JP2002126895A - Solder and wiring board soldered using the same - Google Patents

Solder and wiring board soldered using the same

Info

Publication number
JP2002126895A
JP2002126895A JP2000326041A JP2000326041A JP2002126895A JP 2002126895 A JP2002126895 A JP 2002126895A JP 2000326041 A JP2000326041 A JP 2000326041A JP 2000326041 A JP2000326041 A JP 2000326041A JP 2002126895 A JP2002126895 A JP 2002126895A
Authority
JP
Japan
Prior art keywords
solder
wiring board
weight
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000326041A
Other languages
Japanese (ja)
Inventor
Junichi Murai
淳一 村井
Goro Ideta
吾朗 出田
Yukinobu Sakagami
幸信 坂上
Kohei Murakami
光平 村上
Takuo Ozawa
拓生 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000326041A priority Critical patent/JP2002126895A/en
Publication of JP2002126895A publication Critical patent/JP2002126895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solder not containing Pb, low in melting point, excellent in wettability, excellent in mechanical property, and to provide a wiring board soldered using the solder, not exerting a bad influence to the environment, and excellent in connection reliability for a long time. SOLUTION: The solder comprises Sn as a main component, is made to contain Ag and Cu, and to contain Bi with the concentration to the extent not causing crystallization after soldering. In particular, the composition may be 1-3 wt.% Ag, 0.3-1 wt.% Cu and 0.3-0.7 wt.% Bi or so.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子機器などを
構成する配線基板の部品実装に使用されるはんだに係わ
り、特にPbを含有しないはんだ付技術に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder used for mounting components on a wiring board constituting an electronic device or the like, and more particularly to a soldering technique containing no Pb.

【0002】[0002]

【従来の技術】近年、地球環境保護の問題がクロ−ズア
ップされ、世界的規模で環境に対する関心が高まってき
ている。エレクトロニクス産業の分野においては、主に
部品実装用接合材料として使用されているはんだに含ま
れるPbの問題が大いに注目を浴びている。
2. Description of the Related Art In recent years, the problem of global environmental protection has been closed up, and interest in the environment has been increasing on a global scale. In the field of the electronics industry, the problem of Pb contained in solder mainly used as a bonding material for component mounting has received much attention.

【0003】ほとんどの電子機器は不用になると埋め立
て廃棄処分され、昨今の慢性的な酸性雨によりこれら廃
棄された電子機器の配線基板のはんだから溶出したPb
が水質汚染を起こしている。ところが、廃棄された配線
基板のはんだからPbを除去する技術が未だ確立されて
いない。このことから、Pbを含まないはんだ(Pbフ
リ−はんだ)材料およびその適用技術の開発が待ち望ま
れている。
[0003] Most of electronic devices are disposed of when they are no longer needed, and the Pb eluted from the solder on the wiring board of these discarded electronic devices due to chronic acid rain in recent years.
Is causing water pollution. However, a technique for removing Pb from the discarded wiring board solder has not been established yet. For this reason, the development of a Pb-free solder (Pb-free solder) material and its application technology have been awaited.

【0004】また配線基板に電子部品を接合する場合、
前記電子部品に熱的ダメ−ジを与えず、かつ配線基板の
耐熱性を確保できる適正な融点のはんだが必要である。
さらに、配線基板の接合部となるランドを構成する材料
との濡れ性を確保する必要もある。
[0004] When electronic components are joined to a wiring board,
It is necessary to use a solder having an appropriate melting point that does not cause thermal damage to the electronic component and ensures the heat resistance of the wiring board.
Furthermore, it is necessary to ensure the wettability with the material constituting the land that will be the joint of the wiring board.

【0005】例えば、Pbを含まないSn−Ag系はん
だでは、はんだ付時のピーク温度が少なくとも230℃
を越え、前記適正な融点のはんだを作製しにくい。ま
た、特開平9−192877号公報には、融点を下げる
ためにCuを含有させるSn−Ag−Cu系はんだの例
が開示されているが、融点は下がるものの濡れ性の改善
が十分ではない。
For example, in the case of Sn-Ag solder containing no Pb, the peak temperature at the time of soldering is at least 230 ° C.
And it is difficult to produce the solder having the appropriate melting point. Japanese Patent Application Laid-Open No. 9-192877 discloses an example of a Sn-Ag-Cu solder containing Cu for lowering the melting point. However, although the melting point is lowered, the wettability is not sufficiently improved.

