止弁7および低圧主蒸気止め弁加
減弁11を介して、自缶の蒸気を低圧蒸気タービン14
へ通気し、補助蒸気による低圧タービン冷却蒸気との並
行供給となる。低圧蒸気タービン14に供給される蒸気
は、蒸気温度は低圧主蒸気止め弁加減弁前温度検出器1
2で、蒸気圧力は低圧主蒸気止め弁加減弁前圧力伝送器
13で検出され監視される。低圧主蒸気止め弁加減弁1
1は、低圧主蒸気止め弁加減弁前圧力伝送器13で検出
された圧力で調整される。
Thereafter, when the low-pressure superheater outlet steam satisfies the specified superheat degree and flow rate, the low-pressure superheater outlet valve 6 is opened, and the low-pressure superheater outlet check valve 7 and the low-pressure main steam stop valve control valve 11 are operated. Through the low pressure steam turbine 14
To the low pressure turbine cooling steam by auxiliary steam. The steam supplied to the low-pressure steam turbine 14 has a steam temperature of a low-pressure main steam stop valve pre-adjustment valve temperature detector 1.
At 2, the steam pressure is detected and monitored by the pressure transmitter 13 before the low pressure main steam stop valve. Low pressure main steam stop valve control valve 1
1 is adjusted by the pressure detected by the pressure transmitter 13 before the low-pressure main steam stop valve control valve.

【0012】また、中圧系統においては、中圧過熱器出
口弁36は閉止されており、中圧ドラム29にて発生し
た蒸気は中圧過熱器30を介して、中圧タービンバイパ
ス弁前弁33および中圧タービンバイパス弁34によ
り、中圧タービン15のミスマッチ温度差から決まる規
定圧力に制御され、復水器17へ蒸気を排出しながら、
中圧過熱器30にて過熱度を高めていく。中圧タービン
バイパス弁34は中圧タービンバイパス弁前圧力伝送器
35からの圧力により調整される。また、低圧過熱器2
からの蒸気は、蒸気圧力は低圧過熱器出口圧力伝送器3
1で、蒸気温度は低圧過熱器出口温度検出器32で検出
され監視される。
In the medium pressure system, the medium pressure superheater outlet valve 36 is closed, and the steam generated in the medium pressure drum 29 is passed through the medium pressure superheater 30 to the intermediate pressure turbine bypass valve front valve. 33 and the intermediate pressure turbine bypass valve 34 are controlled to a specified pressure determined by the mismatch temperature difference of the intermediate pressure turbine 15, while discharging steam to the condenser 17,
The superheat degree is increased by the medium pressure superheater 30. The intermediate pressure turbine bypass valve 34 is adjusted by the pressure from the intermediate pressure turbine bypass valve pre-pressure transmitter 35. In addition, low pressure super heater 2
From the low pressure superheater outlet pressure transmitter 3
At 1, the steam temperature is detected and monitored by a low pressure superheater outlet temperature detector 32.

【0013】その後、中圧過熱器出口蒸気が規定の過熱
度および流量を満足し、かつ高圧タービン16の排気蒸
気が中圧過熱器出口蒸気の圧力に達した時点で、中圧過
熱器出口弁36を開し中圧過熱器出口逆止弁37を介し
て、高圧タービン排気蒸気と合流させる。そして、再熱
器38にてさらに過熱し、再熱蒸気止め弁加減弁39を
介し中圧蒸気タービン15へ通気する。再熱器38から
の蒸気は、蒸気圧力は再熱蒸気止め弁加減弁前圧力伝送
器40で、蒸気温度は再熱蒸気止め弁加減弁前温度検出
器41で検出され監視される。
Thereafter, when the intermediate-pressure superheater outlet steam satisfies the specified degree of superheat and flow rate, and the exhaust steam of the high-pressure turbine 16 reaches the pressure of the intermediate-pressure superheater outlet steam, the intermediate-pressure superheater outlet valve 36 is opened and merged with the high-pressure turbine exhaust steam via the intermediate-pressure superheater outlet check valve 37. Then, it is further heated by the reheater 38 and is ventilated to the intermediate-pressure steam turbine 15 through the reheat steam stop valve control valve 39. The steam pressure from the reheater 38 is detected and monitored by a pressure transmitter 40 before the reheat steam stop valve, and the steam temperature is detected by a temperature detector 41 before the reheat steam stop valve.

【0014】また、中圧蒸気系統からは、何等かの理由
で他の発電設備58からの補助蒸気供給が断たれた場合
の軸補助蒸気母管20へのバックアップ系統が設置され
ており、軸補助蒸気バックアップ圧力調節弁前弁28お
よび軸補助蒸気バックアップ圧力調節弁27は軸補助蒸
気母管20を補助蒸気供給圧力調節弁59の制御圧力よ
り低い圧力にて制御している。従って、通常は軸補助蒸
気バックアップ圧力調節弁27は閉止されている。
Further, a backup system is provided from the medium-pressure steam system to the shaft auxiliary steam mother pipe 20 when the supply of the auxiliary steam from the other power generation equipment 58 is cut off for some reason. The auxiliary steam backup pressure control valve front valve 28 and the shaft auxiliary steam backup pressure control valve 27 control the shaft auxiliary steam mother pipe 20 at a pressure lower than the control pressure of the auxiliary steam supply pressure control valve 59. Therefore, the shaft auxiliary steam backup pressure control valve 27 is normally closed.

【0015】なお、軸補助蒸気バックアップ圧力調節弁
前弁28の開条件として中圧過熱器出口の圧力、温度を
考慮しており、補助蒸気の中圧系統への逆流防止および
過熱度の不十分な蒸気の補助蒸気系統への流入を防止し
ている。また、軸補助蒸気バックアップ圧力調節弁27
は軸補助蒸気バックアップ圧力伝送器23で検出された
圧力で調整される。蒸気タービン通気後、中圧蒸気ター
ビン入口蒸気流量が、低圧タービン冷却蒸気の必要流量
を上回った時点で、低圧タービン冷却蒸気供給弁25が
閉止される。
The pressure and temperature at the outlet of the intermediate-pressure superheater are taken into consideration as the opening conditions of the shaft auxiliary steam backup pressure control valve front valve 28, so that the auxiliary steam is prevented from flowing back to the medium-pressure system and the degree of superheat is insufficient. It prevents the flow of extra steam into the auxiliary steam system. Also, the shaft auxiliary steam backup pressure control valve 27
Is adjusted by the pressure detected by the shaft auxiliary steam backup pressure transmitter 23. After the steam turbine is vented, the low-pressure turbine cooling steam supply valve 25 is closed when the steam flow rate at the inlet of the medium-pressure steam turbine exceeds the required flow rate of the low-pressure turbine cooling steam.

【0016】次に、排熱回収ボイラの停止の際に、次回
起動時間の短縮のために排熱回収ボイラに極力蒸気を残
す排熱回収ボイラバンキング停止について説明する。図
9は、低圧ドラム1、中圧ドラム29、高圧ドラム49
を有する3圧式排熱回収ボイラの蒸気系統図である。
Next, a description will be given of the stoppage of the exhaust heat recovery boiler banking in which steam is left as much as possible in the exhaust heat recovery boiler when the exhaust heat recovery boiler is stopped in order to shorten the next start-up time. FIG. 9 shows a low-pressure drum 1, a medium-pressure drum 29, and a high-pressure drum 49.
FIG. 3 is a steam system diagram of a three-pressure type exhaust heat recovery boiler having the following.

【0017】起動特性に優れるコンバインドサイクル発
電設備は、週末停止等、短期間の停止時においては、次
回起動時間の短縮のために排熱回収ボイラに極力蒸気を
残すべく、排熱回収ボイラバンキング停止を行なう。
In a combined cycle power generation facility having excellent start-up characteristics, during a short-term stop such as a weekend stop, the exhaust heat recovery boiler banking is stopped in order to leave as much steam as possible in the exhaust heat recovery boiler in order to shorten the next start-up time. Perform

【0018】この場合、ガスタービン18の停止時に
は、高圧主蒸気止め弁加減弁51、中圧過熱器出口弁3
6および低圧過熱器出口弁6を閉止した後、即座に、高
圧タービンバイパス弁前弁52、中圧タービンバイパス
弁前弁33、低圧タービンバイパス弁前弁8を閉止する
のではなく、高圧タービンバイパス弁53、中圧タービ
ンバイパス弁34、低圧タービンバイパス弁9により、
それぞれ、高圧ドラム49、中圧ドラム29および低圧
ドラム1の圧力を下げる操作を行なう。
In this case, when the gas turbine 18 is stopped, the high-pressure main steam stop valve control valve 51, the intermediate-pressure superheater outlet valve 3
6 and the low-pressure superheater outlet valve 6, immediately after closing the high-pressure turbine bypass valve front valve 52, the intermediate-pressure turbine bypass valve front valve 33, and the low-pressure turbine bypass valve front valve 8, instead of closing the high-pressure turbine bypass valve, By the valve 53, the intermediate-pressure turbine bypass valve 34, and the low-pressure turbine bypass valve 9,
An operation of reducing the pressure of the high-pressure drum 49, the intermediate-pressure drum 29, and the low-pressure drum 1 is performed.

【0019】これは、停止中に排熱回収ボイラ内の残熱
平衡により、各ドラム圧力が異常昇圧し、安全弁動作圧
力に達するのを防止するためである。特に、高圧系の残
熱を低圧系が収熱することによる低圧系の異常昇圧を防
止することが必要となる。
This is to prevent each drum pressure from abnormally increasing due to the residual heat balance in the exhaust heat recovery boiler during stoppage and reaching the safety valve operating pressure. In particular, it is necessary to prevent abnormal low pressure in the low pressure system due to the low pressure system collecting heat remaining in the high pressure system.

【0020】これより、タービンバイパス弁による各ド
ラム減圧時の目安は、停止中に各ドラム圧力が安全弁動
作圧力に達しないものとすることであり、結果的には、
最も安全弁動作圧力の低い低圧ドラム1を保護するため
に、高圧ドラム49においては通常運転圧力の2分の1
程度の圧力までの減圧を要する。
From this, a rough guide when each drum is depressurized by the turbine bypass valve is that each drum pressure does not reach the safety valve operating pressure during stoppage. As a result,
In order to protect the low-pressure drum 1 having the lowest safety valve operating pressure, the high-pressure drum 49 uses one-half of the normal operating pressure.
It is necessary to reduce the pressure to a certain level.

