JP2002126434A - Method of collecting dust from gas flowing out from fluidized catalytic bed - Google Patents

Method of collecting dust from gas flowing out from fluidized catalytic bed

Info

Publication number
JP2002126434A
JP2002126434A JP2000323496A JP2000323496A JP2002126434A JP 2002126434 A JP2002126434 A JP 2002126434A JP 2000323496 A JP2000323496 A JP 2000323496A JP 2000323496 A JP2000323496 A JP 2000323496A JP 2002126434 A JP2002126434 A JP 2002126434A
Authority
JP
Japan
Prior art keywords
gas
flowing out
filtration
cyclone
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000323496A
Other languages
Japanese (ja)
Inventor
Itaru Sawaki
至 沢木
Kazuhiro Shimizu
和博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000323496A priority Critical patent/JP2002126434A/en
Publication of JP2002126434A publication Critical patent/JP2002126434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently and stably remove particles contained in a gas flowing out from a fluidized catalytic bed. SOLUTION: The gas flowing out from the fluidized catalytic bed is subjected to dust removal so that the particles is removed down to 10-200 mg/m3 particle concentration by a cyclone, thereafter is introduced into a backwashing type filter device to be passed through filter media at 2.0-3.5 m/min linear filtration velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流動触媒床から流出
する触媒由来の粒子を含むガスの除塵方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dust containing gas derived from a catalyst flowing out of a fluidized catalyst bed.

【0002】[0002]

【従来の技術】流動床反応は除熱が容易なので、多量の
発熱を伴う接触気相酸化反応に多く用いられている。例
えばアクリロニトリルは、現在では専ら流動床反応器を
用いたプロピレンのアンモオキシデーションにより製造
されている。また、ブタンなどの炭化水素の酸化による
無水マレイン酸の製造にも流動床反応器が用いられてい
る。
2. Description of the Related Art A fluidized bed reaction is widely used in a catalytic gas phase oxidation reaction involving a large amount of heat generation because heat can be easily removed. For example, acrylonitrile is currently produced exclusively by ammoxidation of propylene using a fluidized bed reactor. Fluid bed reactors have also been used to produce maleic anhydride by oxidation of hydrocarbons such as butane.

【0003】流動床内で触媒は激しく流動しているの
で、摩擦や衝突により触媒は破砕を起こし易い。従って
流動床内には、供給した触媒粒径よりも小粒径の、触媒
由来の粒子が多量に存在しているので、流動床から流出
する反応生成ガス中にはこれらの触媒由来の粒子が多量
に含まれている。通常はこの反応生成ガスをサイクロン
に導入して粒子を除去している。また次工程で反応生成
ガス中の触媒が問題となる場合には、サイクロンから流
出した反応生成ガスを更に濾過装置に導入して、残留し
ている粒子を除去している。濾過装置から流出した反応
生成ガスは、後続する反応生成物の回収工程に送られ
る。
[0003] Since the catalyst flows violently in the fluidized bed, the catalyst is liable to be crushed by friction or collision. Therefore, since a large amount of catalyst-derived particles having a smaller particle size than the supplied catalyst particle size exist in the fluidized bed, these catalyst-derived particles are contained in the reaction product gas flowing out of the fluidized bed. It is contained in large quantities. Usually, the reaction product gas is introduced into a cyclone to remove particles. When the catalyst in the reaction product gas becomes a problem in the next step, the reaction product gas flowing out of the cyclone is further introduced into a filtration device to remove the remaining particles. The reaction product gas flowing out of the filtration device is sent to a subsequent reaction product recovery step.

【0004】[0004]

【発明が解決しようとする課題】流動床から流出した触
媒由来の粒子を含む反応生成ガスから、サイクロン及び
濾過装置で粒子を除去するに際しては、濾過装置での粒
子の除去が安定して行われるようにすることが重要であ
る。何故ならば濾過装置はサイクロンを介して流動床と
直結しているので、濾過装置の運転が不安定となるとそ
の影響は直ちに流動床における反応そのものにも及ぶか
らである。例えば濾過装置の運転が不調で濾過差圧が異
常に上昇すると、流動床における反応圧力が上昇するこ
とになる。
When removing particles from a reaction product gas containing particles derived from a catalyst flowing out of a fluidized bed by a cyclone and a filter, the removal of the particles by the filter is performed stably. It is important to do so. This is because the filter device is directly connected to the fluidized bed through the cyclone, so that if the operation of the filter device becomes unstable, the effect immediately affects the reaction itself in the fluidized bed. For example, if the operation of the filtration device is abnormal and the filtration differential pressure rises abnormally, the reaction pressure in the fluidized bed will rise.