【0006】そこで、適正な融点と濡れ性を確保するた
めに、Biを含有させたSn−Bi系はんだ、Sn−A
g−Cu−Bi系はんだなどが提案されており、例え
ば、米国特許4879096号には、Snを主成分と
し、0.05〜3重量%のAgと、0.5〜6重量%の
Cuと、0.1〜3重量%のBiとを含有するSn−A
g−Cu−Bi系はんだの例が開示されている。
Therefore, in order to ensure proper melting point and wettability, Sn-Bi based solder containing Bi, Sn-A
A g-Cu-Bi-based solder or the like has been proposed. For example, US Pat. No. 4,879,096 has Sn as a main component and contains 0.05 to 3% by weight of Ag and 0.5 to 6% by weight of Cu. Containing 0.1 to 3% by weight of Bi
An example of a g-Cu-Bi solder is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、Biは
融点低下、濡れ性改善などはんだ付特性を向上させると
いう効果があるものの、過剰に含有させるとはんだ中に
Biの単独相が晶出し、その結果、はんだの機械的特
性、特に熱サイクルなどにより発生するひずみの耐性に
おいて重要な因子である延性や絞り特性を著しく低下さ
せる。したがって、はんだ接合部の長期信頼性が損なわ
れるため、上記開示例の構成では、実用上の問題があっ
た。
However, Bi has the effect of improving the soldering characteristics, such as lowering the melting point and improving the wettability, but if it is contained excessively, a single phase of Bi crystallizes in the solder, and as a result, In addition, it significantly lowers the mechanical properties of the solder, particularly ductility and drawing properties, which are important factors in the resistance to strain generated by thermal cycling and the like. Therefore, since the long-term reliability of the solder joint is impaired, the configuration of the above disclosed example has a practical problem.

【0008】この発明は上記のような問題を解消するた
めになされたもので、Pbを含まず、低融点で、濡れ性
に優れ、かつ、機械的特性に優れたはんだを提供するこ
とを目的とする。また、このはんだを用いてはんだ付さ
れた、環境に悪影響を与えず、接合部において信頼性の
高い配線基板を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a solder containing no Pb, having a low melting point, excellent wettability, and excellent mechanical properties. And Another object of the present invention is to provide a wiring board which is soldered using this solder and has a high reliability at the joint without adversely affecting the environment.

【0009】[0009]

【課題を解決するための手段】この発明に係る第1の構
成のはんだは、Snを主成分とし、はんだ付後に晶出が
起こらない濃度のBiを含むものである。
The solder of the first configuration according to the present invention contains Sn as a main component and Bi at a concentration that does not cause crystallization after soldering.

【0010】この発明に係る第2の構成のはんだは、S
nを主成分とし、1〜3重量%程度のAgと、0.3〜
1重量%程度のCuと、0.3〜0.7重量%程度のB
iとを含むものである。
[0010] The solder of the second configuration according to the present invention is S
n as a main component, about 1-3% by weight of Ag,
About 1% by weight of Cu and about 0.3 to 0.7% by weight of B
i.

【0011】この発明に係る第3の構成のはんだは、上
記第2の構成のはんだであって、2.5重量%程度のA
gと、0.5重量%程度のCuと、0.5重量%程度の
Biとを含むものである。
[0011] The solder of the third configuration according to the present invention is the solder of the second configuration, and has a A content of about 2.5% by weight.
g, about 0.5% by weight of Cu, and about 0.5% by weight of Bi.

【0012】この発明に係る第1の構成の配線基板は、
上記第1あるいは第2の構成のはんだを用いて、はんだ
付したものである。
According to a first aspect of the present invention, there is provided a wiring board comprising:
It is soldered using the solder of the first or second configuration.

【0013】[0013]

【発明の実施の形態】実施の形態1.この発明の実施の
形態1によるSn−1.5Ag−0.5Cu−0.7B
iのはんだを作製した後、容器に入れた状態で250℃
まで温度を上げて溶融させ、液相線温度(約223℃)
から固相線温度(約214℃)を超え210℃まで約
0.2℃/分の速度で徐冷した。しかる後、前記容器周
辺を水冷により約100℃/分の速度で急冷して、はん
だ組織観察用サンプルを作製した。得られたサンプルを
研磨仕上げし、走査型電子顕微鏡および波長分散型X線
分析装置で分析した結果、Bi単独相の晶出は認められ
なかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Sn-1.5Ag-0.5Cu-0.7B according to Embodiment 1 of the present invention
After preparing the solder of i, 250 ° C
Raise the temperature until melting, liquidus temperature (about 223 ℃)
Then, the temperature was gradually increased from the solidus temperature (about 214 ° C.) to 210 ° C. at a rate of about 0.2 ° C./min. Thereafter, the periphery of the container was rapidly cooled by water cooling at a rate of about 100 ° C./min to prepare a sample for observation of solder structure. The obtained sample was polished and analyzed by a scanning electron microscope and a wavelength dispersive X-ray analyzer. As a result, crystallization of a single phase of Bi was not recognized.