【0021】各ドラム圧力が規定の圧力まで減圧された
後、高圧タービンバイパス弁前弁52、中圧タービンバ
イパス弁前弁33および低圧タービンバイパス弁前弁8
を閉止し、排熱回収ボイラバンキング停止が完了する。
After each drum pressure is reduced to a specified pressure, the high-pressure turbine bypass valve front valve 52, the intermediate-pressure turbine bypass valve front valve 33, and the low-pressure turbine bypass valve front valve 8
And the exhaust heat recovery boiler banking stop is completed.

【0022】以上のとおり、次回起動時間の短縮のた
め、排熱回収ボイラに極力蒸気を残すべく、排熱回収ボ
イラバンキング停止を行なっているが、結果として最も
重要な高圧蒸気は多大に排出されるかたちとなり、低圧
蒸気については通常運転時圧力より高い圧力が確保され
るかたちとなる。
As described above, the exhaust heat recovery boiler banking is stopped in order to leave the steam in the exhaust heat recovery boiler as much as possible in order to shorten the next start-up time, but as a result, the most important high-pressure steam is largely discharged. As a result, a pressure higher than the normal operation pressure is secured for the low-pressure steam.

【0023】[0023]

【発明が解決しようとする課題】ところが、このような
従来例では、軸起動時の低圧蒸気タービン冷却蒸気は、
他の発電設備58から補助蒸気供給により賄われること
になるため、軸起動時には他の発電設備58の出力およ
び効率低下を招く。また、他の発電設備58が運転され
ていない場合は、その他の発電設備58の起動しなけれ
ばならない。これは発電所としての運用に多大な制約を
伴わせることになる。
However, in such a conventional example, the low-pressure steam turbine cooling steam at the time of starting the shaft is:
Since the auxiliary steam is supplied from the other power generation equipment 58, the output and efficiency of the other power generation equipment 58 are reduced at the time of starting the shaft. When the other power generation facilities 58 are not operating, the other power generation facilities 58 must be started. This imposes great restrictions on the operation as a power plant.

【0024】また、起動特性に優れるコンバインドサイ
クル発電プラントは、電力供給の負荷調整用に用いられ
ることから、頻繁な起動停止運用が行なわれる。これよ
り、軸起動に伴う発電所に与える運用制約は頻繁なもの
となる。また、設置面積縮小化を考慮した一軸型コンバ
インドサイクル発電プラントにおいても、さらなる設置
面積の縮小化への対応として、パワートレインスパン短
縮のため、蒸気タービンの長翼化が進んでいる。従っ
て、軸起動に伴い必要となる蒸気タービン冷却蒸気は、
さらに増加傾向となっている。
Further, a combined cycle power plant having excellent start-up characteristics is used for load adjustment of power supply, so that frequent start-stop operations are performed. As a result, operational constraints on the power plant associated with starting the shaft become frequent. In addition, in a single-shaft combined cycle power plant considering a reduction in installation area, the length of steam turbines is increasing in order to shorten the power train span in order to cope with a further reduction in installation area. Therefore, the steam turbine cooling steam required for starting the shaft is:
It has been increasing further.

【0025】また、コンバインドサイクル発電プラント
はDSS運用を考慮したものであるので、次回起動時の
起動時間短縮のため、排熱回収ボイラバンキング停止を
行なっており、その結果、次回起動時の低圧ドラム1に
関しては通常運転時圧力に対し高い圧力を保持可能であ
り、かつ、それが低圧蒸気タービン冷却蒸気として使用
可能な蒸気である場合が多いにもかかわらず、起動過程
には、これらの蒸気は低圧タービンバイパス弁9の圧力
制御開始により、復水器17に排出される形となってい
る。
Further, since the combined cycle power plant takes DSS operation into consideration, the exhaust heat recovery boiler banking is stopped in order to shorten the start-up time at the next start-up. 1 can maintain a high pressure with respect to the normal operating pressure, and although it is often steam that can be used as low-pressure steam turbine cooling steam, these steams are not used during the start-up process. When the pressure control of the low-pressure turbine bypass valve 9 is started, the low-pressure turbine bypass valve 9 is discharged to the condenser 17.

【0026】また、中圧ドラム29に関しても排熱回収
ボイラバンキング停止により、起動時に通常の中圧ドラ
ム運転時圧力に対しては低い圧力ながらも、低圧蒸気タ
ービン冷却蒸気として使用可能な蒸気である場合が多
く、かつ、それを供給可能な軸補助蒸気バックアップ系
統を有していながら、起動時積極的に使用する運用とさ
れていない。
Further, the intermediate-pressure drum 29 is a steam which can be used as low-pressure steam turbine cooling steam at the time of start-up even though the pressure is lower than the normal operation pressure of the medium-pressure drum due to the stoppage of the exhaust heat recovery boiler banking. In many cases, while having a shaft auxiliary steam backup system capable of supplying it, it is not operated so as to be actively used at startup.

【0027】以上より、起動軸が排熱回収ボイラ内に、
低圧蒸気タービン冷却蒸気として使用可能な蒸気を確保
している場合において、軸起動に伴いそれらを排出し、
不要な補助蒸気を使用しているかたちとなる。
From the above, the starting shaft is located in the exhaust heat recovery boiler,
In the case where steam that can be used as low-pressure steam turbine cooling steam is secured, discharge them with starting the shaft,
It is in the form of using unnecessary auxiliary steam.

【0028】本発明の目的は、排熱回収ボイラ内に低圧
蒸気タービン冷却蒸気として使用可能な蒸気を確保して
いる場合、その蒸気を有効利用するとともに、他の発電
設備からの補助蒸気供給を最小限とすることができる一
軸型複合発電プラントを提供することである。
[0028] An object of the present invention is to provide a system in which, when steam that can be used as low-pressure steam turbine cooling steam is secured in an exhaust heat recovery boiler, the steam is used effectively and auxiliary steam is supplied from another power generation facility. It is to provide a single-shaft combined cycle power plant that can be minimized.

【0029】[0029]

【課題を解決するための手段】請求項1の発明に係わる
一軸型複合発電プラントの起動制御方法は、ガスタービ
ンと蒸気タービンとが直結され前記蒸気タービンは排熱
回収ボイラからの蒸気で駆動され、前記ガスタービン起
動時に前記蒸気タービンのうちの低圧蒸気タービンに冷
却蒸気を必要とする一軸型複合発電プラントの起動制御
方法において、前記ガスタービン起動前に前記排熱回収
ボイラの低圧ドラム圧力に基づいて前記低圧ドラムから
前記低圧蒸気タービンの冷却蒸気を供給できるか否かを
判定し、前記低圧蒸気タービンに冷却蒸気を供給できる
と判定したときは前記低圧ドラムから前記低圧蒸気ター
ビンに冷却蒸気を供給し、前記低圧蒸気タービンに冷却
蒸気を供給できないと判定したときは補助蒸気系統から
前記低圧蒸気タービンに冷却蒸気を供給し、前記ガスタ
ービンを起動することを特徴とする。
According to a first aspect of the present invention, there is provided a start control method for a single-shaft combined cycle power plant, wherein a gas turbine and a steam turbine are directly connected, and the steam turbine is driven by steam from an exhaust heat recovery boiler. A starting control method for a single-shaft combined cycle power plant that requires cooling steam for a low-pressure steam turbine among the steam turbines at the time of starting the gas turbine, based on a low-pressure drum pressure of the exhaust heat recovery boiler before starting the gas turbine. To determine whether cooling steam for the low-pressure steam turbine can be supplied from the low-pressure drum, and when it is determined that cooling steam can be supplied to the low-pressure steam turbine, supply cooling steam to the low-pressure steam turbine from the low-pressure drum. If it is determined that cooling steam cannot be supplied to the low-pressure steam turbine, Supplying cooling steam to down, characterized by starting the gas turbine.

【0030】請求項1の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、ガスタービン起動前
に自缶の低圧ドラム圧力を確認し、低圧蒸気タービン冷
却蒸気として必要な過熱度を満たした蒸気を有している
場合には、補助蒸気供給に先立ち低圧過熱器出口弁を開
し、蒸気タービン冷却蒸気として自缶の低圧蒸気を供給
する。これにより、他の発電設備からの補助蒸気供給を
最小限とし、発電プラントの補助蒸気供給に伴う運用制
約を最小限とできる。
In the start control method for a single-shaft combined cycle power plant according to the first aspect of the present invention, the low-pressure drum pressure of the can is confirmed before starting the gas turbine, and the superheat required as the low-pressure steam turbine cooling steam is satisfied. If steam is present, the low-pressure superheater outlet valve is opened prior to the supply of the auxiliary steam, and the low-pressure steam of its own can is supplied as steam turbine cooling steam. Thereby, the supply of auxiliary steam from other power generation equipment can be minimized, and the operational constraints associated with the auxiliary steam supply of the power generation plant can be minimized.

【0031】請求項2の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、請求項1の発明において、前
記低圧ドラムの蒸気を前記低圧蒸気タービンに冷却蒸気
として供給するときは、前記低圧蒸気タービンをバイパ
スする低圧タービンバイパス弁の一次側制御圧力設定値
を、実圧より所定値だけ大きな値とすることを特徴とす
る。
In the start control method for a single-shaft combined cycle power plant according to a second aspect of the present invention, in the first aspect of the invention, when the low-pressure steam is supplied to the low-pressure steam turbine as cooling steam, the low-pressure steam is supplied to the low-pressure steam turbine. The primary-side control pressure set value of the low-pressure turbine bypass valve that bypasses the turbine is set to a value larger than the actual pressure by a predetermined value.

【0032】請求項2の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、ガスタービン起動前
に、自缶の低圧ドラム圧力を確認し、低圧蒸気タービン
冷却蒸気として必要な過熱度を満たした蒸気を有してい
る場合、低圧タービンバイパス弁の一次側制御圧力設定
値を、実圧+αとする。これにより、軸起動時に低圧ド
ラムが有している低圧系統蒸気の復水器への排出を防止
でき、低圧系統蒸気の有効利用が可能となる。
In the start control method for a single-shaft combined cycle power plant according to the second aspect of the present invention, before starting the gas turbine, the pressure of the low-pressure drum of the self-can is confirmed to satisfy the degree of superheat required for the low-pressure steam turbine cooling steam. In the case where the low pressure turbine bypass valve has steam, the primary side control pressure set value of the low pressure turbine bypass valve is set to the actual pressure + α. Thus, it is possible to prevent the low-pressure system steam of the low-pressure drum from being discharged to the condenser at the time of starting the shaft, and it is possible to effectively use the low-pressure system steam.