【0005】反応圧力の上昇を避けようとすれば、反応
量を減少させて濾過装置に流入する反応生成ガス量を低
下させなけばならない。本発明はサイクロン及び濾過装
置により、流動触媒床から流出した反応生成ガス中の粒
子を安定して除去する方法を提供しようとするものであ
る。
In order to avoid an increase in reaction pressure, the amount of reaction must be reduced to reduce the amount of reaction product gas flowing into the filtration device. An object of the present invention is to provide a method for stably removing particles in a reaction product gas flowing out of a fluidized catalyst bed by using a cyclone and a filtration device.

【0006】[0006]

【課題を解決するための手段】本発明によれば、流動触
媒床から流出する触媒由来の粒子を含むガスをサイクロ
ンに導入して粒子濃度が10〜200mg/m3となる
まで除塵し、サイクロンから流出する粒子濃度が低下し
たガスを逆洗式濾過装置に導入して2.0〜3.5m/
minの濾過線速で濾過体を通過させることにより、流
動触媒床から流出するガスの除塵を安定して行わせるこ
とができる。
According to the present invention, a gas containing catalyst-derived particles flowing out of a fluidized catalyst bed is introduced into a cyclone, and dust is removed until the particle concentration becomes 10 to 200 mg / m 3. The gas having a reduced particle concentration flowing out of the filter is introduced into a back-washing filter, and the gas is supplied to a backwash filter of 2.0 to 3.5 m /
By passing the filter at a filtration linear speed of min, the dust flowing out of the fluidized catalyst bed can be stably removed.

【0007】[0007]

【発明の実施の形態】本発明は流動触媒床から流出する
触媒由来の粒子を含む反応生成ガスの除塵に広く適用す
ることができる。本発明の好ましい対象の一つは、リン
及びバナジウムを含む触媒が収容されている流動床に、
炭化水素及び酸素を含む原料ガスを供給して無水マレイ
ン酸を生成させる工程で得られる反応生成ガスである。
この反応生成ガスは、冷却すると含有されている無水マ
レイン酸や水が凝縮して液状物を生成するので、150
℃以下に冷却することは危険であり、通常は230℃以
上の高温、すなわちガスの体積の大きい状態で除塵が行
われている。
DETAILED DESCRIPTION OF THE INVENTION The present invention can be widely applied to dust removal of a reaction product gas containing particles derived from a catalyst flowing out of a fluidized catalyst bed. One of the preferred objects of the present invention is to provide a fluidized bed containing a catalyst containing phosphorus and vanadium,
This is a reaction product gas obtained in a step of supplying a raw material gas containing hydrocarbons and oxygen to generate maleic anhydride.
When the reaction product gas is cooled, the contained maleic anhydride and water condense to form a liquid substance.
It is dangerous to cool the temperature below ℃, and dust is usually removed at a high temperature of 230 ℃ or more, that is, in a state where the gas volume is large.

【0008】本発明では流動触媒床から流出した触媒由
来の粒子を含むガスを、先ずサイクロンに導入して、サ
イクロンから流出するガス中の粒子濃度が10〜200
mg/m3となるように、ガス中の粒子の大部分を除去
する。サイクロンから流出するガス中の粒子濃度が20
0mg/m3よりも大きいと後続する逆洗式濾過装置で
の濾過面への粒子の堆積速度が早く、頻繁に逆洗を行わ
なければならず不利である。逆にサイクロンから流出す
るガス中の粒子濃度を10mg/m3よりも小さくする
ことは、サイクロンの特性からして有利ではない。また
濾過面に形成される粒子の堆積層の点からしても、サイ
クロンから流出するガス中の粒子濃度は過度に小さくな
い方が好ましい。一般にサイクロンから流出するガス中
の粒子濃度は15〜60mg/m3であるのが好まし
い。
In the present invention, a gas containing particles derived from a catalyst flowing out of a fluidized catalyst bed is first introduced into a cyclone, and the particle concentration in the gas flowing out of the cyclone is 10 to 200.
Most of the particles in the gas are removed so as to be mg / m 3 . The particle concentration in the gas flowing out of the cyclone is 20
If it is more than 0 mg / m 3 , the rate of deposition of particles on the filtration surface in the subsequent backwashing filtration device is high, and frequent backwashing must be performed, which is disadvantageous. Conversely, reducing the particle concentration in the gas flowing out of the cyclone to less than 10 mg / m 3 is not advantageous from the characteristics of the cyclone. Also in view of the deposited layer of particles formed on the filtration surface, it is preferable that the concentration of particles in the gas flowing out of the cyclone is not excessively low. Generally, the particle concentration in the gas flowing out of the cyclone is preferably 15 to 60 mg / m 3 .