【0014】次に、本実施の形態のはんだと比較するた
めに、Biを含まないSn−1.5Ag−0.5Cuは
んだ(比較例1)を作製し、JISZ22014号試験
片に準じて機械加工した後、それぞれの試験片を引張試
験に供した。尚、試験は室温(25℃)で、引張速度は
5mm/分の条件にて実施した。その結果、表1に示す
ように、引張強度、伸び、絞りともBiを含有しない比
較例1と同等の値が得られ、Biの含有による機械的特
性の低下は認められなかった。
Next, for comparison with the solder of the present embodiment, an Sn-1.5Ag-0.5Cu solder containing no Bi (Comparative Example 1) was prepared and machined according to JISZ22014 test piece. After that, each test piece was subjected to a tensile test. The test was performed at room temperature (25 ° C.) at a tensile speed of 5 mm / min. As a result, as shown in Table 1, the same values as those of Comparative Example 1 containing no Bi were obtained in tensile strength, elongation, and drawing, and no decrease in mechanical properties due to the inclusion of Bi was observed.

【0015】[0015]

【表1】 [Table 1]

【0016】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例1ではブリッジ発生率が3.0%であったの
に比し、本実施の形態のはんだでは0.5%まで低減し
た。
Further, each of the above-mentioned solders was placed in a table-top type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / preflux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, the bridge generation rate in Comparative Example 1 was 3.0%, but was reduced to 0.5% in the solder of the present embodiment.

【0017】実施の形態2.本発明の実施の形態2によ
るSn−3.0Ag−0.5Cu−0.5Biはんだ
を、上記実施の形態1と同様にして作製した後、容器に
入れた状態で250℃まで温度を上げて溶融させ、液相
線温度(約218℃)から固相線温度(約214℃)を
超え210℃まで約0.2℃/分の速度で徐冷した。し
かる後、前記容器周辺を水冷により約100℃/分の速
度で急冷して、はんだ組織観察用サンプルを作製した。
得られたサンプルを研磨仕上げし、走査型電子顕微鏡お
よび波長分散型X線分析装置で分析した結果、Bi単独
相の晶出は認められなかった。
Embodiment 2 FIG. After preparing the Sn-3.0Ag-0.5Cu-0.5Bi solder according to the second embodiment of the present invention in the same manner as in the first embodiment, the temperature was raised to 250 ° C. in a state where the solder was placed in a container. It was melted and gradually cooled from the liquidus temperature (about 218 ° C.) to the temperature exceeding the solidus temperature (about 214 ° C.) to 210 ° C. at a rate of about 0.2 ° C./min. Thereafter, the periphery of the container was rapidly cooled by water cooling at a rate of about 100 ° C./min to prepare a sample for observing a solder structure.
The obtained sample was polished and analyzed by a scanning electron microscope and a wavelength dispersive X-ray analyzer. As a result, no crystallization of a single phase of Bi was observed.

【0018】次に、本実施の形態のはんだと比較するた
めに、Biを含まないSn−3.0Ag−0.5Cuは
んだ(比較例2)を作製し、JISZ22014号試験
片に準じて機械加工した後、それぞれの試験片を引張試
験に供した。尚、試験は室温(25℃)で、引張速度は
5mm/分の条件にて実施した。その結果、表2に示す
ように、引張強度、伸び、絞りともBiを含有しない比
較例2と同等の値が得られ、Biの含有による機械的特
性の低下は認められなかった。
Next, for comparison with the solder of the present embodiment, a Sn-3.0Ag-0.5Cu solder containing no Bi (Comparative Example 2) was prepared and machined according to JISZ22014 test piece. After that, each test piece was subjected to a tensile test. The test was performed at room temperature (25 ° C.) at a tensile speed of 5 mm / min. As a result, as shown in Table 2, values equivalent to those of Comparative Example 2 containing no Bi were obtained in all of the tensile strength, elongation, and drawing, and no decrease in mechanical properties due to the inclusion of Bi was observed.