【0033】請求項3の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、請求項1または請求項2の発
明において、前記低圧ドラムから前記低圧蒸気タービン
に冷却蒸気を供給中に、前記低圧ドラムからの蒸気が冷
却蒸気としての条件を満たさなくなったとき、前記低圧
ドラムからの蒸気の供給を停止し、前記補助蒸気系統か
ら前記低圧蒸気タービンに冷却蒸気を供給するようにし
たことを特徴とする。
According to a third aspect of the present invention, in the start control method for a single-shaft combined cycle power plant according to the first or second aspect, the low-pressure drum is supplied with cooling steam from the low-pressure drum to the low-pressure steam turbine. When the steam from the drum no longer satisfies the condition as the cooling steam, the supply of the steam from the low-pressure drum is stopped, and the cooling steam is supplied from the auxiliary steam system to the low-pressure steam turbine. I do.

【0034】請求項3の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、自缶の低圧蒸気供給
中に、自缶蒸気の過熱度もしくは圧力もしくは流量が、
低圧蒸気タービン冷却蒸気としての必要な値を下回った
場合、低圧過熱器出口弁を閉し、補助蒸気系統からの低
圧蒸気タービン冷却蒸気供給弁を開し、バックアップ蒸
気供給を行う。これにより、自缶が持てる蒸気を有効利
用した上で、条件の悪化した蒸気の蒸気タービンへの流
入を防止でき、かつ、低圧蒸気タービン冷却蒸気の供給
継続が可能となり、蒸気タービンの保護および安定した
起動継続が可能となる。
[0034] In the start control method for the single-shaft combined cycle power plant according to the third aspect of the present invention, the superheat degree, pressure or flow rate of the steam of the self-can is controlled while the low-pressure steam is supplied to the self-can.
When the required value as the low-pressure steam turbine cooling steam falls below a required value, the low-pressure superheater outlet valve is closed, the low-pressure steam turbine cooling steam supply valve from the auxiliary steam system is opened, and backup steam is supplied. As a result, after effectively utilizing the steam that the can has, it is possible to prevent the steam with deteriorated conditions from flowing into the steam turbine and to continue supplying the low-pressure steam turbine cooling steam, thereby protecting and stabilizing the steam turbine. This enables continued startup.

【0035】請求項4の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、請求項1または請求項2の発
明において、前記低圧ドラムから前記低圧蒸気タービン
に冷却蒸気を供給中に、前記低圧ドラムからの蒸気が冷
却蒸気としての条件を満たさなくなったとき、前記低圧
ドラムからの蒸気に加え、前記補助蒸気系統から前記低
圧蒸気タービンに冷却蒸気を供給するようにしたことを
特徴とする。
According to a fourth aspect of the present invention, in the start control method for a single-shaft combined cycle power plant according to the first or second aspect of the invention, the low-pressure drum is supplied with cooling steam from the low-pressure drum to the low-pressure steam turbine. When steam from the drum no longer satisfies the condition as cooling steam, cooling steam is supplied from the auxiliary steam system to the low-pressure steam turbine in addition to the steam from the low-pressure drum.

【0036】請求項4の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、自缶の低圧蒸気供給
中に、自缶蒸気の流量が低圧蒸気タービン冷却蒸気とし
ての必要な値を下回った場合、補助蒸気系統に設置した
低圧蒸気タービン冷却蒸気流量調節弁を開し、自缶蒸気
流量と補助蒸気流量との和が、低圧蒸気タービン冷却蒸
気の必要量となるように制御する。これにより、自缶蒸
気流量が低下した場合においても、自缶蒸気の有効利用
を継続しつつ、必要最小限の系外からの補助蒸気供給に
より、低圧蒸気タービン冷却蒸気の供給継続が可能とな
る。その結果、蒸気タービンの保護および安定した起動
継続が可能となり、かつ、発電プラントの補助蒸気供給
に伴う運用制約を最小限とできる。
In the start control method for a single-shaft combined cycle power plant according to the fourth aspect of the present invention, the flow rate of the steam in the self-canister falls below a required value as cooling steam for the low-pressure steam turbine during the supply of the low-pressure steam to the self-can. In this case, the low-pressure steam turbine cooling steam flow control valve installed in the auxiliary steam system is opened, and control is performed such that the sum of the self-managed steam flow and the auxiliary steam flow becomes the required amount of the low-pressure steam turbine cooling steam. As a result, even when the flow rate of the self-canister steam is reduced, the supply of the low-pressure steam turbine cooling steam can be continued by supplying the minimum necessary amount of auxiliary steam from outside the system while maintaining the effective use of the self-canister steam. . As a result, it is possible to protect the steam turbine and continue the stable start-up, and it is possible to minimize the operational constraints associated with the auxiliary steam supply of the power plant.

【0037】請求項5の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、請求項1乃至請求項4のいず
れか1項の発明において、前記低圧ドラムから前記低圧
蒸気タービンに冷却蒸気を供給する際に、逆止弁を介し
て冷却蒸気を供給するようにしたことを特徴とする。
According to a fifth aspect of the present invention, in the start control method for a single-shaft combined cycle power plant according to any one of the first to fourth aspects, cooling steam is supplied from the low-pressure drum to the low-pressure steam turbine. In this case, the cooling steam is supplied through a check valve.

【0038】請求項5の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、低圧蒸気タービン冷
却蒸気供給系統に逆止弁を設置したことにより、低圧蒸
気圧力が補助蒸気系統圧力より高い場合においても、低
圧蒸気圧力から補助蒸気系統への逆流を防止し、低圧蒸
気タービン冷却蒸気供給弁を開状態のまま待機可能とな
る。
In the start control method for a single-shaft combined cycle power plant according to the fifth aspect of the present invention, the check valve is installed in the low-pressure steam turbine cooling steam supply system, so that the low-pressure steam pressure is higher than the auxiliary steam system pressure. In this case, the backflow from the low-pressure steam pressure to the auxiliary steam system can be prevented, and the low-pressure steam turbine cooling steam supply valve can be on standby with the valve open.

【0039】請求項6の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、請求項1乃至請求項5のいず
れか1項の発明において、前記低圧ドラムから前記低圧
蒸気タービンに冷却蒸気を供給中に、前記蒸気タービン
のうちの中圧タービンの入口蒸気流量が前記低圧蒸気タ
ービンの冷却蒸気の必要流量を上回ったときは、前記低
圧蒸気タービンをバイパスする低圧タービンバイパス弁
の一次側制御圧力設定値を低圧主蒸気止め弁加減弁の一
次側制御圧力設定値より所定値だけ大きな値とすること
を特徴とする。
According to a sixth aspect of the present invention, in the start control method for a single-shaft combined cycle power plant according to any one of the first to fifth aspects, cooling steam is supplied from the low-pressure drum to the low-pressure steam turbine. In the meantime, when the inlet steam flow rate of the medium pressure turbine of the steam turbine exceeds the required flow rate of the cooling steam of the low pressure steam turbine, the primary side control pressure setting of the low pressure turbine bypass valve for bypassing the low pressure steam turbine. The value is set to a value larger by a predetermined value than the primary side control pressure set value of the low pressure main steam stop valve control valve.

【0040】請求項6の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、自缶の低圧蒸気供給
の後、中圧蒸気タービン入口流量が低圧蒸気タービン冷
却蒸気の必要流量を上回った時点で、低圧蒸気タービン
バイパス弁の一次側制御圧力設定値を、低圧主蒸気止め
弁加減弁一次側制御圧力設定値+αとする。これによ
り、低圧蒸気タービン冷却蒸気が不要となり次第、ター
ビンバイパス弁を本来の保護装置としての制御設定値へ
復帰させることが可能となる。
In the start control method for a single-shaft combined cycle power plant according to the present invention, when the flow rate at the inlet of the medium-pressure steam turbine exceeds the required flow rate of the cooling steam for the low-pressure steam turbine after the supply of the low-pressure steam to the self-canister, Then, the primary control pressure set value of the low-pressure steam turbine bypass valve is set to the low-pressure main steam stop valve control valve primary control pressure set value + α. As a result, as soon as the low-pressure steam turbine cooling steam becomes unnecessary, the turbine bypass valve can be returned to the control set value as the original protection device.

【0041】請求項7の発明に係わる一軸型複合発電プ
ラントの起動制御方法は、ガスタービンと蒸気タービン
とが直結され前記蒸気タービンは排熱回収ボイラからの
蒸気で駆動され、前記ガスタービン起動時に前記蒸気タ
ービンのうちの低圧蒸気タービンに冷却蒸気を必要とす
る一軸型複合発電プラントの起動制御方法において、他
の発電設備からの補助蒸気供給系統および自軸の中圧過
熱器に接続される中圧蒸気供給系統から蒸気が供給され
る軸補助蒸気系統を有し、前記低圧蒸気タービンの冷却
蒸気は前記軸補助蒸気系統より供給され、他の発電設備
からの補助蒸気供給系統は自軸の中圧蒸気供給系統より
高い圧力で制御されている場合、自軸の中圧過熱器の圧
力および温度が軸補助蒸気系統以上の蒸気を有している
ときは、他の発電設備からの補助蒸気供給系統と自軸の
中圧蒸気供給系統の制御圧力設定値を入れ替え、補助蒸
気源として自軸の中圧蒸気を供給することを特徴とす
る。
According to a seventh aspect of the present invention, there is provided a start control method for a single-shaft combined cycle power plant, wherein a gas turbine and a steam turbine are directly connected, and the steam turbine is driven by steam from an exhaust heat recovery boiler. In a start-up control method for a single-shaft combined cycle power plant that requires cooling steam for a low-pressure steam turbine of the steam turbines, the auxiliary steam supply system from another power generation facility and a medium-pressure superheater connected to a self-shaft are used. A low-pressure steam turbine cooling steam is supplied from the low-pressure steam turbine, and an auxiliary steam supply system from another power generation facility is provided in the own shaft. If it is controlled at a higher pressure than the high pressure steam supply system and the pressure and temperature of the medium pressure superheater of its own Switching the control pressure setpoint of steam supply system in the auxiliary steam supply system and own axis from Bei, and supplying the steam within the own axis as an auxiliary steam source.

