JP2002129296A - Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy - Google Patents

Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy

Info

Publication number
JP2002129296A
JP2002129296A JP2000328923A JP2000328923A JP2002129296A JP 2002129296 A JP2002129296 A JP 2002129296A JP 2000328923 A JP2000328923 A JP 2000328923A JP 2000328923 A JP2000328923 A JP 2000328923A JP 2002129296 A JP2002129296 A JP 2002129296A
Authority
JP
Japan
Prior art keywords
particles
iron
sintered alloy
valve seat
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000328923A
Other languages
Japanese (ja)
Inventor
Teruo Takahashi
輝夫 高橋
Arata Kakiuchi
新 垣内
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2000328923A priority Critical patent/JP2002129296A/en
Priority to GB0125293A priority patent/GB2370281A/en
Priority to US09/983,821 priority patent/US20020084004A1/en
Publication of JP2002129296A publication Critical patent/JP2002129296A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • F01L2301/02Using ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive iron-base sintered alloy material for valve seat, free from large amounts of alloying elements and having excellent wear resistance. SOLUTION: This material has a pearlitic phase in amounts of 5-40% by volume ratio and a matrix phase composed of high alloy diffusion phase in amounts of 10-40% by volume ratio. Moreover, hard particles of Hv 600-1,300 hardness and 10-150 μm average particle size are dispersed in amounts of 10-30% by volume ratio in the matrix. As the hard particles, it is preferable to use one or more kinds selected from Mo-Ni-Cr-Si-Co intermetallic compound particles, Cr-Mo-Co intermetallic compound particles, Fe-Mo alloy particles and carbide precipitate particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結合金材に係
り、とくに内燃機関用のバルブシートに好適な鉄基焼結
合金材に関する。
The present invention relates to a sintered alloy material, and more particularly to an iron-based sintered alloy material suitable for a valve seat for an internal combustion engine.

【0002】[0002]

【従来の技術】焼結合金は、合金粉末を配合混練し、金
型に充填し圧縮成形したのち、所定の温度雰囲気中で焼
結したものであり、通常の溶製方法では得難い金属や合
金が容易に製造でき、また機能の複合化が容易なため、
独特な機能を付与した部品の製造が可能である。さら
に、焼結合金は、多孔質材や難加工材などの製造や、形
の複雑な機械部品の製造に適している。このようなこと
から、近年、耐摩耗性が要求される内燃機関のバルブシ
ートにこの焼結合金が適用されるようになった。
2. Description of the Related Art A sintered alloy is obtained by compounding and kneading an alloy powder, filling a mold, compression-molding, and then sintering at a predetermined temperature atmosphere. Can be easily manufactured, and functions can be easily combined.
Parts with unique functions can be manufactured. Furthermore, the sintered alloy is suitable for manufacturing porous materials, difficult-to-process materials, and the like, and for manufacturing mechanical parts having complicated shapes. For this reason, in recent years, this sintered alloy has been applied to a valve seat of an internal combustion engine requiring wear resistance.

【0003】最近は、自動車エンジンにおいて、長寿命
化、高出力化、排出ガス浄化、燃費向上等に対する改善
要求が一段と高まっている。このため、自動車エンジン
用バルブシートに対しても、従来にも増して厳しい使用
環境に耐えることが要求され、耐熱性、耐摩耗性をより
一層向上させる必要が生じてきた。バルブシート用焼結
合金材としては、例えば、特公昭51−13093 号公報に、
無鉛ガソリンの使用下にあっても、高度の耐摩耗性を有
し、同時に耐熱性、耐食性を有するバルブシート用鉄系
焼結合金材が開示されている。特公昭51−13093 号公報
に記載された焼結合金は、C、Ni、Cr、Mo、Co、Wを多
量に含み、パーライト基地中にC−Cr−W−Coよりなる
特殊合金粒子とフェロモリブデン粒子が分散し、かつこ
れら粒子の周囲にCo、Niが拡散したものである。このよ
うに、特公昭51−13093 号公報に記載された焼結合金で
は、耐熱性、耐摩耗性、耐食性等の特性を付与させるた
め、とくに、WおよびCoの多量添加を必要としていた。
このため、この焼結合金製のバルブシートは、高価とな
り、コスト的に問題を残していた。
[0003] In recent years, there has been an increasing demand for improvement in automobile engines such as longer life, higher output, purification of exhaust gas, and improvement of fuel efficiency. For this reason, valve seats for automobile engines are required to withstand more severe use environments than ever before, and it is necessary to further improve heat resistance and wear resistance. As a sintered alloy material for a valve seat, for example, Japanese Patent Publication No. 51-13093,
An iron-based sintered alloy material for a valve seat that has high wear resistance, heat resistance, and corrosion resistance even when using unleaded gasoline is disclosed. The sintered alloy described in JP-B-51-13093 contains a large amount of C, Ni, Cr, Mo, Co, and W, and contains special alloy particles composed of C-Cr-W-Co and ferromagnetic particles in a pearlite matrix. Molybdenum particles are dispersed, and Co and Ni are diffused around these particles. As described above, in the sintered alloy described in Japanese Patent Publication No. 51-13093, a large amount of W and Co is particularly required in order to impart properties such as heat resistance, wear resistance, and corrosion resistance.
For this reason, the valve seat made of this sintered alloy is expensive, and there remains a problem in terms of cost.

【0004】また、特開平9-53158 号公報には、硬質相
分散型鉄基焼結合金が開示されている。特開平9-53158
号公報に記載された鉄基焼結合金は、重量%で、Ni:3
〜15%、Mo:3〜15%、Cr:0.5 〜5%、C:0.5 〜1.
2 %、残部Feの鉄基基地中に、3 〜20%の硬質相粒子が
分散され、硬質相粒子として、Cr:50〜57%、Mo:18〜
22%、Co:8〜12%、C:0.1 〜1.4 %、Si:0.8 〜1.
3 %、残部Feを含む硬質相粒子あるいは、Cr:27〜33
%、W:22〜28%、Co:8〜12%、C:1.7 〜2.3 %、
Si:1.0 〜2.0 %、残部Feを含む硬質相粒子、あるいは
Mo:60〜70%、C:0.01%以下、残部Feを含む硬質相粒
子、のうち1種または2種以上とすることを特徴とする
鉄基焼結合金である。しかしながら、特開平9-53158 号
公報に記載された鉄基焼結合金は、耐熱性、耐摩耗性、
耐食性等の特性を向上されるため、Cr、Mo、Ni、Co、W
の多量添加を必要とし、高価であり、コスト的に問題を
残していた。さらに、この鉄基焼結合金の製造において
は、Ni、Co粉による人体への影響が問題として残されて
いた。
Japanese Patent Application Laid-Open No. 9-53158 discloses a hard phase dispersed type iron-based sintered alloy. JP 9-53158
The iron-based sintered alloy described in Japanese Unexamined Patent Publication No.
-15%, Mo: 3-15%, Cr: 0.5-5%, C: 0.5-1.
3% to 20% of hard phase particles are dispersed in the iron-based matrix with 2% and the balance Fe, and as hard phase particles, Cr: 50 to 57%, Mo: 18 to
22%, Co: 8-12%, C: 0.1-1.4%, Si: 0.8-1.
Hard phase particles containing 3%, balance Fe or Cr: 27-33
%, W: 22 to 28%, Co: 8 to 12%, C: 1.7 to 2.3%,
Si: Hard phase particles containing 1.0 to 2.0%, the balance being Fe, or
Mo: 60-70%, C: 0.01% or less, hard phase particles containing the balance of Fe, and one or more of them are iron-based sintered alloys. However, the iron-based sintered alloy described in JP-A-9-53158 has heat resistance, wear resistance,
Cr, Mo, Ni, Co, W to improve properties such as corrosion resistance
, A large amount of was added, it was expensive, and there was a problem in cost. Furthermore, in the production of this iron-based sintered alloy, the effect of Ni and Co powder on the human body remains as a problem.