【0019】[0019]

【表2】 [Table 2]

【0020】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例2ではブリッジ発生率が3.1%であったの
に比し、本実施の形態のはんだでは0.3%まで低減し
た。
Further, each of the above-mentioned solders was placed in a table-top type flow soldering experiment tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / preflux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, the bridge generation rate was reduced to 0.3% in the solder of the present embodiment, as compared with 3.1% in Comparative Example 2.

【0021】また、上記表1、表2より、本実施の形態
によるはんだと、上記実施の形態1によるはんだとは、
機械的特性、ブリッジ発生率とも同等であることがわか
る。本実施の形態および上記実施の形態1に示す液相線
温度から求められる融点は、本実施の形態(218℃)
が上記実施の形態1(223℃)に比べ約5℃低減で
き、電子部品に与える熱影響を低減できる。また、はん
だ付作業性も向上する。
From the above Tables 1 and 2, the solder according to the present embodiment and the solder according to the first embodiment are as follows.
It can be seen that the mechanical characteristics and the rate of occurrence of bridges are equivalent. The melting point obtained from the liquidus temperature described in the present embodiment and the first embodiment is the same as that in the present embodiment (218 ° C.).
However, compared to the first embodiment (223 ° C.), the temperature can be reduced by about 5 ° C., and the thermal effect on the electronic component can be reduced. Also, the workability of soldering is improved.

【0022】実施の形態3.本発明の実施の形態3によ
るSn−2.5Ag−0.5Cu−0.5Biはんだ
を、上記実施の形態1および上記実施の形態2と同様に
して作製した後、容器に入れた状態で250℃まで温度
を上げて溶融させ、液相線温度(約219℃)から固相
線温度(約215℃)を超え210℃まで約0.2℃/
分の速度で徐冷した。しかる後、前記容器周辺を水冷に
より約100℃/分の速度で急冷して、はんだ組織観察
用サンプルを作製した。得られたサンプルを研磨仕上げ
し、走査型電子顕微鏡および波長分散型X線分析装置で
分析した結果、Bi単独相の晶出は認められなかった。
Embodiment 3 FIG. The Sn-2.5Ag-0.5Cu-0.5Bi solder according to the third embodiment of the present invention was prepared in the same manner as in the first and second embodiments, and then placed in a container. The temperature is raised to 200 ° C and melted.
Slowly cooled at a rate of minutes. Thereafter, the periphery of the container was rapidly cooled by water cooling at a rate of about 100 ° C./min to prepare a sample for observing a solder structure. The obtained sample was polished and analyzed by a scanning electron microscope and a wavelength dispersive X-ray analyzer. As a result, no crystallization of a single phase of Bi was observed.

【0023】次に、本実施の形態のはんだと比較するた
めに、Biを含まないSn−2.5Ag−0.5Cuは
んだ(比較例3)を作製し、JISZ22014号試験
片に準じて機械加工した後、それぞれの試験片を引張試
験に供した。尚、試験は室温(25℃)で、引張速度は
5mm/分の条件にて実施した。その結果、表3に示す
ように、引張強度、伸び、絞りともBiを含有しない比
較例3と同等の値が得られ、Biの含有による機械的特
性の低下は認められなかった。
Next, for comparison with the solder of the present embodiment, an Sn-2.5Ag-0.5Cu solder containing no Bi (Comparative Example 3) was prepared and machined according to JISZ22014 test piece. After that, each test piece was subjected to a tensile test. The test was performed at room temperature (25 ° C.) at a tensile speed of 5 mm / min. As a result, as shown in Table 3, values equivalent to those of Comparative Example 3 containing no Bi were obtained in both tensile strength, elongation, and drawing, and no decrease in mechanical properties due to Bi was found.

【0024】[0024]

【表3】 [Table 3]

【0025】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス基板を用いてブリッジ発生率測定を行った(電極
総数1800)。はんだ槽温度は250℃設定とし、コ
ンベア−スピ−ドは0.9m/分とした。尚、フラック
スは標準的なRMAタイプのものを使用した。その結
果、比較例3ではブリッジ発生率が3.0%であったの
に比し、本実施の形態によるはんだでは0.1%まで低
減できた。
Further, each of the above-mentioned solders was placed in a table-type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
The bridge generation rate was measured using a Cu-sulfur / preflux substrate made of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used. As a result, the bridge generation rate in Comparative Example 3 was 3.0%, while the solder according to the present embodiment could be reduced to 0.1%.