【0042】請求項7の発明に係わる一軸型複合発電プ
ラントの起動制御方法においては、ガスタービン起動前
に、自軸の中圧過熱器もしくはそれに接続される同圧力
系統の圧力および温度を確認し、その圧力および温度が
軸補助蒸気系統以上の蒸気を有している場合、他の発電
設備からの補助蒸気供給系統と自軸の中圧蒸気供給系統
の制御圧力設定値を入れ替え、補助蒸気源として、自缶
の中圧蒸気を供給する。これにより、低圧自缶蒸気の有
効利用法と合わせ、他の発電設備から補助蒸気供給の最
小限化が可能となり、発電プラントの補助蒸気供給に伴
う運用制約および蒸気損失を最小限とできる。
In the start control method for a single-shaft combined cycle power plant according to the present invention, before starting the gas turbine, the pressure and temperature of the intermediate pressure superheater of the own shaft or the same pressure system connected thereto are confirmed. If the pressure and temperature are higher than that of the auxiliary steam system, the control pressure set values of the auxiliary steam supply system from other power generation equipment and the medium-pressure steam supply system of the own shaft are replaced, and the auxiliary steam source To supply medium-pressure steam in its own can. This makes it possible to minimize the supply of auxiliary steam from other power generation equipment, in combination with the effective use of low-pressure self-steaming steam, and to minimize operational constraints and steam loss associated with the auxiliary steam supply of the power plant.

【0043】[0043]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態に係わる一軸型複合発
電プラントの起動制御方法を示すフローチャートであ
り、図2は本発明の実施の形態に係わる一軸型複合発電
プラントの低圧蒸気タービン冷却蒸気供給系統の系統図
である。
Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing a start control method for a single-shaft combined cycle power plant according to an embodiment of the present invention. FIG. 2 is a low-pressure steam turbine cooling steam supply system of the single-shaft combined cycle plant according to the embodiment of the present invention. FIG.

【0044】図2において、図8に示した従来例に対
し、低圧蒸気タービン冷却蒸気流量調整用オリフィス2
6に代えて低圧蒸気タービン冷却蒸気供給逆止弁48を
設け、また、低圧蒸気タービン冷却蒸気流量調節弁47
を設け、この低圧蒸気タービン冷却蒸気流量調節弁47
は、低圧過熱器出口流量伝送器5で検出された流量およ
び低圧蒸気タービン冷却蒸気流量伝送器46で検出され
た流量に基づいて調整されるように構成されている。
In FIG. 2, the orifice 2 for adjusting the steam flow rate for cooling the low-pressure steam turbine is different from the conventional example shown in FIG.
6, a low-pressure steam turbine cooling steam supply check valve 48 is provided.
And the low-pressure steam turbine cooling steam flow control valve 47 is provided.
Is configured to be adjusted based on the flow rate detected by the low-pressure superheater outlet flow rate transmitter 5 and the flow rate detected by the low-pressure steam turbine cooling steam flow rate transmitter 46.

【0045】一軸型複合発電プラントの自軸の軸起動指
令が入力されるガスタービンが起動される(S1)。こ
の状態で、排熱回収ボイラの低圧ドラム1のドラム圧力
が所定値以上であるか否かを判定する(S2)。低圧ド
ラム圧力が所定値以上であるときは、低圧蒸気タービン
冷却蒸気として必要な過熱度を満たした蒸気であると判
定し、補助蒸気供給に先立ち低圧過熱器出口弁6を開
し、蒸気タービン冷却蒸気として自缶の低圧蒸気を低圧
蒸気タービン14に供給する(S3)。この場合、低圧
蒸気タービン14をバイパスする低圧タービンバイパス
弁9の一次側制御圧力設定値を、実圧より所定値αだけ
大きな値とする(S4)。これは、軸起動時に低圧ドラ
ム1が有している低圧系統蒸気の復水器17への排出を
防止し、低圧系統蒸気の有効利用を図るためである。
The gas turbine to which the shaft start command of the own shaft of the single shaft combined cycle power plant is input is started (S1). In this state, it is determined whether the drum pressure of the low-pressure drum 1 of the exhaust heat recovery boiler is equal to or higher than a predetermined value (S2). When the low-pressure drum pressure is equal to or higher than a predetermined value, it is determined that the steam has satisfied the necessary degree of superheat as the low-pressure steam turbine cooling steam, and the low-pressure superheater outlet valve 6 is opened prior to the supply of the auxiliary steam, and the steam turbine cooling is performed. The low-pressure steam of the can is supplied to the low-pressure steam turbine 14 as steam (S3). In this case, the primary-side control pressure set value of the low-pressure turbine bypass valve 9 that bypasses the low-pressure steam turbine 14 is set to a value larger than the actual pressure by a predetermined value α (S4). This is to prevent the low-pressure system steam of the low-pressure drum 1 from being discharged to the condenser 17 when the shaft is started, and to effectively utilize the low-pressure system steam.

【0046】そして、低圧ドラム1からの蒸気が冷却蒸
気としての条件を満すか否かを判定し(S5)、低圧ド
ラム1からの蒸気が冷却蒸気としての条件を満たさなく
たったときは、補助蒸気系統から低圧蒸気タービン14
に蒸気を供給する(S6)。
Then, it is determined whether or not the steam from the low-pressure drum 1 satisfies the condition as the cooling steam (S5). If the steam from the low-pressure drum 1 does not satisfy the condition as the cooling steam, the auxiliary steam is used. System to low pressure steam turbine 14
(S6).

【0047】これは、ガスタービン18が起動しても即
座に低圧ドラム1には蒸気が発生しないので、低圧ドラ
ム1からの蒸気が冷却蒸気としての条件を満たさなくな
ることがあるからである。
This is because steam is not immediately generated in the low-pressure drum 1 even when the gas turbine 18 is started, so that the steam from the low-pressure drum 1 may not satisfy the condition as cooling steam.

【0048】この場合、低圧ドラム1からの蒸気の供給
を停止し、補助蒸気系統から低圧蒸気タービン14に冷
却蒸気を供給する。または、低圧ドラム1からの蒸気に
加え、補助蒸気系統から低圧蒸気タービン14に冷却蒸
気を供給する。これにより、自缶蒸気流量が低下した場
合においても、自缶蒸気の有効利用を継続しつつ、必要
最小限の系外からの補助蒸気供給により、低圧蒸気ター
ビン冷却蒸気の供給継続が可能となる。その結果、蒸気
タービンの保護および安定した起動継続が可能となり、
かつ、発電プラントの補助蒸気供給に伴う運用制約を最
小限とできる。
In this case, the supply of steam from the low-pressure drum 1 is stopped, and cooling steam is supplied to the low-pressure steam turbine 14 from the auxiliary steam system. Alternatively, cooling steam is supplied to the low-pressure steam turbine 14 from the auxiliary steam system in addition to the steam from the low-pressure drum 1. As a result, even when the flow rate of the self-canister steam is reduced, the supply of the low-pressure steam turbine cooling steam can be continued by supplying the minimum necessary amount of auxiliary steam from outside the system while maintaining the effective use of the self-canister steam. . As a result, it is possible to protect the steam turbine and maintain a stable start,
In addition, operational constraints associated with the auxiliary steam supply of the power plant can be minimized.

【0049】一方、ステップS2の判定で、低圧ドラム
圧力が所定値以上でないときは、低圧蒸気タービン冷却
蒸気として必要な過熱度を満たした蒸気ではないと判定
し、補助蒸気系統から低圧蒸気タービンに冷却蒸気を供
給する(S6)。自缶から冷却蒸気を供給できないとき
は、必要な冷却蒸気を系外の補助蒸気系統から供給す
る。
On the other hand, if it is determined in step S2 that the low-pressure drum pressure is not equal to or higher than the predetermined value, it is determined that the steam does not satisfy the degree of superheat required for the low-pressure steam turbine cooling steam, and the auxiliary steam system sends the low-pressure steam turbine to the low-pressure steam turbine. Cooling steam is supplied (S6). When the cooling steam cannot be supplied from the can, the necessary cooling steam is supplied from an auxiliary steam system outside the system.

【0050】そして、蒸気タービンのうちの中圧タービ
ン15の入口蒸気流量が低圧蒸気タービン14の冷却蒸
気の必要流量を上回ったか否かを判定し(S7)、上回
ったことを確認すると、低圧蒸気タービン14をバイパ
スする低圧タービンバイパス弁9の一次側制御圧力設定
値を低圧主蒸気止め弁加減弁11の一次側制御圧力設定
値より所定値αだけ大きな値とする(S8)。これによ
り、低圧蒸気タービン冷却蒸気が不要となり次第、ター
ビンバイパス弁9を本来の保護装置としての制御設定値
へ復帰させることが可能となる。そして、補助蒸気系統
からの蒸気供給を停止する(S9)。
Then, it is determined whether or not the inlet steam flow rate of the medium-pressure turbine 15 of the steam turbine exceeds the required flow rate of the cooling steam of the low-pressure steam turbine 14 (S7). The primary-side control pressure set value of the low-pressure turbine bypass valve 9 that bypasses the turbine 14 is set to a value larger by a predetermined value α than the primary-side control pressure set value of the low-pressure main steam stop valve control valve 11 (S8). As a result, as soon as the low-pressure steam turbine cooling steam becomes unnecessary, the turbine bypass valve 9 can be returned to the control set value as the original protection device. Then, the supply of steam from the auxiliary steam system is stopped (S9).

【0051】次に、図2を参照して、本発明の実施の形
態における軸起動時の動作を説明する。まず、ガスター
ビン18の起動に先立ち、低圧過熱器出口圧力伝送器3
により低圧系統の圧力を確認する。この圧力が低圧蒸気
タービン冷却蒸気として必要な過熱度を有している場合
には、ガスタービン18の起動の後に、ガスタービン1
8が予め設定した規定回転数に達した段階で、補助蒸気
による低圧蒸気タービン冷却蒸気供給に先立ち、低圧過
熱器出口弁6を開し、蒸気タービン冷却蒸気として自缶
の低圧蒸気を供給する。
Next, with reference to FIG. 2, the operation at the time of starting the shaft in the embodiment of the present invention will be described. First, before starting the gas turbine 18, the low pressure superheater outlet pressure transmitter 3
To check the pressure of the low pressure system. If this pressure has the required degree of superheat as low-pressure steam turbine cooling steam, the gas turbine 1
When the number of rotations 8 reaches a preset specified number of revolutions, the low-pressure superheater outlet valve 6 is opened prior to the supply of the low-pressure steam turbine cooling steam by the auxiliary steam, and the low-pressure steam of the own can is supplied as the steam turbine cooling steam.

【0052】ここで、低圧系統の圧力確認による過熱度
の有無の判断は、例えば、低圧主蒸気止め弁加減弁11
の一次側制御圧力が5ata、低圧主蒸気止め弁加減弁
前における必要過熱度が+5℃の場合、以下となる。
Here, the determination of the presence or absence of the degree of superheat by confirming the pressure of the low-pressure system is performed by, for example, the low-pressure main steam stop valve control valve 11.
When the primary side control pressure is 5 ata and the required degree of superheat before the low-pressure main steam stop valve control valve is + 5 ° C., the following is obtained.