【0005】また、特開2000-199040 号公報には、5〜
40%のパーライト相と、20〜60%の微細な炭化物が分散
した炭化物分散相と、5〜20%の高合金拡散相からなる
基地相中に、硬質粒子を3〜20%分散させたバルブシー
ト用鉄基焼結合金が開示されている。
Japanese Patent Application Laid-Open No. 2000-199040 discloses that
A valve in which hard particles are dispersed in a matrix phase composed of 40% of a pearlite phase, a carbide dispersed phase in which 20 to 60% of fine carbides are dispersed, and 5 to 20% of a high alloy diffusion phase, in which 3 to 20% of hard particles are dispersed. An iron-based sintered alloy for a sheet is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開20
00-199040 号公報に記載された鉄基焼結合金は、比較的
硬さが高い炭化物分散相の存在比率が高いため、硬さが
高く、高い靱性を要求される使途に用いる場合には問題
を残していた。本発明は、上記した問題を有利に解決
し、多量の合金元素を含有せず安価で、優れた靱性を有
しかつ耐摩耗性に優れたバルブシート用鉄基焼結合金
材、および内燃機関用鉄基焼結合金製バルブシートを提
案することを目的とする。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
The iron-based sintered alloy described in 00-199040 has a high content ratio of a carbide dispersion phase having relatively high hardness, and thus has a problem when used in applications requiring high hardness and high toughness. Was leaving. The present invention advantageously solves the above-mentioned problems, is inexpensive without containing a large amount of alloying elements, has excellent toughness, has excellent wear resistance, and has an excellent wear resistance. It is an object to propose a valve seat made of an iron-based sintered alloy for use.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するために鋭意検討した結果、鉄基焼結合金
材の基地相を、パーライト相と高合金拡散相とし、さら
に基地相中に硬質粒子を分散させることにより、多量の
合金元素を添加することなく、耐摩耗性が著しく増加す
るとともに、靱性が向上するという知見を得た。本発明
は、このような知見に基づき完成されたものである。な
お、本発明でいう、高合金拡散相とは、硬質粒子の合金
元素が拡散して硬質粒子の周辺に形成され、耐熱性、耐
摩耗性、耐食性に寄与し、硬さがHv350〜600 であるこ
とを特徴とする相をいうものとする。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned object, and as a result, the base phase of the iron-based sintered alloy material has been defined as a pearlite phase and a high alloy diffusion phase, and It has been found that by dispersing hard particles in a phase, wear resistance is remarkably increased and toughness is improved without adding a large amount of alloying elements. The present invention has been completed based on such findings. The high alloy diffusion phase referred to in the present invention means that the alloy element of the hard particles is diffused and formed around the hard particles, and contributes to heat resistance, abrasion resistance, and corrosion resistance. A phase characterized by a certain feature.

【0008】すなわち、本発明は、基地相中に硬質粒子
を分散させた鉄基焼結合金材であって、前記基地相が、
体積率で5〜40%のパーライト相と、体積率で10〜40%
の高合金拡散相からなり、前記硬質粒子として、硬さが
Hv600〜1300、粒径が10〜150 μm の粒子を体積率で10
〜30%分散させたことを特徴とするバルブシート用鉄基
焼結合金材であり、また、本発明では、前記硬質粒子
が、Mo−Ni−Cr−Si−Coの金属間化合物粒子、Cr−Mo−
Coの金属間化合物粒子、Fe−Mo合金粒子、炭化物析出粒
子のうちから選ばれた1種または2種以上であることが
好ましく、また、本発明では、前記炭化物析出粒子が、
質量%で、C:0.2 〜 2.0%、Cr:2.0 〜10.0%、Mo:
2.0 〜10.0%、W:2.0 〜10.0%、V:0.2 〜 5.0%を
含み、残部Feおよび不可避的不純物からなる組成を有す
ることが好ましい。
That is, the present invention provides an iron-based sintered alloy material in which hard particles are dispersed in a matrix phase, wherein the matrix phase comprises:
5-40% by volume pearlite phase and 10-40% by volume
Of hard alloy particles having a hardness of Hv 600 to 1300 and a particle size of 10 to 150 μm at a volume ratio of 10%.
An iron-based sintered alloy material for a valve seat, wherein the hard particles are Mo-Ni-Cr-Si-Co intermetallic compound particles, −Mo−
Intermetallic compound particles of Co, Fe-Mo alloy particles, preferably one or more selected from carbide precipitation particles, and in the present invention, the carbide precipitation particles,
In mass%, C: 0.2 to 2.0%, Cr: 2.0 to 10.0%, Mo:
It is preferable that the composition contains 2.0 to 10.0%, W: 2.0 to 10.0%, and V: 0.2 to 5.0%, and has a composition comprising the balance of Fe and inevitable impurities.

【0009】また、本発明では、前記基地相に、固体潤
滑剤粒子を体積率で0.1 〜10.0%含有するのが好まし
く、また、本発明では、前記固体潤滑剤を、硫化物、弗
化物およびグラファイトのうちから選ばれた1種または
2種以上とするのが好ましく、また、本発明では、焼結
空孔を、Cu、Cu合金、Pb、Pb合金のいずれかで溶浸され
たものとするか、あるいはフェノール系樹脂で含浸され
たものとするのが好ましい。
In the present invention, the base phase preferably contains 0.1 to 10.0% by volume of solid lubricant particles. In the present invention, the solid lubricant contains sulfide, fluoride and It is preferable to use one or two or more selected from graphite, and in the present invention, the sintered pores are infiltrated with any of Cu, Cu alloy, Pb, and Pb alloy. Or it is preferably impregnated with a phenolic resin.

【0010】また、本発明は、基地相中に硬質粒子を分
散させた鉄基焼結合金材であって、前記硬質粒子を含む
基地部の組成が、質量%で、C:0.2 〜 2.0%、Cr:1.
0 〜9.0%、Mo:1.0 〜 9.0%、Si:0.1 〜 1.0%、
W:1.0 〜 3.0%、V:0.1 〜1.0%、およびCu、Co、N
iの1種または2種以上を合計量で3.0 〜15.0%含有
し、残部が実質的にFeからなる組成を有し、前記基地相
が、体積率で5〜40%のパーライト相と、体積率で10〜
40%の高合金拡散相からなり、前記硬質粒子として、硬
さがHv600〜1300、粒径が10〜150 μm の粒子を体積率
で10〜30%分散させたことを特徴とするバルブシート用
鉄基焼結合金材であり、また、本発明では、前記硬質粒
子が、Mo−Ni−Cr−Si−Coの金属間化合物粒子、Cr−Mo
−Coの金属間化合物粒子、Fe−Mo合金粒子、炭化物析出
粒子のうちから選ばれた1種または2種以上であること
が好ましく、また、本発明では、前記炭化物析出粒子
が、C:0.2 〜 2.0%、Cr:2.0 〜10.0%、Mo:2.0 〜
10.0%、W:2.0 〜10.0%、V:0.2 〜 5.0%を含み、
残部Feおよび不可避的不純物からなる組成を有すること
が好ましい。
The present invention is also an iron-based sintered alloy material in which hard particles are dispersed in a matrix phase, wherein the composition of the matrix containing the hard particles is 0.2 to 2.0% by mass%. , Cr: 1.
0 to 9.0%, Mo: 1.0 to 9.0%, Si: 0.1 to 1.0%,
W: 1.0 to 3.0%, V: 0.1 to 1.0%, and Cu, Co, N
one or two or more of i in a total amount of 3.0 to 15.0%, the balance being substantially composed of Fe, wherein the base phase is a pearlite phase having a volume ratio of 5 to 40%, 10 ~
A valve seat characterized by comprising 40% of a high alloy diffusion phase, and as the hard particles, particles having a hardness of Hv 600 to 1300 and a particle size of 10 to 150 μm dispersed by 10 to 30% by volume. It is an iron-based sintered alloy material, and in the present invention, the hard particles are Mo-Ni-Cr-Si-Co intermetallic compound particles, Cr-Mo
-Co intermetallic compound particles, Fe-Mo alloy particles, and carbide precipitation particles are preferably one or more types. In the present invention, the carbide precipitation particles are C: 0.2 ~ 2.0%, Cr: 2.0 ~ 10.0%, Mo: 2.0 ~
10.0%, W: 2.0-10.0%, V: 0.2-5.0%
It is preferable to have a composition comprising the balance of Fe and inevitable impurities.

【0011】また、本発明では、前記基地相が、さらに
固体潤滑剤粒子を体積率で0.1 〜10.0%含有することが
好ましく、また、本発明では、前記固体潤滑剤を、硫化
物、弗化物およびグラファイトのうちから選ばれた1種
または2種以上とするのが好ましく、また、本発明で
は、焼結空孔を、Cu、Cu合金、Pb、Pb合金のいずれかで
溶浸されたものとするか、あるいはフェノール系樹脂で
含浸されたものとするのが好ましい。
In the present invention, it is preferable that the base phase further contains 0.1 to 10.0% by volume of solid lubricant particles, and in the present invention, the solid lubricant contains a sulfide or a fluoride. And one or more selected from graphite. In the present invention, the sintered pores are infiltrated with any of Cu, Cu alloy, Pb and Pb alloy. Or it is preferably impregnated with a phenolic resin.

【0012】また、本発明は、上記した組成のバルブシ
ート用鉄基焼結合金材を素材としたことを特徴とする鉄
基焼結合金製バルブシートである。
Further, the present invention is a valve seat made of an iron-based sintered alloy, wherein the valve seat is made of an iron-based sintered alloy material for a valve seat having the above composition.