【0026】また、本実施の形態によるはんだは、上記
実施の形態2によるはんだと比較して、はんだ融点およ
びブリッジ発生率は同等であるが、機械的特性、特に、
絞りが約5%増大するので耐熱疲労性が向上する。
The solder according to the present embodiment has the same solder melting point and the same bridge generation rate as the solder according to the second embodiment, but has the mechanical properties,
Since the drawing is increased by about 5%, the thermal fatigue resistance is improved.

【0027】実施の形態4.上記実施の形態1〜3にて
作製した各はんだ(Sn−1.5Ag−0.5Cu−
0.7Bi、Sn−3.0Ag−0.5Cu−0.5B
i、Sn−2.5Ag−0.5Cu−0.5Bi)をそ
れぞれ個別に卓上型のフロ−はんだ実験槽に入れて、線
径0.5mmφで表層に約10μmのSn−10Pbめ
っきを施したジャンパ−線1を、図1に示すようにコの
字型に折り曲げて60mm×70mm×1.6mm厚の
FR−4材の片面配線Cu/プリフラックス配線基板2
に挿入し、ジャンパ−線1と配線基板2のランド3をフ
ロ−はんだ付によりはんだ付を行った。
Embodiment 4 Each of the solders (Sn-1.5Ag-0.5Cu-
0.7Bi, Sn-3.0Ag-0.5Cu-0.5B
i, Sn-2.5Ag-0.5Cu-0.5Bi) were individually placed in a table-top type flow soldering test tank, and about 10 μm of Sn-10Pb was plated on the surface with a wire diameter of 0.5 mmφ. The jumper wire 1 is bent into a U-shape as shown in FIG. 1, and a single-sided wiring Cu / pre-flux wiring board 2 made of FR-4 material having a thickness of 60 mm × 70 mm × 1.6 mm
Then, the jumper wire 1 and the land 3 of the wiring board 2 were soldered by flow soldering.

【0028】また、比較のために、従来から用いられて
いるPbを含むSn−Pb共晶はんだについても上記と
同様にして、サンプル配線基板の作製を行った。尚、試
験に用いた配線基板の穴径は0.9mm、ランド径は
1.3mm。はんだ槽温度は250℃設定とし、コンベ
ア−スピ−ドは0.9m/分とした。また、フラックス
は標準的なRMAタイプのものを使用した。
For comparison, a sample wiring board was prepared in the same manner as above with respect to a Sn-Pb eutectic solder containing Pb which has been used conventionally. The hole diameter of the wiring board used in the test was 0.9 mm, and the land diameter was 1.3 mm. The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. The flux used was a standard RMA type.

【0029】サンプル配線基板作製後、−40℃(30
分)と125℃(30分)とのヒ−トサイクル試験を実
施し、一定サイクル終了毎に図2(a)に示すようには
んだ付されたジャンパ−線1の反対側を切断し、図2
(b)に示すように片側のみがはんだ付された配線基板
2を反対に向けて、はんだ付されたジャンパ−線1を垂
直方向に引張速度20mm/分で引抜き、はんだ6とラ
ンド3の接合強度を測定した。
After the sample wiring board is prepared, the temperature is set at -40 ° C. (30
2) and 125 ° C. (30 minutes), and the opposite side of the soldered jumper wire 1 as shown in FIG. 2
As shown in (b), the soldered jumper wire 1 is pulled out at a pulling speed of 20 mm / min in the vertical direction with the wiring board 2 soldered only on one side facing the other side, and the solder 6 and the land 3 are joined. The strength was measured.

【0030】図3は、このようにして得られたヒ−トサ
イクル試験後のジャンパ−線1の引抜強度の最大値とサ
イクル数との関係を示したものである。上記実施の形態
1〜3によるいずれのはんだも、Sn−Pb共晶はんだ
と同等であった。したがって、はんだ接合部の長期接続
信頼性は従来と同等に確保できている。
FIG. 3 shows the relationship between the maximum value of the pull-out strength of the jumper wire 1 after the heat cycle test thus obtained and the number of cycles. Each of the solders according to the first to third embodiments was equivalent to the Sn-Pb eutectic solder. Therefore, the long-term connection reliability of the solder joint can be ensured as in the conventional case.