【0053】 ・低圧主蒸気止め弁加減弁前圧力:5ataにおける飽和温度+5℃ =151.11℃+5℃=156.11℃ …(1) ・5ata、156.11℃におけるエンタルピー =658.792kcal/kg …(2) ・系統内に残存する蒸気は飽和蒸気と考えれば、(2)を
満足する飽和圧力であれば良い。 ・6.6ataの飽和エンタルピー =658.901kcal/kg …(3) ・(3)>(2)より、低圧系統圧力が6.6ata以
上あれば良い。これより、自缶の低圧蒸気の有効利用が
可能となる。
The pressure before the low-pressure main steam stop valve is adjusted: the saturation temperature at 5 ata + 5 ° C. = 151.11 ° C. + 5 ° C. = 156.11 ° C. (1) The enthalpy at 5ata and 156.11 ° C. = 658.792 kcal / kg ... (2)-If the steam remaining in the system is considered to be saturated steam, it is sufficient if the saturated pressure satisfies (2).・ Saturation enthalpy of 6.6ata = 658.901 kcal / kg (3) ・ From (3)> (2), it is sufficient that the low-pressure system pressure is 6.6ata or more. This makes it possible to effectively use the low-pressure steam of the can.

【0054】以上に関する制御ブロックを図3に示す。
図3は、自缶の低圧ドラム1の蒸気条件の判定論理回路
である。
FIG. 3 shows a control block related to the above.
FIG. 3 is a logic circuit for determining the steam condition of the low-pressure drum 1 of the can.

【0055】この判定論理回路のレベル判定器71は、
ガスタービン18の起動前に低圧過熱器出口圧力伝送器
3からの低圧過熱器出口圧力が所定値P1以上であるか
否かを判定し、低圧過熱器出口圧力が所定値P1以上で
あるときはAND回路72に論理値「1」を出力する。
一方、ガスタービンの回転数が規定回転数以上のときに
はAND回路72に論理値「1」が出力される。
The level decision unit 71 of the decision logic circuit is
Before starting the gas turbine 18, it is determined whether or not the low-pressure superheater outlet pressure from the low-pressure superheater outlet pressure transmitter 3 is equal to or higher than a predetermined value P1, and if the low-pressure superheater outlet pressure is equal to or higher than the predetermined value P1. The logic value “1” is output to the AND circuit 72.
On the other hand, when the rotation speed of the gas turbine is equal to or higher than the specified rotation speed, a logical value “1” is output to the AND circuit 72.

【0056】AND回路72は、低圧過熱器出口圧力が
所定値P1以上であり、ガスタービンの回転数が規定回
転数以上のときに、低圧ドラム1は冷却蒸気として必要
な過熱度を満たした蒸気を有しており、かつ、低圧蒸気
タービン14が冷却蒸気を必要としていると判定し、低
圧過熱器出力弁6に開指令を出力する。これにより、蒸
気タービン冷却蒸気として自缶の低圧蒸気が低圧蒸気タ
ービン14に供給される。
When the outlet pressure of the low-pressure superheater is equal to or higher than the predetermined value P1 and the number of rotations of the gas turbine is equal to or higher than the specified number, the low-pressure drum 1 causes the low-pressure drum 1 to have a sufficient degree of superheat as cooling steam Is determined, and the low-pressure steam turbine 14 determines that the cooling steam is required, and outputs an open command to the low-pressure superheater output valve 6. As a result, the low-pressure steam of the can is supplied to the low-pressure steam turbine 14 as the steam turbine cooling steam.

【0057】また、この場合、低圧過熱器出力弁6の開
指令により切替回路73は、低圧タービンバイパス弁9
の一次側制御圧力設定値として実圧+αを選択する。こ
れより、軸起動時に低圧タービンバイパス弁9が開する
ことは無く、低圧ドラム1が有している低圧系統蒸気の
復水器17への排出を防止でき、低圧系統蒸気の無駄無
く使用することが可能となる。
In this case, the switching circuit 73 is operated by the open command of the low-pressure superheater output valve 6 to open the low-pressure turbine bypass valve 9.
Is selected as the primary side control pressure set value. As a result, the low-pressure turbine bypass valve 9 does not open at the time of starting the shaft, the discharge of the low-pressure system steam of the low-pressure drum 1 to the condenser 17 can be prevented, and the low-pressure system steam can be used without waste. Becomes possible.

【0058】図4は、自缶の低圧ドラム1の蒸気条件が
悪化し補助蒸気系統に切り替える場合の判定論理回路で
ある。自缶蒸気供給の後に低圧ドラム1からの蒸気条件
が悪化したときは、低圧過熱器出口弁6を閉止し、低圧
蒸気タービン冷却蒸気供給弁25を開し、補助蒸気系統
からのバックアップを行なう。
FIG. 4 shows a decision logic circuit in the case where the steam condition of the low pressure drum 1 of the self can deteriorates and the system is switched to the auxiliary steam system. When the steam condition from the low-pressure drum 1 is deteriorated after the supply of the self-canister steam, the low-pressure superheater outlet valve 6 is closed, the low-pressure steam turbine cooling steam supply valve 25 is opened, and backup from the auxiliary steam system is performed.

【0059】レベル判定器71aは低圧過熱器出口圧力
伝送器3により確認された蒸気圧力が所定値P1以下か
否かを判定し、所定値P1以下である場合には論理値
「1」をOR回路74に出力する。
The level determiner 71a determines whether or not the steam pressure confirmed by the low-pressure superheater outlet pressure transmitter 3 is equal to or lower than a predetermined value P1, and if it is equal to or lower than the predetermined value P1, the logical value "1" is ORed. Output to the circuit 74.

【0060】また、レベル判定器71bは低圧過熱器出
口流量伝送器5により確認された蒸気流量が所定の蒸気
流量Q1以下か否かを判定し、所定値Q1以下である場
合には論理値「1」をOR回路74に出力する。
The level determiner 71b determines whether or not the steam flow rate confirmed by the low-pressure superheater outlet flow rate transmitter 5 is equal to or less than a predetermined steam flow rate Q1. "1" is output to the OR circuit 74.

【0061】さらに、演算回路75は低圧主蒸気止め弁
加減弁前温度検出器12と低圧主蒸気止め弁加減弁前圧
力伝送器13とから確認される過熱度を算出し、レベル
判定器71cは、その過熱度が所定値H1以下か否かを
判定し、所定値H1以下の場合には論理値「1」をOR
回路74に出力する。
Further, the arithmetic circuit 75 calculates the degree of superheat ascertained from the low pressure main steam stop valve pre-adjustment valve temperature detector 12 and the low pressure main steam stop valve pre-adjustment valve pressure transmitter 13. It is determined whether or not the degree of superheat is equal to or less than a predetermined value H1.
Output to the circuit 74.

【0062】OR回路74は、低圧過熱器出口圧力伝送
器3により確認された蒸気圧力、低圧過熱器出口流量伝
送器5により確認された蒸気流量、低圧主蒸気止め弁加
減弁前温度検出器12と低圧主蒸気止め弁加減弁前圧力
伝送器13とから確認される過熱度のいずれかが、低圧
蒸気タービン冷却蒸気として必要値を下回った場合に
は、低圧過熱器出口弁6を閉止して低圧ドラム1からの
蒸気の供給を停止すると共に、低圧蒸気タービン冷却蒸
気供給弁25を開して補助蒸気系統から冷却蒸気のバッ
クアップを行なう。
The OR circuit 74 includes a steam pressure confirmed by the low-pressure superheater outlet pressure transmitter 3, a steam flow confirmed by the low-pressure superheater outlet flow transmitter 5, and a low-pressure main steam stop valve before and after temperature detector 12. If any of the degrees of superheat confirmed from the pressure transmitter 13 and the low-pressure main steam stop valve pre-adjustment valve lowers below a required value as the low-pressure steam turbine cooling steam, the low-pressure superheater outlet valve 6 is closed. The supply of steam from the low-pressure drum 1 is stopped, and the low-pressure steam turbine cooling steam supply valve 25 is opened to back up the cooling steam from the auxiliary steam system.

【0063】これより、自缶の蒸気を有効利用した上
で、自缶の蒸気条件が悪化した場合、悪化した条件の蒸
気の蒸気タービンへの流入を防止でき、かつ、低圧蒸気
タービン冷却蒸気の供給継続が可能となり、蒸気タービ
ン保護および安定した起動が可能となる。
Accordingly, when the steam condition of the self-can deteriorates after the steam of the self-can is effectively used, it is possible to prevent the steam under the deteriorated condition from flowing into the steam turbine, and to reduce the cooling steam of the low-pressure steam turbine. Supply can be continued, and steam turbine protection and stable startup can be achieved.

【0064】図5は、自缶の低圧ドラム1の蒸気条件が
悪化して一部の冷却蒸気を補助蒸気系統から受ける場合
の判定論理回路である。
FIG. 5 is a decision logic circuit in the case where the steam condition of the low pressure drum 1 of the can is deteriorated and a part of the cooling steam is received from the auxiliary steam system.

【0065】低圧蒸気タービン冷却蒸気供給系統に低圧
蒸気タービン冷却蒸気流量調節弁47を有している場合
は、自缶蒸気供給の後に、低圧過熱器出口流量伝送器5
により確認された流量が低圧蒸気タービン冷却蒸気とし
て必要値を下回った場合は、不足分の冷却蒸気を補助蒸
気系統から供給する。
When the low-pressure steam turbine cooling steam supply system has the low-pressure steam turbine cooling steam flow control valve 47, the low-pressure superheater outlet flow transmitter 5
If the flow rate confirmed by the above becomes lower than the required value as the low-pressure steam turbine cooling steam, the insufficient cooling steam is supplied from the auxiliary steam system.

【0066】自缶蒸気供給の後に、低圧過熱器出口流量
伝送器5により確認された流量が低圧蒸気タービン冷却
蒸気として必要値を下回った場合には、低圧過熱器出口
流量伝送器5により確認された流量と低圧蒸気タービン
冷却蒸気流量伝送器46により確認された流量との和を
加算器76aで演算し、その流量和と低圧蒸気タービン
冷却蒸気必要流量との偏差を加算器76bで演算し、そ
の偏差が零となるように低圧蒸気タービン冷却蒸気流量
調節弁47を調節する。このようにして、低圧蒸気ター
ビン冷却蒸気が必要値となるように補助蒸気系統からの
バックアップを行なう。
If the flow rate confirmed by the low-pressure superheater outlet flow transmitter 5 after the self-canister steam supply falls below a required value for the low-pressure steam turbine cooling steam, the low-pressure superheater outlet flow transmitter 5 confirms the flow rate. The sum of the flow rate and the flow rate confirmed by the low-pressure steam turbine cooling steam flow rate transmitter 46 is calculated by an adder 76a, and the deviation between the sum of the flow rates and the low-pressure steam turbine cooling steam required flow rate is calculated by an adder 76b. The low-pressure steam turbine cooling steam flow control valve 47 is adjusted so that the deviation becomes zero. In this way, backup from the auxiliary steam system is performed so that the low-pressure steam turbine cooling steam has the required value.