【0013】[0013]

【発明の実施の形態】本発明の鉄基焼結合金材は、基地
相と、基地相中に分散した硬質粒子と、あるいはさらに
基地相中に分散した固体潤滑剤粒子とから構成されてい
る。基地相はパーライト相と、高合金拡散相とからなる
組織を有する。なお、高合金拡散相は、硬質粒子の周囲
に硬質粒子から合金元素が拡散して形成される。
BEST MODE FOR CARRYING OUT THE INVENTION The iron-based sintered alloy material of the present invention comprises a base phase, hard particles dispersed in the base phase, and solid lubricant particles further dispersed in the base phase. . The base phase has a structure composed of a pearlite phase and a high alloy diffusion phase. The high alloy diffusion phase is formed by diffusing an alloy element from the hard particles around the hard particles.

【0014】基地相の組織のうち、パーライト相は、焼
結合金材全体に対する体積率で5〜40%、高合金拡散相
は、体積率で10〜40%を有する。パーライト相が体積率
で5%未満では、基地硬さが高くなり被削性が低下す
る。一方、40%を超えると基地硬さが低くなり、耐摩耗
性、耐熱性が低下する。高合金拡散相は、耐熱性、耐摩
耗性、耐食性に寄与し、鉄基焼結合金材の特性を向上さ
せる。高合金拡散相が体積率で10%未満では、上記した
特性の向上が少なく、一方、40%を超えると基地硬さが
高くなり被削性が劣化する。
In the structure of the base phase, the pearlite phase has a volume ratio of 5 to 40% with respect to the whole sintered alloy material, and the high alloy diffusion phase has a volume ratio of 10 to 40%. If the pearlite phase has a volume ratio of less than 5%, the base hardness increases and the machinability decreases. On the other hand, if it exceeds 40%, the base hardness decreases, and the wear resistance and heat resistance decrease. The high alloy diffusion phase contributes to heat resistance, wear resistance, and corrosion resistance, and improves the properties of the iron-based sintered alloy material. If the volume fraction of the high alloy diffusion phase is less than 10%, the above-mentioned properties are little improved, while if it exceeds 40%, the matrix hardness increases and the machinability deteriorates.

【0015】また、基地相中に分散する硬質粒子は、H
v600〜1300の範囲の硬さを有し、粒径が10〜150 μm の
粒子とする。硬質粒子の硬さがHv600未満では、耐摩耗
性が低下し、一方、Hv1300 を超えると靱性が低下し欠
けやクラックの発生率が増加する。硬質粒子の粒径が10
μm未満では、焼結時に硬質粒子成分が基地相に過拡散
しやすく、硬度が低下する。一方、粒径が150 μm を超
えると、被削性が低下し、相手材攻撃性が増加する。
The hard particles dispersed in the matrix phase are H
v Particles having a hardness in the range of 600 to 1300 and a particle size of 10 to 150 μm. If the hardness of the hard particles is less than Hv600, the abrasion resistance will decrease, while if it exceeds Hv1300, the toughness will decrease and the incidence of chipping and cracking will increase. Hard particle size of 10
If it is less than μm, the hard particle component tends to excessively diffuse into the base phase during sintering, and the hardness is reduced. On the other hand, when the particle size exceeds 150 μm, the machinability decreases and the aggressiveness of the counterpart material increases.

【0016】硬質粒子は、Mo−Ni−Cr−Si−Coの金属間
化合物粒子、Cr−Mo−Coの金属間化合物粒子、Fe−Mo合
金粒子、炭化物析出粒子のうちから選ばれた1種または
2種以上とするのが好ましい。上記した組成の粒子を硬
質粒子として基地相中に分散させることにより、焼結拡
散性が増加し、焼結合金材の強度、靱性および耐摩耗性
が増加する。
The hard particles are one selected from the group consisting of Mo-Ni-Cr-Si-Co intermetallic compound particles, Cr-Mo-Co intermetallic compound particles, Fe-Mo alloy particles, and carbide precipitated particles. Alternatively, it is preferable to use two or more kinds. By dispersing the particles having the above-described composition in the base phase as hard particles, the sintering diffusion property is increased, and the strength, toughness and wear resistance of the sintered alloy material are increased.

【0017】Mo−Ni−Cr−Si−Coの金属間化合物粒子
は、質量%で、Mo:20〜30%、Ni:5〜20%、Cr:10〜
35%、Si:1〜5%含有し、残部実質的にCoからなる金
属間化合物である。また、Cr−Mo−Coの金属間化合物粒
子は、質量%で、Cr:5.0 〜15.0%、Mo:20.0〜40.0%
を含有し、残部実質的にCoからなる金属間化合物であ
る。また、Fe−Mo合金粒子は、質量%で、Mo:50〜70%
を含有し、残部実質的にFeからなる粒子である。
The intermetallic compound particles of Mo—Ni—Cr—Si—Co are, by mass%, Mo: 20 to 30%, Ni: 5 to 20%, Cr: 10 to
This is an intermetallic compound containing 35%, Si: 1 to 5%, and the balance substantially consisting of Co. In addition, the Cr-Mo-Co intermetallic compound particles are, by mass%, Cr: 5.0 to 15.0%, Mo: 20.0 to 40.0%.
And the balance substantially consisting of Co. In addition, Fe-Mo alloy particles are expressed in mass%, and Mo: 50 to 70%.
And the balance substantially consisting of Fe.

【0018】また、炭化物析出粒子は、C:0.2 〜 2.0
%、Cr:2.0 〜10.0%、Mo:2.0 〜10.0%、W:2.0 〜
10.0%、V:0.2 〜 5.0%を含み、残部Feおよび不可避
的不純物からなる組成を有し、好ましくは粒径:1〜10
μm の微細炭化物が析出した粒子である。析出した炭化
物の粒径が1μm 未満では、硬さへの寄与が少なく耐摩
耗性が低下する。一方、炭化物の粒径が10μm を超える
と、相手材への攻撃性が増加する。炭化物析出粒子とし
ては、例えば、V、W、Mo等の炭化物形成元素を多量に
含有したSKH 51(代表組成:0.9 %C−4%Cr−5%Mo
−6%W−2%V−残部Fe,%:質量%)粉末、 SKH57
粉末、 SKD11粉末が好ましい。
In addition, the carbide precipitation particles are C: 0.2 to 2.0.
%, Cr: 2.0-10.0%, Mo: 2.0-10.0%, W: 2.0-
10.0%, V: 0.2 to 5.0%, having a composition of balance Fe and unavoidable impurities, preferably having a particle size of 1 to 10%.
These are particles in which fine carbides of μm are precipitated. If the particle size of the precipitated carbide is less than 1 μm, the contribution to the hardness is small and the wear resistance is reduced. On the other hand, when the particle size of the carbide exceeds 10 μm, the aggressiveness to the counterpart material increases. As the carbide precipitated particles, for example, SKH51 (representative composition: 0.9% C-4% Cr-5% Mo) containing a large amount of carbide forming elements such as V, W, Mo, etc.
-6% W-2% V-balance Fe,%:% by mass) powder, SKH57
Powder, SKD11 powder is preferred.

【0019】なお、硬質粒子として炭化物析出粒子を使
用する場合には、基地相の存在比率として体積率で20%
未満とするのがより好ましい。炭化物析出粒子が体積率
で20%以上では硬さが増加するため靱性、被削性が低下
し、相手攻撃性が増加する。本発明では、上記した硬質
粒子の1種または2種以上を合計で、体積率で10〜30
%、基地相中に分散させる。硬質粒子の合計が体積率で
10%未満では、硬質粒子量が少なく、耐摩耗性が低下す
る。一方、30%を超えると、強度が低下するうえ相手材
への攻撃性が増加し、被削性も低下する。
When carbide precipitated particles are used as hard particles, the volume fraction of the base phase is 20%.
More preferably, it is less than. When the volume fraction of carbide precipitated particles is 20% or more, the hardness increases, so that the toughness and machinability decrease, and the aggressiveness of the partner increases. In the present invention, one or two or more of the above hard particles are combined in a volume ratio of 10 to 30 in total.
%, Dispersed in the base phase. The sum of the hard particles is the volume fraction
If it is less than 10%, the amount of hard particles is small, and the wear resistance is reduced. On the other hand, if it exceeds 30%, the strength is reduced, the aggressiveness to the counterpart material is increased, and the machinability is also reduced.