【0031】実施の形態5.Biの含有量によるBiの
晶出状態を調べるため、Sn−2.5Ag−0.5Cu
にBiを0〜2重量%の範囲で含有量を変えたはんだ8
種(Bi含有量:S1;0、S2;0.1、S3;0.
3、S4;0.5、S5;0.7、S6;1.0、S
7;1.5、S8;2.0重量%)を作製し、上記実施
の形態1〜3と同様にして、はんだ組織観察用サンプル
を作製した。得られたサンプルを研磨仕上げし、走査型
電子顕微鏡および波長分散型X線分析装置で分析した。
その結果、いずれのサンプルにも、Snマトリックス中
にAg3Snの晶出が観察され、1.0重量%以上のB
iを含有させたS6〜S8(図4(b))において、S
1〜S5(図4(a))には観察されない、Biの晶出
が観察された(Biであることは波長分散型X線分析装
置で確認)。
Embodiment 5 In order to examine the crystallization state of Bi depending on the Bi content, Sn-2.5Ag-0.5Cu
8 in which the content of Bi is changed in the range of 0 to 2% by weight.
Species (Bi content: S1; 0, S2; 0.1, S3;
3, S4; 0.5, S5; 0.7, S6; 1.0, S
7; 1.5, S8; 2.0% by weight), and a solder structure observation sample was prepared in the same manner as in the first to third embodiments. The obtained sample was polished and analyzed by a scanning electron microscope and a wavelength dispersive X-ray analyzer.
As a result, in all the samples, crystallization of Ag 3 Sn was observed in the Sn matrix, and 1.0% by weight or more of B
In S6 to S8 containing i (FIG. 4B), S
Crystallization of Bi, which was not observed in 1 to S5 (FIG. 4A), was observed (it was confirmed by a wavelength dispersive X-ray analyzer that Bi was present).

【0032】実施の形態6.上記実施の形態5と同様に
作製した8種のサンプルS1〜S8、およびSn−Pb
共晶はんだ(S9)を作製し、JISZ22014号試
験片に準じて機械加工した後、それぞれの試験片を引張
試験に供した。尚、試験は室温(25℃)で、引張速度
は5mm/分の条件にて実施した。
Embodiment 6 FIG. Eight kinds of samples S1 to S8 produced in the same manner as in the fifth embodiment, and Sn-Pb
After eutectic solder (S9) was prepared and machined according to JISZ22014 test pieces, each test piece was subjected to a tensile test. The test was performed at room temperature (25 ° C.) at a tensile speed of 5 mm / min.

【0033】更に、上記それぞれのはんだについて卓上
型のフロ−はんだ実験槽にて、1.27mmピッチ60
電極のコネクタを複数個挿入した200mm×200m
m×1.6mm厚のFR−4材のCuスル−/プリフラ
ックス配線基板を用いてブリッジ発生率測定を行った
(電極総数1800)。はんだ槽温度は250℃設定と
し、コンベア−スピ−ドは0.9m/分とした。尚、フ
ラックスは標準的なRMAタイプのものを使用した。
Furthermore, each of the above-mentioned solders was placed in a table-top type flow soldering test tank at a pitch of 1.27 mm.
200mm x 200m with multiple electrode connectors inserted
A bridge occurrence rate was measured using a Cu-sulfur / pre-flux wiring board of FR-4 material having a thickness of mx 1.6 mm (total number of electrodes: 1800). The solder bath temperature was set at 250 ° C., and the conveyor speed was 0.9 m / min. Note that a standard RMA type flux was used.

【0034】図5は、上記引張試験で得た絞り、および
上記測定で得たブリッジ発生率と、はんだ組成との関係
を示したものである。これより主に濡れ性不足に起因す
るブリッジ発生率はBi含有量が0.3重量%以上で著
しく低下することがわかる。一方、機械特性を示す絞り
は、Bi含有量1.0重量%以上で激減することが分か
る。したがって、本実施の形態により示されたSn−
2.5Ag−0.5Cu−0.3〜0.7Biは、ブリ
ッジ発生率が低く、かつ絞り特性を確保できる。すなわ
ち、適正な濡れ性を確保でき、機械的特性に優れる。
FIG. 5 shows the relationship between the drawing obtained in the tensile test, the bridge occurrence rate obtained in the above measurement, and the solder composition. From this, it can be seen that the rate of occurrence of bridges mainly due to insufficient wettability significantly decreases when the Bi content is 0.3% by weight or more. On the other hand, it can be seen that the squeeze exhibiting the mechanical properties drastically decreases when the Bi content is 1.0% by weight or more. Therefore, Sn- shown in the present embodiment.
2.5Ag-0.5Cu-0.3 to 0.7Bi has a low bridge generation rate and can secure the drawing characteristics. That is, proper wettability can be ensured, and the mechanical properties are excellent.