【0067】これより、自缶の蒸気の有効利用を継続し
つつ、必要最小限の補助蒸気供給により、低圧蒸気ター
ビン冷却蒸気の供給継続が可能となり、蒸気タービン保
護および安定した起動継続が可能となる。
Thus, the supply of low-pressure steam turbine cooling steam can be continued by the minimum necessary auxiliary steam supply while the effective use of the steam in the can is continued, and the protection of the steam turbine and the stable start-up can be achieved. Become.

【0068】ここで、図2に示すように、本発明の実施
の形態では、低圧蒸気タービン冷却蒸気供給系統に逆止
弁48を設置しており、低圧蒸気圧力が補助蒸気系統圧
力より高い場合においても、低圧蒸気圧力から補助蒸気
系統への逆流を防止するようにしている。従って、低圧
蒸気タービン冷却蒸気供給弁25を開状態のまま、低圧
蒸気タービン冷却蒸気流量調節弁47の自動待機が可能
となる。
Here, as shown in FIG. 2, in the embodiment of the present invention, the check valve 48 is installed in the low-pressure steam turbine cooling steam supply system, and when the low-pressure steam pressure is higher than the auxiliary steam system pressure. In this case, the backflow from the low-pressure steam pressure to the auxiliary steam system is prevented. Therefore, the low-pressure steam turbine cooling steam flow control valve 47 can automatically stand by while the low-pressure steam turbine cooling steam supply valve 25 is kept open.

【0069】次に、図6は自缶の低圧ドラム1からの冷
却蒸気の供給を停止する場合の判定論理回路である。中
圧蒸気タービン入口流量が低圧蒸気タービン冷却蒸気の
必要流量を上回ったときは、タービンバイパス弁を本来
の保護装置としての制御設定値へ復帰させる。
Next, FIG. 6 shows a judgment logic circuit when the supply of the cooling steam from the low pressure drum 1 of the can is stopped. When the inlet flow rate of the medium-pressure steam turbine exceeds the required flow rate of the low-pressure steam turbine cooling steam, the turbine bypass valve is returned to the control set value as the original protection device.

【0070】図6において、自缶蒸気供給の後に、演算
回路75は再熱蒸気止め弁加減弁前圧力伝送器40から
の圧力および再熱蒸気止め弁加減弁前温度検出器41か
らの温度に基づいて、中圧蒸気タービン入口流量を求め
る。そして、中圧蒸気タービン入口流量と低圧蒸気ター
ビン冷却蒸気の必要流量との偏差を加算器76で演算
し、レベル判定器71はその偏差が正、つまり、中圧蒸
気タービン入口流量が低圧蒸気タービン冷却蒸気の必要
流量をを上回った時点で、切替器73に指令を出力し
て、低圧タービンバイパス弁9の一次側制御圧力設定値
を低圧加減弁一次側制御圧力設定値+αとするとすると
共に、低圧蒸気タービン冷却蒸気供給弁25を閉止す
る。
In FIG. 6, after the supply of steam from the self-canister, the arithmetic circuit 75 sets the pressure from the pressure transmitter 40 before the reheat steam stop valve and the temperature from the temperature detector 41 before the reheat steam stop valve. Then, the flow rate at the inlet of the intermediate-pressure steam turbine is determined. The adder 76 calculates the difference between the medium-pressure steam turbine inlet flow rate and the required low-pressure steam turbine cooling steam flow rate, and the level determiner 71 determines that the difference is positive, that is, the medium-pressure steam turbine inlet flow rate is low-pressure steam turbine. When the required flow rate of the cooling steam is exceeded, a command is output to the switch 73 to set the primary control pressure set value of the low-pressure turbine bypass valve 9 to the low-pressure control valve primary-side control pressure set value + α. The low-pressure steam turbine cooling steam supply valve 25 is closed.

【0071】これより、低圧蒸気タービン冷却蒸気が不
要となり次第、補助蒸気系統からの補助蒸気の供給を停
止すると共に、タービンバイパス弁9を本来の保護装置
としての制御設定値へ復帰させることが可能となる。
Thus, as soon as the low-pressure steam turbine cooling steam becomes unnecessary, the supply of the auxiliary steam from the auxiliary steam system can be stopped and the turbine bypass valve 9 can be returned to the control set value as the original protection device. Becomes

【0072】次に、図7は軸補助蒸気母管20の補助蒸
気源として自缶の中圧蒸気を使用する場合の判定論理回
路である。
Next, FIG. 7 is a decision logic circuit in the case of using medium-pressure steam in the self-can as an auxiliary steam source of the axial auxiliary steam mother pipe 20.

【0073】図2に示すように、本発明の実施の形態で
は、中圧蒸気系統においては軸補助蒸気母管20へ補助
蒸気のバックアップ供給を行うようにしている。軸補助
蒸気母管20は、他の発電設備58から補助蒸気供給圧
力調節弁59により圧力制御されている。この場合、軸
補助蒸気バックアップ圧力調節弁27により、より低い
圧力にて軸補助蒸気母管20を制御し、補助蒸気のバッ
クアップ供給を行う。
As shown in FIG. 2, in the embodiment of the present invention, in the medium pressure steam system, backup supply of auxiliary steam to the axial auxiliary steam mother pipe 20 is performed. The pressure of the shaft auxiliary steam mother pipe 20 is controlled by an auxiliary steam supply pressure control valve 59 from another power generation facility 58. In this case, the shaft auxiliary steam mother pipe 20 is controlled at a lower pressure by the shaft auxiliary steam backup pressure control valve 27, and backup supply of the auxiliary steam is performed.

【0074】ガスタービン18の起動に先立ち、加算器
76aは、中圧過熱器出口圧力伝送器31からの中圧系
統の圧力と、軸補助蒸気母管20の圧力補助蒸気圧力伝
送器61の圧力の偏差を演算し、レベル判定器71aは
中圧系統の圧力が軸補助蒸気母管20の圧力より大きい
ときに論理値「1」をAND回路72に出力する。
Prior to starting the gas turbine 18, the adder 76 a determines the pressure of the medium pressure system from the medium pressure superheater outlet pressure transmitter 31 and the pressure of the pressure auxiliary steam pressure transmitter 61 of the shaft auxiliary steam mother pipe 20. Is calculated, and the level determiner 71a outputs a logical value “1” to the AND circuit 72 when the pressure of the intermediate-pressure system is higher than the pressure of the axial auxiliary steam mother pipe 20.

【0075】同様に、加算器76bは、中圧過熱器出口
温度検出器32からの中圧系統の温度と、軸補助蒸気母
管20の軸補助蒸気温度検出器24の温度との偏差を演
算し、レベル判定器71bは、中圧系統の温度が軸補助
蒸気母管20の温度より大きいときに論理値「1」をA
ND回路72に出力する。
Similarly, the adder 76b calculates the deviation between the temperature of the medium pressure system from the medium pressure superheater outlet temperature detector 32 and the temperature of the shaft auxiliary steam temperature detector 24 of the shaft auxiliary steam mother pipe 20. When the temperature of the medium-pressure system is higher than the temperature of the auxiliary steam main pipe 20, the level determiner 71b sets the logical value "1" to A.
Output to ND circuit 72.

【0076】そして、AND回路72は、中圧系統の蒸
気の圧力および温度が軸補助蒸気母管20の圧力および
温度より大きい場合に、切替回路73a、73bに指令
を出力して、補助蒸気供給圧力調節弁59と軸補助蒸気
バックアップ圧力調節弁27との圧力制御設定値を切り
替えると共に、軸補助蒸気バックアップ圧力調節弁前弁
28を開する。
The AND circuit 72 outputs a command to the switching circuits 73a and 73b to supply auxiliary steam when the pressure and temperature of the steam in the medium pressure system are higher than the pressure and temperature of the auxiliary steam main pipe 20. The pressure control set values of the pressure control valve 59 and the shaft auxiliary steam backup pressure control valve 27 are switched, and the shaft auxiliary steam backup pressure control valve front valve 28 is opened.

【0077】これより、軸補助蒸気母管20の補助蒸気
源として自缶の中圧蒸気を使用することが可能となり、
前述の低圧自缶蒸気の有効利用法と合わせ、他の発電設
備58から補助蒸気供給の最小限化が可能となる。
As a result, it is possible to use the medium-pressure steam of the self-can as an auxiliary steam source for the shaft auxiliary steam mother pipe 20.
Combined with the above-described effective use of the low-pressure self-canister steam, it is possible to minimize the supply of auxiliary steam from other power generation equipment 58.

【0078】[0078]

【発明の効果】以上述べたように、本発明によれば、軸
起動時に自軸が排熱回収ボイラに保有する蒸気の無駄な
排出を防止でき、その蒸気を自軸の起動用蒸気として有
効利用することが可能となる。すなわち、自缶低圧蒸気
を使用し、そのバックアップとして自缶中圧蒸気を使用
し、それで賄えない場合に、最終的に補助蒸気使用へと
至るので、補助蒸気の使用を最小限に抑制できる。
As described above, according to the present invention, it is possible to prevent the self-shaft from wastefully discharging the steam held in the exhaust heat recovery boiler at the time of starting the shaft, and to use the steam as steam for starting the self-shaft. It can be used. In other words, the self-can low-pressure steam is used, and the self-can medium-pressure steam is used as a backup for the backup. .

【0079】従って、軸起動に伴う他の発電設備からの
補助蒸気供給を最小限とすることができ、それに伴う発
電プラントへ与える運用制約への影響および蒸気損失を
最小限とすることが可能となる。
Accordingly, it is possible to minimize the supply of auxiliary steam from other power generation equipment due to the start of the shaft, thereby minimizing the influence on operation constraints and the steam loss on the power generation plant. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わる一軸型複合発電プ
ラントの起動制御方法を示すフローチャート。
FIG. 1 is a flowchart showing a startup control method for a single-shaft combined cycle power plant according to an embodiment of the present invention.

【図2】本発明の実施の形態に係わる一軸型複合発電プ
ラントの低圧蒸気タービン冷却蒸気供給系統の系統図。
FIG. 2 is a system diagram of a low-pressure steam turbine cooling steam supply system of the single-shaft combined cycle power plant according to the embodiment of the present invention.