【0020】また、基地相と、基地相中に分散した硬質
粒子とを含む基地部の組成は、質量%で、C:0.2 〜
2.0%、Cr:1.0 〜 9.0%、Mo:1.0 〜 9.0%、Si:0.1
〜 1.0%、W:1.0 〜 3.0%、V:0.1 〜 1.0%、お
よびCu、Co、Niの1種または2種以上を合計量で3.0 〜
15.0%、必須元素として含有し、残部が実質的にFeから
なる組成を有するのが好ましい。
The composition of the base containing the base phase and the hard particles dispersed in the base phase is C: 0.2 to 0.2% by mass.
2.0%, Cr: 1.0 to 9.0%, Mo: 1.0 to 9.0%, Si: 0.1
1.0%, W: 1.0 to 3.0%, V: 0.1 to 1.0%, and one or more of Cu, Co and Ni in a total amount of 3.0 to 1.0%.
It is preferable to have a composition containing 15.0% as an essential element and the balance substantially consisting of Fe.

【0021】つぎに、基地部の、個々の合金元素の望ま
しい含有量について説明する。 C:0.2 〜 2.0% Cは、基地相に固溶し基地相の硬さを増加させるととも
に、他の合金元素と結合し炭化物を形成して、基地相の
硬さを増加させ、耐摩耗性を向上させる元素である。し
かし、 0.2%未満では、所定の硬さを得ることができ
ず、耐摩耗性が低下する。一方、 2.0%を超えると、炭
化物が粗大化し、靱性が劣化するとともに、硬質粒子成
分の拡散が過剰に進行し、硬さが低下する。このため、
Cは、0.2〜 2.0%に限定するのが望ましい。
Next, the desired content of each alloy element in the base portion will be described. C: 0.2 to 2.0% C forms a solid solution with the base phase to increase the hardness of the base phase, and combines with other alloy elements to form carbides, thereby increasing the hardness of the base phase and increasing wear resistance. Is an element that improves the However, if it is less than 0.2%, a predetermined hardness cannot be obtained, and the wear resistance is reduced. On the other hand, if it exceeds 2.0%, the carbides become coarse, the toughness is deteriorated, and the diffusion of the hard particle component excessively proceeds, and the hardness is reduced. For this reason,
C is desirably limited to 0.2 to 2.0%.

【0022】Cr:1.0 〜 9.0% Crは、基地相および硬質粒子中に含まれ、硬さ、耐摩耗
性、耐熱性を高める元素であるが、含有量が 9.0%を超
えると硬質粒子量が過多または、基地相硬さが増加しす
ぎて相手攻撃性が増加する。また、 1.0%未満では硬質
粒子量が不足し耐摩擦性が低下する。このため、Crは1.
0 〜 9.0%とするのが好ましい。
Cr: 1.0 to 9.0% Cr is an element contained in the base phase and the hard particles to increase hardness, abrasion resistance and heat resistance. Excessive or too high base phase hardness increases opponent aggression. On the other hand, if it is less than 1.0%, the amount of hard particles is insufficient, and the friction resistance is reduced. For this reason, Cr is 1.
It is preferably set to 0 to 9.0%.

【0023】Mo:1.0 〜 9.0% Moは、基地相および硬質粒子に含まれ、硬さ、耐摩耗性
を向上させるが、しかし、 9.0%を超えると硬質粒子量
が過多となり、あるいは基地相硬さが増加しすぎて相手
攻撃性が増加する。また、 1.0%未満では硬質粒子量が
不足し基地硬さが低下し耐摩耗性に悪影響を及ぼす傾向
がある。このため、Moは1.0 〜 9.0%とするのが好まし
い。
Mo: 1.0 to 9.0% Mo is contained in the base phase and the hard particles, and improves the hardness and wear resistance. However, when the content exceeds 9.0%, the amount of the hard particles becomes excessive or the base phase hardens. Increases too much and the opponent's aggression increases. On the other hand, if it is less than 1.0%, the amount of the hard particles is insufficient, the base hardness is lowered, and the abrasion resistance tends to be adversely affected. Therefore, Mo is preferably set to 1.0 to 9.0%.

【0024】Si:0.1〜 1.0% Siは、主として硬質粒子に含まれ耐摩耗性を向上させる
元素であるが、 0.1%未満では、硬質粒子量が不足し、
耐摩耗性向上の効果が顕著でなく、一方、 1.0%を超え
ると硬質粒子量が過多となり、基地相硬さが増加しすぎ
て相手材攻撃が増加する。このようなことから、Siは0.
1 〜 1.0%に限定するのが好ましい。
Si: 0.1 to 1.0% Si is an element mainly contained in hard particles to improve abrasion resistance, but if less than 0.1%, the amount of hard particles is insufficient.
The effect of improving the abrasion resistance is not remarkable. On the other hand, if it exceeds 1.0%, the amount of the hard particles becomes excessive, and the base phase hardness increases too much, and the counterpart material attack increases. From this, Si is 0.
Preferably, it is limited to 1 to 1.0%.

【0025】W:1.0 〜 3.0% Wは、基地相および/または硬質粒子に含まれ、基地相
を強化するとともに、硬さ、耐摩耗性を向上させる元素
であるが、 1.0%未満では、硬質粒子量が不足し、耐摩
耗性向上の効果が顕著でなく、一方、 3.0%を超えると
硬質粒子量が過多となり、基地相硬さが増加しすぎて相
手材攻撃が増加する。このようなことから、Wは1.0 〜
3.0%に限定するのが好ましい。
W: 1.0 to 3.0% W is an element contained in the base phase and / or the hard particles, which strengthens the base phase and improves the hardness and wear resistance. The amount of particles is insufficient, and the effect of improving wear resistance is not remarkable. On the other hand, if it exceeds 3.0%, the amount of hard particles becomes excessive, and the base phase hardness increases too much, thereby increasing the counterpart material attack. Therefore, W is 1.0 to
Preferably it is limited to 3.0%.

【0026】V: 0.1〜 1.0% Vは、基地相および/または硬質粒子に含まれ、基地相
を強化するとともに、硬さ、耐摩耗性を向上させる元素
であるが、 0.2%未満では、耐摩耗性向上の効果が顕著
でなく、一方、 1.0%を超えると硬質粒子量が過多とな
り、基地相硬さが増加しすぎて相手材攻撃が増加する。
このようなことから、Vは0.1 〜 1.0%に限定するのが
好ましい。
V: 0.1 to 1.0% V is an element contained in the base phase and / or the hard particles, which strengthens the base phase and improves hardness and abrasion resistance. The effect of improving abrasion is not remarkable. On the other hand, if it exceeds 1.0%, the amount of hard particles becomes excessive, and the base phase hardness increases too much, and the counterpart material attack increases.
For this reason, V is preferably limited to 0.1 to 1.0%.

【0027】Cu、Co、Niの1種または2種以上を合計量
で 3.0〜15.0% Cu、Co、Niはいずれも、基地相および硬質粒子に含ま
れ、基地相を強化するとともに、硬さ、耐摩耗性を向上
させる。しかし、Cu、Co、Niの合計量が 3.0%未満で
は、その効果が不十分であり、一方、多量の添加は硬さ
が増加し相手攻撃性が増加する。このため、Cu、Co、Ni
の合計量で3.0 〜15.0%とするのが好ましい。
One or more of Cu, Co, and Ni in a total amount of 3.0 to 15.0% Cu, Co, and Ni are all contained in the matrix phase and the hard particles. Improves wear resistance. However, if the total amount of Cu, Co, and Ni is less than 3.0%, the effect is insufficient, while addition of a large amount increases the hardness and the aggressiveness to the opponent. Therefore, Cu, Co, Ni
Is preferably 3.0 to 15.0% in total.

【0028】基地相と、硬質粒子を含む基地部では、上
記した成分以外の残部は、実質的にFeである。本発明の
鉄基焼結合金材は、さらに基地相中に固体潤滑剤粒子を
分散させてもよい。固体潤滑剤粒子は、硫化物、弗化物
およびグラファイトのうちから選ばれた1種または2種
以上とするのが好ましい。硫化物としてはMnS 、MoS2
W2S が、弗化物としてはCaF2、LiF が例示される。固体
潤滑剤粒子を基地相中に分散させることにより、被削
性、耐摩耗性が向上し、さらに相手攻撃性が減少する。
In the matrix phase and the matrix containing the hard particles, the balance other than the above components is substantially Fe. The iron-based sintered alloy material of the present invention may further include solid lubricant particles dispersed in the base phase. The solid lubricant particles are preferably one or more selected from sulfide, fluoride and graphite. As sulfides, MnS, MoS 2 ,
W 2 S is exemplified by fluorides such as CaF 2 and LiF. By dispersing the solid lubricant particles in the base phase, the machinability and wear resistance are improved, and the aggressiveness of the partner is reduced.