【0035】実施の形態7.上記実施の形態1〜6と同
様にして、Ag1〜3%、Cu0.3〜1%、Bi0.
3〜0.7%の範囲で、種々はんだを作製し、同様にし
て液相線温度(はんだ融点)を測定した結果、前記液相
線温度は214〜226℃の範囲となり、電子部品に熱
ダメージを与えず、かつ配線基板の耐熱性を確保できる
実用的な温度範囲であることを確認した。
Embodiment 7 FIG. In the same manner as in the first to sixth embodiments, Ag 1 to 3%, Cu 0.3 to 1%, Bi0.
Various solders were prepared in the range of 3 to 0.7%, and the liquidus temperature (solder melting point) was measured in the same manner. As a result, the liquidus temperature was in the range of 214 to 226 ° C. It was confirmed that the temperature was within a practical temperature range where no damage was caused and the heat resistance of the wiring board could be secured.

【0036】[0036]

【発明の効果】以上のように、この発明によれば、はん
だの構成を、Snを主成分とし、はんだ付後に晶出が起
こらない濃度のBiを含むようにしたので、環境に悪影
響を与えるPbを用いず、低融点で、濡れ性に優れ、か
つ、機械的特性に優れたはんだを提供することができ
る。
As described above, according to the present invention, the composition of the solder is mainly composed of Sn and contains Bi at a concentration that does not cause crystallization after soldering. A solder having a low melting point, excellent wettability, and excellent mechanical properties can be provided without using Pb.

【0037】また、はんだの構成を、Snを主成分と
し、1〜3重量%程度のAgと、0.3〜1重量%程度
のCuと、0.3〜0.7重量%程度のBiとを含むよ
うにしたので、Biの晶出がなく、機械的特性を確保で
きる。
The solder is composed of Sn as a main component, about 1 to 3% by weight of Ag, about 0.3 to 1% by weight of Cu, and about 0.3 to 0.7% by weight of Bi. , Bi is not crystallized, and mechanical properties can be ensured.

【0038】また、はんだの構成を、Snを主成分と
し、2.5重量%程度のAgと、0.5重量%程度のC
uと、0.5重量%程度のBiとを含むようにしたの
で、特にブリッジ発生率が低く、良好な絞り特性を確保
できる。
The solder is composed of Sn as a main component and about 2.5% by weight of Ag and about 0.5% by weight of C.
Since u and Bi of about 0.5% by weight are included, the rate of occurrence of bridges is particularly low, and good aperture characteristics can be secured.

【0039】また、上記はんだを用いて、電子部品など
を配線基板にはんだ付したので、はんだ接合部の長期接
続信頼性が確保できる効果がある。
Further, since the electronic parts and the like are soldered to the wiring board using the above-mentioned solder, there is an effect that the long-term connection reliability of the solder joint can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態4によるはんだ接合強
度測定用配線基板を示した説明図である。
FIG. 1 is an explanatory diagram showing a wiring board for measuring solder joint strength according to a fourth embodiment of the present invention.

【図2】 この発明の実施の形態4によるはんだ接合強
度測定方法を示した説明図である。
FIG. 2 is an explanatory diagram showing a solder joint strength measuring method according to a fourth embodiment of the present invention.

【図3】 この発明の実施の形態4によるリード引抜強
度とヒートサイクル数の関係を示す図である。
FIG. 3 is a diagram showing a relationship between lead pull-out strength and the number of heat cycles according to Embodiment 4 of the present invention.

【図4】 この発明の実施の形態5によるはんだの走査
型電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph of a solder according to a fifth embodiment of the present invention.