【図3】本発明の実施の形態における自缶の低圧ドラム
の蒸気条件の判定論理回路の回路図。
FIG. 3 is a circuit diagram of a logic circuit for determining a steam condition of the low-pressure drum of the can according to the embodiment of the present invention.

【図4】本発明の実施の形態における自缶の低圧ドラム
の蒸気条件が悪化し補助蒸気系統に切り替える場合の判
定論理回路の回路図。
FIG. 4 is a circuit diagram of a determination logic circuit in a case where the steam condition of the low-pressure drum of the can is deteriorated and the system is switched to the auxiliary steam system in the embodiment of the present invention.

【図5】本発明の実施の形態における自缶の低圧ドラム
の蒸気条件が悪化して一部の冷却蒸気を補助蒸気系統か
ら受ける場合の判定論理回路の回路図。
FIG. 5 is a circuit diagram of a determination logic circuit according to the embodiment of the present invention when the steam condition of the low pressure drum of the can is deteriorated and a part of the cooling steam is received from the auxiliary steam system.

【図6】本発明の実施の形態における自缶の低圧ドラム
からの冷却蒸気の供給を停止する場合の判定論理回路の
回路図。
FIG. 6 is a circuit diagram of a determination logic circuit when the supply of cooling steam from the low-pressure drum of the can is stopped according to the embodiment of the present invention.

【図7】本発明の実施の形態における軸補助蒸気母管の
補助蒸気源として自缶の中圧蒸気を使用する場合の判定
論理回路の回路図。
FIG. 7 is a circuit diagram of a determination logic circuit in a case where medium-pressure steam of the can is used as an auxiliary steam source of the axial auxiliary steam mother pipe in the embodiment of the present invention.

【図8】従来の一軸型複合発電プラントの低圧蒸気ター
ビン冷却蒸気供給系統の系統図。
FIG. 8 is a system diagram of a low-pressure steam turbine cooling steam supply system of a conventional single-shaft combined cycle power plant.

【図9】低圧ドラム、中圧ドラム、高圧ドラムを有する
3圧式排熱回収ボイラの蒸気系統図。
FIG. 9 is a steam system diagram of a three-pressure exhaust heat recovery boiler having a low-pressure drum, a medium-pressure drum, and a high-pressure drum.

【符号の説明】[Explanation of symbols]

1…低圧ドラム、2…低圧過熱器、3…低圧過熱器出口
圧力伝送器、4…低圧過熱器出口温度検出器、5…低圧
過熱器出口流量伝送器、6…低圧過熱器出口弁、7…低
圧過熱器出口逆止弁、8…低圧タービンバイパス弁前
弁、9…低圧タービンバイパス弁、10…低圧タービン
バイパス弁前圧力伝送器、11…低圧主蒸気止め弁加減
弁、12…低圧主蒸気止め弁加減弁前温度検出器、13
…低圧主蒸気止め弁加減弁前圧力伝送器、14…低圧蒸
気タービン、15…中圧蒸気タービン、16…高圧蒸気
タービン、17…復水器、18…ガスタービン、19…
空気圧縮機、20…軸補助蒸気母管、21…軸補助蒸気
減温器、22…軸補助蒸気温度調節弁、23…軸補助蒸
気バックアップ圧力伝送器、24…軸補助蒸気温度検出
器、25…低圧蒸気タービン冷却蒸気供給弁、26…低
圧蒸気タービン冷却蒸気流量調整用オリフィス、27…
軸補助蒸気バックアップ圧力調節弁、28…軸補助蒸気
バックアップ圧力調節弁前弁、29…中圧ドラム、30
…中圧過熱器、31…中圧過熱器出口圧力伝送器、32
…中圧過熱器出口温度検出器、33…中圧タービンバイ
パス弁前弁、34…中圧タービンバイパス弁、35…中
圧タービンバイパス弁前圧力伝送器、36…中圧過熱器
出口弁、37…中圧過熱器出口逆止弁、38…再熱器、
39…再熱蒸気止め弁加減弁、40…再熱蒸気止め弁加
減弁前圧力伝送器、41…再熱蒸気止め弁加減弁前温度
検出器、42…低圧過熱器出口弁前ドレン弁、43…低
圧蒸気タービン冷却蒸気供給弁前ドレン弁、44…低圧
主蒸気止め弁加減弁前ドレン弁、45…低圧主蒸気リー
ド管ドレン弁、46…低圧蒸気タービン冷却蒸気流量伝
送器、47…低圧蒸気タービン冷却蒸気流量調節弁、4
8…低圧蒸気タービン冷却蒸気供給逆止弁、49…高圧
ドラム、50…高圧過熱器、51…高圧過熱器止め弁加
減弁、52…高圧タービンバイパス弁前弁、53…高圧
タービンバイパス弁、58…他の発電設備、59…補助
蒸気供給圧力調節弁、60…補助蒸気供給弁、61…補
助蒸気圧力伝送器、71…レベル判定器、72…AND
回路 73…切替回路、74…OR回路、75…演算回
路、76…加算器
DESCRIPTION OF SYMBOLS 1 ... Low pressure drum, 2 ... Low pressure superheater, 3 ... Low pressure superheater outlet pressure transmitter, 4 ... Low pressure superheater outlet temperature detector, 5 ... Low pressure superheater outlet flow transmitter, 6 ... Low pressure superheater outlet valve, 7 ... Low pressure superheater outlet check valve, 8 ... Low pressure turbine bypass valve front valve, 9 ... Low pressure turbine bypass valve, 10 ... Low pressure turbine bypass valve front pressure transmitter, 11 ... Low pressure main steam stop valve control valve, 12 ... Low pressure main Temperature detector before steam stop valve control valve, 13
... Low-pressure main steam stop valve before and after the pressure transmitter, 14 ... Low-pressure steam turbine, 15 ... Medium-pressure steam turbine, 16 ... High-pressure steam turbine, 17 ... Condenser, 18 ... Gas turbine, 19 ...
Air compressor, 20: shaft auxiliary steam mother pipe, 21: shaft auxiliary steam cooler, 22: shaft auxiliary steam temperature control valve, 23: shaft auxiliary steam backup pressure transmitter, 24: shaft auxiliary steam temperature detector, 25 ... Low-pressure steam turbine cooling steam supply valve, 26 ... Low-pressure steam turbine cooling steam flow adjustment orifice, 27 ...
Auxiliary steam backup pressure control valve, 28 ... Auxiliary steam backup pressure control valve front valve, 29 ... Medium pressure drum, 30
... Medium pressure superheater, 31 ... Medium pressure superheater outlet pressure transmitter, 32
... Medium pressure superheater outlet temperature detector, 33 ... Medium pressure turbine bypass valve front valve, 34 ... Medium pressure turbine bypass valve, 35 ... Medium pressure turbine bypass valve front pressure transmitter, 36 ... Medium pressure superheater outlet valve, 37 ... medium pressure superheater outlet check valve, 38 ... reheater,
39: Reheat steam stop valve control valve, 40: Reheat steam stop valve control valve before pressure transmitter, 41: Reheat steam stop valve control valve front temperature detector, 42: Low pressure superheater outlet valve front drain valve, 43 ... Drain valve before low pressure steam turbine cooling steam supply valve, 44 ... Drain valve before low pressure main steam stop valve adjusting valve, 45 ... Low pressure main steam reed pipe drain valve, 46 ... Low pressure steam turbine cooling steam flow transmitter, 47 ... Low pressure steam Turbine cooling steam flow control valve, 4
8 ... Low pressure steam turbine cooling steam supply check valve, 49 ... High pressure drum, 50 ... High pressure superheater, 51 ... High pressure superheater stop valve control valve, 52 ... High pressure turbine bypass valve front valve, 53 ... High pressure turbine bypass valve, 58 ... other power generation equipment, 59 ... auxiliary steam supply pressure control valve, 60 ... auxiliary steam supply valve, 61 ... auxiliary steam pressure transmitter, 71 ... level judgment device, 72 ... AND
Circuit 73: switching circuit, 74: OR circuit, 75: arithmetic circuit, 76: adder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 17/00 F01D 17/00 G 19/00 19/00 L 25/12 25/12 A F01K 23/10 F01K 23/10 X // H02P 9/04 H02P 9/04 F (72)発明者 山時 誠 神奈川県川崎市幸区堀川町66番2 東芝エ ンジニアリング株式会社内 (72)発明者 秋丸 智 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 Fターム(参考) 3G071 AA07 AB01 BA07 CA01 FA03 FA06 HA03 HA05 3G081 BA04 BA11 BB00 BC07 BD00 DA03 DA06 5H590 AA02 CA01 CA08 CA29 CE01 EA01 FA01 HA13 HA16 HA18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01D 17/00 F01D 17/00 G 19/00 19/00 L 25/12 25/12 A F01K 23/10 F01K 23/10 X // H02P 9/04 H02P 9/04 F (72) Inventor Makoto Yamaki 66-2 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside Toshiba Engineering Corporation (72) Inventor Satoshi Akimaru Tokyo 1-1-1 Shibaura, Minato-ku, Tokyo F-term in the head office of Toshiba Corporation (reference) 3G071 AA07 AB01 BA07 CA01 FA03 FA06 HA03 HA05 3G081 BA04 BA11 BB00 BC07 BD00 DA03 DA06 5H590 AA02 CA01 CA08 CA29 CE01 EA01 FA01 HA13 HA16 HA18 HA18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと蒸気タービンとが直結さ
れ前記蒸気タービンは排熱回収ボイラからの蒸気で駆動
され、前記ガスタービン起動時に前記蒸気タービンのう
ちの低圧蒸気タービンに冷却蒸気を必要とする一軸型複
合発電プラントの起動制御方法において、前記ガスター
ビン起動前に前記排熱回収ボイラの低圧ドラム圧力に基
づいて前記低圧ドラムから前記低圧蒸気タービンの冷却
蒸気を供給できるか否かを判定し、前記低圧蒸気タービ
ンに冷却蒸気を供給できると判定したときは前記低圧ド
ラムから前記低圧蒸気タービンに冷却蒸気を供給し、前
記低圧蒸気タービンに冷却蒸気を供給できないと判定し
たときは補助蒸気系統から前記低圧蒸気タービンに冷却
蒸気を供給し、前記ガスタービンを起動することを特徴
とする一軸型複合発電プラントの起動制御方法。
A gas turbine and a steam turbine are directly connected to each other, and the steam turbine is driven by steam from an exhaust heat recovery boiler. When the gas turbine is started, a low-pressure steam turbine among the steam turbines needs cooling steam. In the start control method of the single-shaft combined cycle power plant, before starting the gas turbine, it is determined whether cooling steam of the low-pressure steam turbine can be supplied from the low-pressure drum based on the low-pressure drum pressure of the exhaust heat recovery boiler, When it is determined that the cooling steam can be supplied to the low-pressure steam turbine, the cooling steam is supplied from the low-pressure drum to the low-pressure steam turbine, and when it is determined that the cooling steam cannot be supplied to the low-pressure steam turbine, the cooling steam is supplied from the auxiliary steam system. A single-shaft combined power generation system, comprising supplying cooling steam to a low-pressure steam turbine and starting the gas turbine. Power plant startup control method.
【請求項2】 前記低圧ドラムの蒸気を前記低圧蒸気タ
ービンに冷却蒸気として供給するときは、前記低圧蒸気
タービンをバイパスする低圧タービンバイパス弁の一次
側制御圧力設定値を、実圧より所定値だけ大きな値とす
ることを特徴とする請求項1に記載の一軸型複合発電プ
ラントの起動制御方法。
2. When the steam of the low-pressure drum is supplied to the low-pressure steam turbine as cooling steam, a primary-side control pressure set value of a low-pressure turbine bypass valve that bypasses the low-pressure steam turbine is increased by a predetermined value from an actual pressure. The start control method for a single-shaft combined cycle power plant according to claim 1, wherein the start value is set to a large value.
【請求項3】 前記低圧ドラムから前記低圧蒸気タービ
ンに冷却蒸気を供給中に、前記低圧ドラムからの蒸気が
冷却蒸気としての条件を満たさなくなったとき、前記低
圧ドラムからの蒸気の供給を停止し、前記補助蒸気系統
から前記低圧蒸気タービンに冷却蒸気を供給するように
したことを特徴とする請求項1または請求項2に記載の
一軸型複合発電プラントの起動制御方法。
3. When supplying the cooling steam from the low-pressure drum to the low-pressure steam turbine, when the steam from the low-pressure drum no longer satisfies the condition as the cooling steam, the supply of the steam from the low-pressure drum is stopped. The start control method for a single-shaft combined cycle power plant according to claim 1 or 2, wherein cooling steam is supplied from the auxiliary steam system to the low-pressure steam turbine.
【請求項4】 前記低圧ドラムから前記低圧蒸気タービ
ンに冷却蒸気を供給中に、前記低圧ドラムからの蒸気が
冷却蒸気としての条件を満たさなくなったとき、前記低
圧ドラムからの蒸気に加え、前記補助蒸気系統から前記
低圧蒸気タービンに冷却蒸気を供給するようにしたこと
を特徴とする請求項1または請求項2に記載の一軸型複
合発電プラントの起動制御方法。
4. While supplying cooling steam from the low-pressure drum to the low-pressure steam turbine, when the steam from the low-pressure drum no longer satisfies the condition as cooling steam, the auxiliary steam is added to the steam from the low-pressure drum. 3. The method according to claim 1, wherein cooling steam is supplied from a steam system to the low-pressure steam turbine.
【請求項5】 前記低圧ドラムから前記低圧蒸気タービ
ンに冷却蒸気を供給する際に、逆止弁を介して冷却蒸気
を供給するようにしたことを特徴とする請求項1乃至請
求項4のいずれか1項に記載の一軸型複合発電プラント
の起動制御方法。
5. The cooling steam is supplied via a check valve when the cooling steam is supplied from the low-pressure drum to the low-pressure steam turbine. The method for controlling startup of a single-shaft combined cycle power plant according to claim 1.
【請求項6】 前記低圧ドラムから前記低圧蒸気タービ
ンに冷却蒸気を供給中に、前記蒸気タービンのうちの中
圧タービンの入口蒸気流量が前記低圧蒸気タービンの冷
却蒸気の必要流量を上回ったときは、前記低圧蒸気ター
ビンをバイパスする低圧タービンバイパス弁の一次側制
御圧力設定値を低圧主蒸気止め弁加減弁の一次側制御圧
力設定値より所定値だけ大きな値とすることを特徴とす
る請求項1乃至請求項5のいずれか1項に記載の一軸型
複合発電プラントの起動制御方法。
6. When cooling steam is being supplied from the low-pressure drum to the low-pressure steam turbine, when an inlet steam flow rate of an intermediate-pressure turbine among the steam turbines exceeds a required flow rate of cooling steam of the low-pressure steam turbine. A first control pressure set value of a low pressure turbine bypass valve that bypasses the low pressure steam turbine is set to a value larger by a predetermined value than a primary control pressure set value of a low pressure main steam stop valve control valve. The start control method for a single-shaft combined cycle power plant according to any one of claims 1 to 5.
【請求項7】 ガスタービンと蒸気タービンとが直結さ
れ前記蒸気タービンは排熱回収ボイラからの蒸気で駆動
され、前記ガスタービン起動時に前記蒸気タービンのう
ちの低圧蒸気タービンに冷却蒸気を必要とする一軸型複
合発電プラントの起動制御方法において、他の発電設備
からの補助蒸気供給系統および自軸の中圧過熱器に接続
される中圧蒸気供給系統から蒸気が供給される軸補助蒸
気系統を有し、前記低圧蒸気タービンの冷却蒸気は前記
軸補助蒸気系統より供給され、他の発電設備からの補助
蒸気供給系統は自軸の中圧蒸気供給系統より高い圧力で
制御されている場合、自軸の中圧過熱器の圧力および温
度が軸補助蒸気系統以上の蒸気を有しているときは、他
の発電設備からの補助蒸気供給系統と自軸の中圧蒸気供
給系統の制御圧力設定値を入れ替え、補助蒸気源として
自軸の中圧蒸気を供給することを特徴とする一軸型複合
発電プラントの起動制御方法。
7. A gas turbine and a steam turbine are directly connected, the steam turbine is driven by steam from an exhaust heat recovery boiler, and a low-pressure steam turbine among the steam turbines needs cooling steam at the time of starting the gas turbine. In a start control method for a single-shaft combined cycle power plant, an auxiliary steam supply system from another power generation facility and a shaft auxiliary steam system supplied with steam from a medium-pressure steam supply system connected to a medium-pressure superheater of the own shaft are provided. When the cooling steam of the low-pressure steam turbine is supplied from the shaft auxiliary steam system, and the auxiliary steam supply system from other power generation equipment is controlled at a higher pressure than the medium-pressure steam supply system of the own shaft, If the pressure and temperature of the medium-pressure superheater have steam higher than the shaft auxiliary steam system, the control pressure setting of the auxiliary steam supply system from other power generation facilities and the own shaft medium-pressure steam supply system A start control method for a single-shaft combined cycle power plant, which comprises replacing fixed values and supplying medium-pressure steam of the own shaft as an auxiliary steam source.
JP2000330676A 2000-10-30 2000-10-30 Start-up control method for single-shaft combined power plant Expired - Lifetime JP4162371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000330676A JP4162371B2 (en) 2000-10-30 2000-10-30 Start-up control method for single-shaft combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000330676A JP4162371B2 (en) 2000-10-30 2000-10-30 Start-up control method for single-shaft combined power plant