【0029】固体潤滑剤粒子は、基地相、硬質粒子、固
体潤滑剤粒子の合計量に対し質量%で、合計0.1 〜10.0
%分散させるのが好ましい。固体潤滑剤粒子量が 0.1%
未満では、固体潤滑剤粒子量が少なくすべり潤滑性およ
び被削性が劣化し、凝着の発生が促進されるとともに、
耐摩耗性が低下する。一方、固体潤滑剤粒子量が10.0%
を超えると、圧粉性、焼結拡散性、強度が低下する。
The solid lubricant particles are 0.1 to 10.0% by mass based on the total amount of the base phase, the hard particles and the solid lubricant particles.
%. 0.1% solid lubricant particles
Below, the amount of solid lubricant particles is small, the sliding lubricity and machinability are deteriorated, and the occurrence of adhesion is promoted,
Abrasion resistance decreases. On the other hand, the amount of solid lubricant particles was 10.0%
If it exceeds, the powder compaction, sintering diffusibility, and strength are reduced.

【0030】また、固体潤滑剤粒子の粒径は2〜50μm
とするのが好ましい。固体潤滑剤粒子の粒径が2μm 未
満では、上記した効果が期待できず、一方、50μm を超
えると、焼結性、圧粉性に悪影響を及ぼす。本発明の鉄
基焼結合金材は、体積率で10.0%以下の気孔を含んでも
よい。気孔率が10.0%を超えると、高温強度、熱伝導率
が低下するとともに、焼結合金材の耐脱落性が低下す
る。
The particle size of the solid lubricant particles is 2 to 50 μm.
It is preferred that If the particle size of the solid lubricant particles is less than 2 μm, the above-mentioned effects cannot be expected, while if it exceeds 50 μm, the sinterability and compaction properties are adversely affected. The iron-based sintered alloy material of the present invention may contain pores having a volume fraction of 10.0% or less. When the porosity exceeds 10.0%, the high-temperature strength and the thermal conductivity decrease, and the falling-off resistance of the sintered alloy material decreases.

【0031】本発明の鉄基焼結合金材を得るには、上記
した基地部組成となるように、純鉄粉、合金鉄粉、合金
元素粉のうちの1種または2種以上に、硬質粒子粉、あ
るいはさらに固体潤滑剤粉を配合し、混合した混合粉を
原料粉とする。純鉄粉、合金鉄粉、合金元素粉のうちの
1種または2種以上の組合せは、下記〜のようにす
るのが好ましい。すなわち、純鉄粉、合金鉄粉、合金元
素粉と、硬質粒子粉、固体潤滑剤粉との合計量に対し、
質量%で、 純鉄粉を40.0〜85.0%と、C、Cr、Mo、Si、W、V、
Cu、Co、Niのうちから選ばれた1種または2種以上の合
金元素粉を合計量で8.0 〜35.0%とするか、 C、Cr、Mo、Si、W、V、Cu、Co、Niのうちから選ば
れた1種または2種以上をそれぞれ20%以下含有し残部
Feおよび不可避的不純物からなる合金鉄粉の1種または
2種以上を合計で70.0〜95.0%とするか、 C、Cr、Mo、Si、W、V、Cu、Co、Niのうちから選ば
れた1種または2種以上をそれぞれ20%以下含有し残部
Feおよび不可避的不純物からなる合金鉄粉の1種または
2種以上を合計で5.0 〜70.0%と純鉄粉を20.0〜70.0%
とするか、 C、Cr、Mo、Si、W、V、Cu、Co、Niのうちから選ば
れた1種または2種以上をそれぞれ20%以下含有し残部
Feおよび不可避的不純物からなる合金鉄粉の1種または
2種以上を合計で45.0〜90.0%と、Cr、Mo、Si、W、
V、Cu、Co、Niのうちから選ばれた1種または2種以上
の合金元素粉を合計量で5.0 〜30.0%とするか、 C、Cr、Mo、Si、W、V、Cu、Co、Niのうちから選ば
れた1種または2種以上をそれぞれ20%以下含有し残部
Feおよび不可避的不純物からなる合金鉄粉の1種または
2種以上を合計で5.0 〜65.0%と、純鉄粉を15.0〜65.0
%と、さらにCr、Mo、Si、W、V、Cu、Co、Niのうちか
ら選ばれた1種または2種以上の合金元素粉を合計量で
5.0 〜25.0%とするか、のうちのいずれかとするが好ま
しい。
In order to obtain the iron-based sintered alloy material of the present invention, one or more of pure iron powder, alloy iron powder, and alloy element powder are hardened so as to have the above-described base composition. Particle powder or solid lubricant powder is blended and mixed powder is used as raw material powder. One or a combination of two or more of pure iron powder, alloyed iron powder, and alloyed elemental powder is preferably as described below. That is, pure iron powder, alloy iron powder, alloy element powder, and hard particles powder, the total amount of solid lubricant powder,
By mass%, 40.0-85.0% pure iron powder, C, Cr, Mo, Si, W, V,
One or two or more alloying element powders selected from Cu, Co, and Ni are used in a total amount of 8.0 to 35.0%, or C, Cr, Mo, Si, W, V, Cu, Co, Ni One or more selected from among 20% or less, and the balance
One or more of alloyed iron powders composed of Fe and unavoidable impurities are selected from a total of 70.0 to 95.0%, or selected from C, Cr, Mo, Si, W, V, Cu, Co, and Ni. 20% or less of one or more types
One or more alloyed iron powders composed of Fe and unavoidable impurities are 5.0 to 70.0% in total and 20.0 to 70.0% pure iron powders
Or one or more selected from C, Cr, Mo, Si, W, V, Cu, Co and Ni, each containing not more than 20% and the balance being
45.0 to 90.0% in total of one or more of alloyed iron powders composed of Fe and unavoidable impurities, Cr, Mo, Si, W,
One or two or more alloying element powders selected from V, Cu, Co, and Ni are used in a total amount of 5.0 to 30.0%, or C, Cr, Mo, Si, W, V, Cu, Co One or two or more selected from Ni, 20% or less, and the balance
One or more alloyed iron powders composed of Fe and unavoidable impurities are 5.0 to 65.0% in total, and pure iron powders are 15.0 to 65.0%.
%, And one or more alloying element powders selected from Cr, Mo, Si, W, V, Cu, Co, and Ni in a total amount.
It is preferably set to 5.0 to 25.0% or any one of them.

【0032】上記した基地部組成となるように、純鉄
粉、合金鉄粉、合金元素粉のうちの1種または2種以上
に、硬質粒子粉を、純鉄粉、合金鉄粉、合金元素粉と、
硬質粒子粉、固体潤滑剤粉との合計量に対し、質量%
で、3〜20%と、あるいはさらに固体潤滑剤粉を0.1 〜
10%と、を配合し、混合した混合粉とするのが好まし
い。なお、潤滑剤としてさらにステアリン酸亜鉛等を配
合してもよい。
Hard powder is added to one or more of pure iron powder, alloyed iron powder, and alloying element powder to obtain the above-described base portion composition. Powder and
% By mass based on the total amount of the hard particle powder and the solid lubricant powder
3-20%, or 0.1-0.1% solid lubricant powder
It is preferable to mix and mix 10%. Incidentally, zinc stearate or the like may be further blended as a lubricant.

【0033】また、硬質粒子粉としては、上記したMo−
Ni−Cr−Si−Coの金属間化合物粒子、Cr−Mo−Coの金属
間化合物粒子、Fe−Mo合金粒子、炭化物析出粒子のうち
から選ばれた1種または2種以上の粉末とするのが好ま
しい。固体潤滑剤粉としては、硫化物、弗化物およびグ
ラファイトのうちから選ばれた1種または2種以上の粉
末とするのが好ましい。
As the hard particle powder, the Mo-
Ni-Cr-Si-Co intermetallic compound particles, Cr-Mo-Co intermetallic compound particles, Fe-Mo alloy particles, and one or more powders selected from carbide precipitated particles. Is preferred. As the solid lubricant powder, it is preferable to use one or more powders selected from sulfide, fluoride and graphite.

【0034】これら混合粉を原料粉として金型に充填
し、成形プレス等により圧縮・成形し圧粉体を得る成形
工程と、ついで圧粉体を保護雰囲気中で1000〜1200℃の
温度範囲に加熱し焼結させて焼結体を得る焼結工程と、
あるいはさらに前記焼結体に溶浸あるいは含浸処理を施
す溶浸・含浸工程とを順次行い、バルブシート用鉄基焼
結合金材とする。
A molding step of filling the mixed powder as a raw material powder into a mold, compressing and molding with a molding press or the like to obtain a green compact, and then pressing the green compact in a protective atmosphere at a temperature of 1000 to 1200 ° C. A sintering step of heating and sintering to obtain a sintered body;
Alternatively, an infiltration / impregnation step of infiltrating or impregnating the sintered body is sequentially performed to obtain an iron-based sintered alloy material for a valve seat.