【図5】 この発明の実施の形態6によるブリッジ発生
率および絞りとはんだ組成の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a bridge generation rate, a drawing, and a solder composition according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ジャンパ−線、2 配線基板、3 ランド、6 は
んだ
1 jumper wire, 2 wiring board, 3 land, 6 solder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂上 幸信 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 村上 光平 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 小澤 拓生 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5E319 AA02 AA07 BB01 BB05 BB08 CC54  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukinobu Sakagami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Kohei Murakami 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Rishi Electric Co., Ltd. (72) Inventor Takuo Ozawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5E319 AA02 AA07 BB01 BB05 BB08 CC54

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Snを主成分とし、はんだ付後に晶出が
起こらない濃度のBiを含むことを特徴とするはんだ。
1. A solder comprising Sn as a main component and Bi at a concentration at which crystallization does not occur after soldering.
【請求項2】 Snを主成分とし、1〜3重量%程度の
Agと、0.3〜1重量%程度のCuと、0.3〜0.
7重量%程度のBiとを含むことを特徴とするはんだ。
2. An alloy containing Sn as a main component and containing about 1 to 3% by weight of Ag, about 0.3 to 1% by weight of Cu, and about 0.3 to 0.1% by weight.
A solder containing about 7% by weight of Bi.
【請求項3】 2.5重量%程度のAgと、0.5重量
%程度のCuと、0.5重量%程度のBiとを含むこと
を特徴とする請求項2に記載のはんだ。
3. The solder according to claim 2, comprising about 2.5% by weight of Ag, about 0.5% by weight of Cu, and about 0.5% by weight of Bi.
【請求項4】 請求項1あるいは請求項2に記載のはん
だを用いて、はんだ付したことを特徴とする配線基板。
4. A wiring board characterized by being soldered using the solder according to claim 1 or 2.
JP2000326041A 2000-10-25 2000-10-25 Solder and wiring board soldered using the same Pending JP2002126895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326041A JP2002126895A (en) 2000-10-25 2000-10-25 Solder and wiring board soldered using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326041A JP2002126895A (en) 2000-10-25 2000-10-25 Solder and wiring board soldered using the same

Publications (1)

Publication Number Publication Date
JP2002126895A true JP2002126895A (en) 2002-05-08

Family

ID=18803302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326041A Pending JP2002126895A (en) 2000-10-25 2000-10-25 Solder and wiring board soldered using the same

Country Status (1)

Country Link
JP (1) JP2002126895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011341A1 (en) * 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. Lead-free solder for vehicle, and in-vehicle electronic circuit
JP2018140436A (en) * 2017-12-19 2018-09-13 千住金属工業株式会社 Solder material, solder paste, foam solder and solder joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011341A1 (en) * 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. Lead-free solder for vehicle, and in-vehicle electronic circuit
JP5024380B2 (en) * 2007-07-13 2012-09-12 千住金属工業株式会社 Lead-free solder for in-vehicle mounting and in-vehicle electronic circuit
US8845826B2 (en) 2007-07-13 2014-09-30 Senju Metal Industry Co., Ltd. Lead-free solder for vehicles and a vehicle-mounted electronic circuit using the solder
JP2018140436A (en) * 2017-12-19 2018-09-13 千住金属工業株式会社 Solder material, solder paste, foam solder and solder joint

Similar Documents

Publication Publication Date Title
JP5287852B2 (en) Lead-free solder alloy with suppressed shrinkage
JP3220635B2 (en) Solder alloy and cream solder
JP3152945B2 (en) Lead-free solder alloy
EP1043112B1 (en) Lead-free solder
EP1231015B1 (en) Lead-free solder and solder joint
WO1997012719A1 (en) Lead-free solder
KR20050111750A (en) Solder paste and printed board
US20070172381A1 (en) Lead-free solder with low copper dissolution
JPH09326554A (en) Solder alloy for electrode for joining electronic component and soldering method therefor
WO2018174162A1 (en) Solder joint
WO2007081775A2 (en) Lead-free solder with low copper dissolution
KR101165426B1 (en) Pb-free solder alloy
WO2019094242A1 (en) Low-silver tin based alternative solder alloy to standard sac alloys for high reliability applications
KR100678803B1 (en) Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING SAME
JP3446517B2 (en) Pb-free solder material and electronic equipment using the same
JP2008028413A (en) Method for soldering electronic components
JP5051633B2 (en) Solder alloy
JP2002126895A (en) Solder and wiring board soldered using the same
JPH01237095A (en) Soldering flux
CN1168571C (en) Leadless solder
JP2007111715A (en) Solder alloy
KR100366131B1 (en) Lead-free solder with lower melting point and lower dross
JP2002331386A (en) Solder and soldered wiring substrate using the same
JP2003200288A (en) Pb-FREE SOLDER MATERIAL AND ELECTRONIC APPARATUS USING THE SAME
JP2004066305A (en) Solder