Publications (2)

Publication Number Publication Date
JP2002129909A true JP2002129909A (en) 2002-05-09
JP4162371B2 JP4162371B2 (en) 2008-10-08

Family

ID=18807147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000330676A Expired - Lifetime JP4162371B2 (en) 2000-10-30 2000-10-30 Start-up control method for single-shaft combined power plant

Country Status (1)

Country Link
JP (1) JP4162371B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121794A (en) * 2013-04-04 2015-12-02 西门子股份公司 Optimization of cold starts in thermal power stations, in particular in steam-electric power plants or in combined cycle power plants (CCPPS)
CN109736904A (en) * 2019-03-08 2019-05-10 张黎明 It is a kind of to eliminate low pressure (LP) cylinder swollen poor, deformation temperature control system and method
CN110593974A (en) * 2019-10-31 2019-12-20 大唐郓城发电有限公司 Automatic start-stop control system of unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513165B (en) * 2019-09-04 2021-11-16 深圳万润综合能源有限公司 Combined cooling heating and power supply distributed energy system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121794A (en) * 2013-04-04 2015-12-02 西门子股份公司 Optimization of cold starts in thermal power stations, in particular in steam-electric power plants or in combined cycle power plants (CCPPS)
CN105121794B (en) * 2013-04-04 2018-09-18 西门子股份公司 The optimization of cold start-up in Thermal Power Station especially steam power plant or combined cycle power plant (CCPPS)
US10487746B2 (en) 2013-04-04 2019-11-26 Siemens Aktiengesellschaft Optimization of cold starts in thermal power stations, in particular in steam-electric power plants or in combined cycle power plants (CCPPS)
CN109736904A (en) * 2019-03-08 2019-05-10 张黎明 It is a kind of to eliminate low pressure (LP) cylinder swollen poor, deformation temperature control system and method
CN109736904B (en) * 2019-03-08 2024-02-27 张黎明 Temperature control system and method for eliminating expansion difference and deformation of low-pressure cylinder
CN110593974A (en) * 2019-10-31 2019-12-20 大唐郓城发电有限公司 Automatic start-stop control system of unit
CN110593974B (en) * 2019-10-31 2022-05-27 大唐郓城发电有限公司 Automatic start-stop control system of unit

Also Published As

Publication number Publication date
JP4162371B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
EP2333255B1 (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP3068925B2 (en) Combined cycle power plant
JP3694530B2 (en) Single-shaft combined cycle plant and operation method thereof
JP2010261389A (en) Single shaft combined cycle power plant start-up method an single shaft combined cycle power plant
JP2005534883A (en) Waste heat steam generator
US5435138A (en) Reduction in turbine/boiler thermal stress during bypass operation
JP4982507B2 (en) Turbine ground seal steam temperature reduction control device and plant control method in steam turbine power generation facility
JPH11159306A (en) Recovery type steam cooling gas turbine
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
JP2002129909A (en) Starting control method of single-shaft compound electric power plant
JPH0763010A (en) Starting method for single type combined cycle power generating facility
JP3660727B2 (en) Operation method of single-shaft combined cycle plant
JP3675880B2 (en) Method and apparatus for controlling single-shaft combined cycle power generation facility
JP4560481B2 (en) Steam turbine plant
JP2000303803A (en) Power generation system
JP2020125700A (en) Power generation facility, power generation facility control device, and power generation facility control method
JP2004060496A (en) Steam turbine control device
JPH0734810A (en) Method for starting of single-shaft type combined cycle generating equipment
JP5627409B2 (en) Combined cycle power plant and control device
JP4473464B2 (en) Operation method of combined cycle power plant
JPH11311105A (en) Steam supplying device for steam turbine exhaust chamber

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4162371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term