【0035】焼結工程の温度が1000℃未満では、焼結拡
散が不足し、基地の形成が不十分であり、一方、1200℃
を超えると硬質粒子、基地の過拡散が生じ、耐摩耗性が
劣化する。焼結雰囲気は、保護雰囲気とし、具体的には
NH3 や、N2 とH2 の混合ガス等が好ましい。溶浸・含
浸工程は、必要に応じ、焼結空孔(気孔)を封孔するた
めに実施される。焼結体に、CuまたはCu合金、あるいは
PbまたはPb合金等の低融点金属を載荷して加熱して溶浸
させるか、フェノール系樹脂を用い含浸させて、封孔処
理を施してもよい。
When the temperature of the sintering step is lower than 1000 ° C., the sintering diffusion is insufficient and the formation of the matrix is insufficient.
If it exceeds 2,000, hard particles and matrix will be excessively diffused, and wear resistance will deteriorate. The sintering atmosphere is a protective atmosphere.
NH 3 or a mixed gas of N 2 and H 2 is preferred. The infiltration / impregnation step is performed, if necessary, to seal the sintered pores (pores). Cu or Cu alloy, or
A low melting point metal such as Pb or a Pb alloy may be loaded and heated for infiltration, or may be impregnated with a phenolic resin to perform a sealing treatment.

【0036】得られた焼結体は、切削、研削加工して所
望の寸法形状のバルブシートとされる。
The obtained sintered body is cut and ground to form a valve seat having desired dimensions and shape.

【0037】[0037]

【実施例】鉄粉、合金鉄粉、合金元素粉の1種または2
種以上と、硬質粒子粉、あるいはさらに固体潤滑剤粉と
を表1に示すように配合し、混練して、混合粉とした。
なお、配合量は、混合粉の全量に対する質量%で表示し
た。使用した合金鉄粉は、(A)1.0 %Cr−0.5 %Mn−
0.3 %Mo−残部Feの合金鋼粉、(B)3.0 %Cr−0.2 %
Mo−残部Feの合金鋼粉、(C)4.0 %Ni−1.5 %Cu−0.
5 %Mo−残部Feの合金鋼粉、である。
[Example] One or two of iron powder, alloy iron powder, and alloy element powder
The seed or more and the hard particle powder or the solid lubricant powder were blended as shown in Table 1 and kneaded to obtain a mixed powder.
In addition, the compounding amount was represented by mass% with respect to the total amount of the mixed powder. The alloyed iron powder used was (A) 1.0% Cr-0.5% Mn-
Alloy steel powder of 0.3% Mo- balance Fe, (B) 3.0% Cr-0.2%
Mo-alloy steel powder of the balance Fe, (C) 4.0% Ni-1.5% Cu-0.
5% Mo-alloy steel powder with the balance being Fe.

【0038】また、使用した硬質粒子粉は、(a)SK
D 11 (1.5 %C−12%Cr−0.8 %V−1%Mo−残部F
e)の炭化物析出粒子粉(平均粒径:80μm 、炭化物平
均粒径:3μm )、(b)SKH 51 (0.8 %C−4%
Cr−5%Mo−2%V−6%W−残部Fe)の炭化物析出粒
子粉(平均粒径:80μm 、炭化物平均粒径:3μm )、
(c)SKH 57 (1.2 %C−4%Cr−3%Mo−10%W
−3%V−10%Co−残部Fe)の炭化物析出粒子粉(平均
粒径:80μm 、炭化物平均粒径:4μm )、(d)9%
Cr−30%Mo−残部Coの金属間化合物粒子粉(平均粒径:
100 μm )、(e)24%Mo−10%Ni−24%Cr−2%Si−
残部Coの金属間化合物粒子粉(平均粒径:100 μm )、
(f)60%Mo−残部Feの合金粒子粉(平均粒径:100 μ
m )、である。なお、%は質量%である。
The hard particle powder used is (a) SK
D 11 (1.5% C-12% Cr-0.8% V-1% Mo-balance F
e) carbide precipitated particle powder (average particle size: 80 μm, carbide average particle size: 3 μm), (b) SKH 51 (0.8% C-4%)
Cr-5% Mo-2% V-6% W-balance Fe) carbide precipitate particles (average particle size: 80 μm, carbide average particle size: 3 μm),
(C) SKH 57 (1.2% C-4% Cr-3% Mo-10% W
-3% V-10% Co-balance Fe) carbide precipitated particle powder (average particle size: 80 μm, carbide average particle size: 4 μm), (d) 9%
Cr-30% Mo-balance Co intermetallic compound particle powder (average particle size:
100 µm), (e) 24% Mo-10% Ni-24% Cr-2% Si-
Intermetallic compound particles of Co (average particle size: 100 μm),
(F) 60% Mo-balance Fe alloy particle powder (average particle size: 100 μm)
m). In addition,% is mass%.

【0039】また、使用した固体潤滑剤粉は、(イ)Mn
S 、(ロ)CaF2、である。これら混合粉を金型に充填
し、成形プレスにより圧縮・成形し圧粉体とする。つい
で、これら圧粉体を1000℃〜1200℃の還元雰囲気(NH3
ガス)中で15〜45min の焼結を行い焼結体とした。ま
た、一部の焼結体には、含浸剤(鉛)とともに500 ℃に
加熱する溶浸処理を施した。
The solid lubricant powder used was (a) Mn
S, (b) CaF 2 . These mixed powders are filled in a mold and compressed and molded by a molding press to obtain a green compact. Next, these green compacts were reduced to a reducing atmosphere (NH 3
Sintered for 15 to 45 minutes in gas) to obtain a sintered body. Some of the sintered bodies were subjected to an infiltration treatment of heating to 500 ° C. together with an impregnating agent (lead).

【0040】得られた焼結体の基地部の組成、および組
織割合を表2に示す。また、焼結体No.3、No.6、No.10
、No.12 の光学顕微鏡組織写真をそれぞれ図1
(a)、図2(a)、図3(a)、図4(a)に示す。
図1(b)〜図4(b)は各図(a)のスケッチ図であ
る。Mは基地相、Pはパーライト相、Rは高合金拡散
相、Hは硬質粒子(炭化物析出粒子以外)、HCは炭化
物析出粒子(硬質粒子)、Hは硬質粒子、SJは固体潤
滑剤粒子である。
Table 2 shows the composition of the base portion and the structure ratio of the obtained sintered body. In addition, sintered bodies No. 3, No. 6, No. 10
And No.12 optical micrographs are shown in FIG.
(A), FIG. 2 (a), FIG. 3 (a), and FIG. 4 (a).
1 (b) to 4 (b) are sketch diagrams of the respective drawings (a). M is a base phase, P is a pearlite phase, R is a high alloy diffusion phase, H is hard particles (other than carbide precipitation particles), HC is carbide precipitation particles (hard particles), H is hard particles, and SJ is a solid lubricant particle. is there.

【0041】ついで、これら焼結体からバルブシート
(形状:φ41.4×φ38.8×7.0mm )を加工し、下記に示
す単体リグ摩耗試験を実施した。 単体リグ摩耗試験(耐摩耗性試験) 耐摩耗性は、図6に示す単体リグ摩耗試験機で調査し
た。単体リグ試験は、バルブシート1をシリンダヘッド
相当品の治具2に圧入したのち、試験機に装着した熱源
(LPG+Ar)3によりバルブ4およびバルブシート1を加
熱しながらバルブ4を上下させ、バルブ沈み量により摩
耗量を測定した。なお、試験条件は、次のとおりであ
る。
Next, a valve seat (shape: φ41.4 × φ38.8 × 7.0 mm) was processed from these sintered bodies, and a single piece rig abrasion test shown below was performed. Single Rig Abrasion Test (Abrasion Resistance Test) The abrasion resistance was investigated using a single rig abrasion tester shown in FIG. In the unitary rig test, after the valve seat 1 is pressed into the jig 2 equivalent to a cylinder head, the valve 4 is moved up and down while heating the valve 4 and the valve seat 1 by the heat source (LPG + Ar) 3 mounted on the testing machine. And the amount of wear was measured by the amount of sinking of the valve. The test conditions are as follows.

【0042】 試験温度:400 ℃(シート面) 試験時間:9.0 hr カム回転数:3000rpm バルブ回転数:20rpm スプリング荷重:35kgf (セット時) バルブ材:SUH3 単体リグ摩耗試験の結果を表2および図5に示す。Test temperature: 400 ° C. (seat surface) Test time: 9.0 hr Cam rotation speed: 3000 rpm Valve rotation speed: 20 rpm Spring load: 35 kgf (at the time of setting) Valve material: SUH3 Single rig abrasion test results are shown in Table 2 and FIG. It is shown in FIG.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】バルブシートの摩耗量は、本発明例の焼結
体No.1〜No. 9 では、11〜18μm であり、相手材の摩耗
量も4 〜11μm であった。本発明の範囲を外れる比較例
の焼結体No. 10〜No. 13を用いたバルブシートの摩耗量
は29〜48μm 、相手材の摩耗量は15〜47μm であった。
本発明例は、比較例に比べ摩耗量が少なく、耐摩耗性が
向上しかつ相手材攻撃性も低下していることがわかる。
The wear amount of the valve seat was 11 to 18 μm in the sintered bodies No. 1 to No. 9 of the present invention, and the wear amount of the mating material was 4 to 11 μm. The wear amount of the valve seat using the sintered bodies No. 10 to No. 13 of the comparative examples outside the range of the present invention was 29 to 48 μm, and the wear amount of the mating material was 15 to 47 μm.
It can be seen that the example of the present invention has a smaller amount of wear than the comparative example, has improved wear resistance, and also has reduced partner material attack.

【0046】[0046]

【発明の効果】本発明によれば、安価で、靱性および耐
摩耗性に優れた焼結合金材が得られ、自動車用バルブシ
ートとして過酷な運転にも優れた耐久性を示し、産業上
格別の効果を奏する。
According to the present invention, a sintered alloy material which is inexpensive and has excellent toughness and abrasion resistance can be obtained, and exhibits excellent durability even under severe operation as a valve seat for an automobile. Has the effect of

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明例の焼結合金材(焼結体No.
3)の光学顕微鏡組織を示す写真であり、(b)は
(a)のスケッチ図である。
FIG. 1A shows a sintered alloy material (sintered body No.
It is a photograph which shows the optical microscope structure of 3), (b) is the sketch figure of (a).

【図2】(a)は、本発明例の焼結合金材(焼結体No.
6)の光学顕微鏡組織を示す写真であり、(b)は
(a)のスケッチ図である。
FIG. 2A shows a sintered alloy material (sintered body No.
It is a photograph which shows the optical microscope structure of 6), (b) is the sketch figure of (a).

【図3】(a)は、比較例である焼結合金材(焼結体N
o.10 )の光学顕微鏡組織を示す写真であり、(b)は
(a)のスケッチ図である。
FIG. 3 (a) shows a sintered alloy material (sintered body N) as a comparative example.
o.10) is a photograph showing an optical microscope structure, and (b) is a sketch diagram of (a).

【図4】(a)は、比較例である焼結合金材(焼結体N
o.12 )の光学顕微鏡組織を示す写真であり、(b)は
(a)のスケッチ図である。
FIG. 4A is a comparative example of a sintered alloy material (sintered body N
12 is a photograph showing an optical microscope structure of o.12), and (b) is a sketch diagram of (a).

【図5】実施例の単体リグ摩耗試験結果を示すグラフで
ある。
FIG. 5 is a graph showing the results of a single rig abrasion test of an example.

【図6】単体リグ摩耗試験機の概略説明図である。FIG. 6 is a schematic explanatory view of a single piece rig wear tester.

【符号の説明】[Explanation of symbols]

1 バルブシート 2 治具 3 熱源 4 バルブ DESCRIPTION OF SYMBOLS 1 Valve seat 2 Jig 3 Heat source 4 Valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01L 3/02 F01L 3/02 F (72)発明者 佐藤 賢一 栃木県下都賀郡野木町野木1111番地 日本 ピストンリング株式会社栃木工場内 Fターム(参考) 4K018 AA34 AB05 AB07 AB10 BA02 BA04 BA11 BA14 BA15 BA16 BA20 BB04 DA11 FA36 FA37 FA47 KA10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01L 3/02 F01L 3/02 F (72) Inventor Kenichi Sato 1111 Nogicho, Nogicho, Shimotsuga-gun, Tochigi Japan Piston F-term in the Tochigi Plant of Ring Co., Ltd. (reference) 4K018 AA34 AB05 AB07 AB10 BA02 BA04 BA11 BA14 BA15 BA16 BA20 BB04 DA11 FA36 FA37 FA47 KA10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基地相中に硬質粒子を分散させた鉄基焼
結合金材であって、前記基地相が、体積率で5〜40%の
パーライト相と、体積率で10〜40%の高合金拡散相から
なり、前記硬質粒子として、硬さがHv600〜1300、粒径
が10〜150 μm の粒子を体積率で10〜30%分散させたこ
とを特徴とするバルブシート用鉄基焼結合金材。
1. An iron-based sintered alloy material in which hard particles are dispersed in a base phase, wherein the base phase has a pearlite phase having a volume ratio of 5 to 40% and a pearlite phase having a volume ratio of 10 to 40%. An iron-based sintering material for valve seats, comprising a high alloy diffusion phase, wherein as the hard particles, particles having a hardness of Hv 600 to 1300 and a particle size of 10 to 150 μm are dispersed in a volume ratio of 10 to 30%. Bonded metal.
【請求項2】 基地相中に硬質粒子を分散させた鉄基焼
結合金材であって、前記硬質粒子を含む基地部の組成
が、質量%で、C:0.2 〜 2.0%、Cr:1.0 〜9.0%、M
o:1.0 〜 9.0%、Si:0.1 〜 1.0%、W:1.0 〜 3.0
%、V:0.1 〜1.0%、およびCu、Co、Niの1種または
2種以上を合計量で3.0 〜15.0%含有し、残部が実質的
にFeからなる組成を有し、前記基地相が、体積率で5〜
40%のパーライト相と、体積率で10〜40%の高合金拡散
相からなり、前記硬質粒子として、硬さがHv600〜130
0、粒径が10〜150 μm の粒子を体積率で10〜30%分散
させたことを特徴とするバルブシート用鉄基焼結合金
材。
2. An iron-based sintered alloy material in which hard particles are dispersed in a base phase, wherein the composition of the base portion containing the hard particles is C: 0.2-2.0%, Cr: 1.0 by mass%. ~ 9.0%, M
o: 1.0 to 9.0%, Si: 0.1 to 1.0%, W: 1.0 to 3.0
%, V: 0.1 to 1.0%, and one or more of Cu, Co, and Ni in a total amount of 3.0 to 15.0%, with the balance being substantially composed of Fe. 5 by volume ratio
It consists of a 40% pearlite phase and a high alloy diffusion phase with a volume ratio of 10 to 40%, and has a hardness of Hv 600 to 130 as the hard particles.
0. An iron-based sintered alloy material for a valve seat, wherein particles having a particle size of 10 to 150 μm are dispersed in a volume ratio of 10 to 30%.
【請求項3】 前記硬質粒子が、Mo−Ni−Cr−Si−Coの
金属間化合物粒子、Cr−Mo−Coの金属間化合物粒子、Fe
−Mo合金粒子、炭化物析出粒子のうちから選ばれた1種
または2種以上であることを特徴とする請求項1または
2に記載のバルブシート用鉄基焼結合金材。
3. The hard particles are Mo-Ni-Cr-Si-Co intermetallic compound particles, Cr-Mo-Co intermetallic compound particles, Fe
The iron-based sintered alloy material for a valve seat according to claim 1, wherein the iron-based sintered alloy material is at least one selected from the group consisting of —Mo alloy particles and carbide precipitated particles.
【請求項4】 前記炭化物析出粒子が、質量%で、C:
0.2 〜 2.0%、Cr:2.0 〜10.0%、Mo:2.0 〜10.0%、
W:2.0 〜10.0%、V:0.2 〜 5.0%を含み、残部Feお
よび不可避的不純物からなる組成を有することを特徴と
する請求項3に記載のバルブシート用鉄基焼結合金材。
4. The method according to claim 1, wherein the carbide precipitate particles are C:
0.2 to 2.0%, Cr: 2.0 to 10.0%, Mo: 2.0 to 10.0%,
The iron-based sintered alloy material for a valve seat according to claim 3, wherein the iron-based sintered alloy material contains 2.0 to 10.0% of W: 0.2 to 5.0% of V and a balance of Fe and unavoidable impurities.
【請求項5】 前記基地相が、さらに固体潤滑剤粒子を
体積率で0.1 〜10.0%含有したことを特徴とする請求項
1ないし4のいずれかに記載のバルブシート用鉄基焼結
合金材。
5. The iron-based sintered alloy material for a valve seat according to claim 1, wherein the base phase further contains 0.1 to 10.0% by volume of solid lubricant particles. .
【請求項6】 前記固体潤滑剤粒子が硫化物、弗化物お
よびグラファイトのうちから選ばれた1種または2種以
上である請求項5に記載のバルブシート用鉄基焼結合金
材。
6. The iron-based sintered alloy material for a valve seat according to claim 5, wherein the solid lubricant particles are one or more selected from sulfide, fluoride, and graphite.
【請求項7】 焼結空孔が、Cu、Cu合金、Pb、Pb合金の
いずれかで溶浸されたものであるか、あるいはフェノ−
ル系樹脂で含浸されたものである請求項1ないし6のい
ずれかに記載のバルブシート用鉄基焼結合金材。
7. The sintered pore is infiltrated with any one of Cu, Cu alloy, Pb, Pb alloy,
The iron-based sintered alloy material for a valve seat according to any one of claims 1 to 6, wherein the iron-based sintered material is a material impregnated with a metal-based resin.
【請求項8】 請求項1ないし7のいずれかに記載のバ
ルブシート用鉄基焼結合金材を素材としたことを特徴と
する鉄基焼結合金製バルブシート。
8. A valve seat made of an iron-based sintered alloy, comprising the iron-based sintered alloy material for a valve seat according to claim 1.
JP2000328923A 2000-10-27 2000-10-27 Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy Pending JP2002129296A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000328923A JP2002129296A (en) 2000-10-27 2000-10-27 Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
GB0125293A GB2370281A (en) 2000-10-27 2001-10-22 Iron-based sintered alloy for valve seats
US09/983,821 US20020084004A1 (en) 2000-10-27 2001-10-26 Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328923A JP2002129296A (en) 2000-10-27 2000-10-27 Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy

Publications (1)

Publication Number Publication Date
JP2002129296A true JP2002129296A (en) 2002-05-09

Family

ID=18805703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328923A Pending JP2002129296A (en) 2000-10-27 2000-10-27 Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy

Country Status (3)

Country Link
US (1) US20020084004A1 (en)
JP (1) JP2002129296A (en)
GB (1) GB2370281A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact
WO2011105338A1 (en) * 2010-02-23 2011-09-01 株式会社リケン Valve seat
WO2012099239A1 (en) * 2011-01-20 2012-07-26 株式会社リケン Iron-based sintered alloy valve seat
CN102994896A (en) * 2011-09-07 2013-03-27 日立粉末冶金株式会社 Sintered alloy and manufacturing method thereof
WO2014007278A1 (en) * 2012-07-06 2014-01-09 株式会社リケン Valve seat made of iron-base sintered alloy
JP2015178649A (en) * 2014-03-19 2015-10-08 株式会社リケン Iron-based sinter alloy valve sheet
JP2015193886A (en) * 2014-03-31 2015-11-05 日本ピストンリング株式会社 Iron-based sinter alloy material for valve seat and manufacturing method therefor
JP2017115184A (en) * 2015-12-22 2017-06-29 日本ピストンリング株式会社 Valve sheet for internal combustion engine excellent in abrasion resistance

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213060B2 (en) * 2004-03-03 2009-01-21 日本ピストンリング株式会社 Ferrous sintered alloy material for valve seats
US20050239744A1 (en) * 2004-04-22 2005-10-27 Michael Ioelovich Method of producing microcrystalline cellulose-containing compositions
CN103589960A (en) * 2013-11-04 2014-02-19 虞伟财 Tool steel for saw blade of electric saw
SE537923C2 (en) * 2013-12-02 2015-11-24 Steel alloy and component comprising such a steel alloy
JP5887374B2 (en) * 2014-03-19 2016-03-16 株式会社リケン Ferrous sintered alloy valve seat
FR3052789B1 (en) 2016-06-17 2018-07-13 Aubert & Duval STEEL COMPOSITION
US11685982B2 (en) * 2016-10-17 2023-06-27 Tenneco Inc. Free graphite containing powders
DE102017010809A1 (en) * 2016-11-28 2018-05-30 Nippon Piston Ring Co., Ltd. VALVE INSERT MADE OF IRON-BASED SINTERED ALLOY WITH EXCELLENT WEAR RESISTANCE FOR INTERNAL COMBUSTION ENGINES, AND ARRANGEMENT FROM VALVE SEAT INSERT AND VALVE
FR3078978B1 (en) 2018-03-14 2020-03-13 Aubert & Duval STEEL COMPOSITION
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
US11434900B1 (en) 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113093B2 (en) * 1971-09-02 1976-04-24
JPS5277807A (en) * 1976-07-28 1977-06-30 Nippon Piston Ring Co Ltd Sintered ferroalloy for manufacturing valve seat
JPS60251258A (en) * 1984-05-28 1985-12-11 Toyota Motor Corp Iron system sintered alloy for valve sheet
JPS60258450A (en) * 1984-06-06 1985-12-20 Toyota Motor Corp Sintered iron alloy for valve seat
JP2765811B2 (en) * 1995-08-14 1998-06-18 株式会社リケン Hard phase dispersed iron-based sintered alloy and method for producing the same
JP3952344B2 (en) * 1998-12-28 2007-08-01 日本ピストンリング株式会社 Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209410A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Mixed powder for powder metallurgy, and iron powder sintered compact
EP2540852A4 (en) * 2010-02-23 2013-11-27 Riken Kk Valve seat
WO2011105338A1 (en) * 2010-02-23 2011-09-01 株式会社リケン Valve seat
JP2011174112A (en) * 2010-02-23 2011-09-08 Riken Corp Valve seat
US8844903B2 (en) 2010-02-23 2014-09-30 Kabushiki Kaisha Riken Valve seat
CN102762755B (en) * 2010-02-23 2014-08-06 株式会社理研 Valve seat
CN102762755A (en) * 2010-02-23 2012-10-31 株式会社理研 Valve seat
EP2540852A1 (en) * 2010-02-23 2013-01-02 Kabushiki Kaisha Riken Valve seat
WO2012099239A1 (en) * 2011-01-20 2012-07-26 株式会社リケン Iron-based sintered alloy valve seat
EP2666981A1 (en) * 2011-01-20 2013-11-27 Kabushiki Kaisha Riken Iron-based sintered alloy valve seat
JP2012149584A (en) * 2011-01-20 2012-08-09 Riken Corp Iron-based sintered alloy valve seat
EP2666981A4 (en) * 2011-01-20 2015-04-01 Riken Kk Iron-based sintered alloy valve seat
CN102994896A (en) * 2011-09-07 2013-03-27 日立粉末冶金株式会社 Sintered alloy and manufacturing method thereof
CN102994896B (en) * 2011-09-07 2016-08-10 日立粉末冶金株式会社 Sintered alloy and preparation method thereof
WO2014007278A1 (en) * 2012-07-06 2014-01-09 株式会社リケン Valve seat made of iron-base sintered alloy
US9359921B2 (en) 2012-07-06 2016-06-07 Kabushiki Kaisha Riken Sintered iron-based alloy valve seat
JP2014015645A (en) * 2012-07-06 2014-01-30 Riken Corp Valve seat made of iron-based sintered alloy
JP2015178649A (en) * 2014-03-19 2015-10-08 株式会社リケン Iron-based sinter alloy valve sheet
JP2015193886A (en) * 2014-03-31 2015-11-05 日本ピストンリング株式会社 Iron-based sinter alloy material for valve seat and manufacturing method therefor
JP2017115184A (en) * 2015-12-22 2017-06-29 日本ピストンリング株式会社 Valve sheet for internal combustion engine excellent in abrasion resistance
US10273838B2 (en) 2015-12-22 2019-04-30 Nippon Piston Ring Co., Ltd. Valve seat insert for internal combustion engine having excellent wear resistance

Also Published As

Publication number Publication date
GB0125293D0 (en) 2001-12-12
US20020084004A1 (en) 2002-07-04
GB2370281A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3952344B2 (en) Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP2002129296A (en) Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3520093B2 (en) Secondary hardening type high temperature wear resistant sintered alloy
JP3926320B2 (en) Iron-based sintered alloy valve seat and method for manufacturing the same
US5188659A (en) Sintered materials and method thereof
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP3469435B2 (en) Valve seat for internal combustion engine
JPH10226855A (en) Valve seat for internal combustion engine made of wear resistant sintered alloy
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3614237B2 (en) Valve seat for internal combustion engine
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JP4467013B2 (en) Sintered valve seat manufacturing method
JPH1171651A (en) Ferrous sintered alloy for valve seat
KR20020028913A (en) Sintered steel material
JP3186816B2 (en) Sintered alloy for valve seat
JP2002285293A (en) Valve seat material for high load engine and production method therefor
JP3434527B2 (en) Sintered alloy for valve seat
KR950014353B1 (en) Process for making sintering alloy of valve sheet and article made thereby
JP4716366B2 (en) Sintered valve seat manufacturing method
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3942136B2 (en) Iron-based sintered alloy
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP2006193831A (en) Abrasion resistance iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP3763605B2 (en) Sintered alloy material for valve seats