【0009】サイクロンから流出したガスは、次いで逆
洗式濾過装置に導入する。サイクロンでは粒径の大きな
粒子が優先して除去されるので、濾過装置に導入される
ガス中の粒子は小粒径のものが主体であり、その平均粒
径は通常は5〜20μmであるが、10〜15μmであ
るのが好ましい。ガス中の粒子の平均粒径が小さすぎる
と、濾過面に形成される粒子の堆積層の空隙率が小さく
なり、差圧が大きくなり過ぎるおそれがある。逆に平均
粒径が大きいことは濾過の点からは特に支障はないが、
サイクロンでの粒子の除去が良好に行われなかったこと
を意味する。なおここで平均粒径とは、レーザー回折法
により測定される重量平均粒径を意味する。
The gas flowing out of the cyclone is then introduced into a backwash filter. Since particles having a large particle diameter are preferentially removed in the cyclone, particles in the gas introduced into the filtration device are mainly of a small particle diameter, and the average particle diameter is usually 5 to 20 μm. , And 10 to 15 μm. If the average particle size of the particles in the gas is too small, the porosity of the deposited layer of the particles formed on the filtration surface becomes small, and the differential pressure may become too large. Conversely, the fact that the average particle size is large is not particularly problematic in terms of filtration,
It means that the removal of particles in the cyclone was not performed well. Here, the average particle size means a weight average particle size measured by a laser diffraction method.

【0010】本発明では逆洗式濾過装置に導入されたガ
スを、2.0〜3.5m/minの濾過線速で濾過体の
濾過面を通過させる。ここで濾過線速とは、濾過装置に
導入されたガスの流量(m3/min)を装置内の濾過
体の全濾過面積で除した値である。濾過線速がこの範囲
よりも大きくなると、濾過面に形成される粒子の堆積層
の性状が変化して、逆洗を行っても差圧が元の値にまで
低下しないようになる。その結果、逆洗を行うにもかか
わらず差圧が漸次上昇して、濾過装置を安定して運転す
るのが困難となる。逆に濾過線速がこの範囲よりも小さ
いことは、濾過操作上は支障は無いが、処理ガス量に比
して過大な濾過装置を必要とすることとなり、不利であ
る。好ましい濾過線速は通常2.5〜3.0m/min
である。
In the present invention, the gas introduced into the backwash type filtration device is passed through the filtration surface of the filter at a linear filtration speed of 2.0 to 3.5 m / min. Here, the filtration linear velocity is a value obtained by dividing the flow rate (m 3 / min) of the gas introduced into the filtration device by the total filtration area of the filter in the device. If the filtration linear velocity is higher than this range, the property of the deposited layer of particles formed on the filtration surface changes, and the differential pressure does not decrease to the original value even when backwashing is performed. As a result, the differential pressure gradually increases in spite of performing the backwash, and it becomes difficult to operate the filtration device stably. Conversely, if the filtration linear velocity is lower than this range, there is no problem in the filtration operation, but it requires a filtration device that is excessively large in relation to the amount of processing gas, which is disadvantageous. A preferable filtration linear velocity is usually 2.5 to 3.0 m / min.
It is.

【0011】濾過装置としては種々のものが知られてい
るが、最も一般的なのは、図1に示すようにハウジング
1内に垂直方向にのびる濾過面2を有する多数の濾過体
3が設置されているものであり、本発明でもこのような
濾過装置を用いるのが好ましい。サイクロンから流出し
たガスは、ハウジング1の下方のガス導入口4からハウ
ジング内に導入され、ハウジング内を上方に流れつつ濾
過面2を通過したのち、ガス流出口5を経て濾過装置か
ら流出する。濾過面2に形成された粒子の堆積層は逆洗
により濾過面2から剥離して落下し、ハウジングの底部
に集まり、適宜の抜出し装置で排出口6から抜出され
る。ハウジング内を上方に流れるガスの空塔ガス線速は
0.5〜1.6m/sec、特に1〜1.4m/sec
とするのが好ましい。空塔ガス線速が大き過ぎると、逆
洗により剥離させた粒子が再びガスに同伴されて舞い上
り、濾過面に堆積して濾過装置の運転を不安定にするお
それがある。なお、空塔ガス線速とは導入されたガスの
流量(m3/sec)をハウジングの横断面積で除した
値である。
Although various types of filtration devices are known, the most common one is that a large number of filtration bodies 3 having a filtration surface 2 extending vertically are installed in a housing 1 as shown in FIG. It is preferable to use such a filtration device in the present invention. The gas flowing out of the cyclone is introduced into the housing from the gas inlet 4 below the housing 1, flows upward in the housing, passes through the filtering surface 2, and flows out of the filtering device via the gas outlet 5. The deposited layer of particles formed on the filtration surface 2 is separated from the filtration surface 2 by back washing and falls, collects on the bottom of the housing, and is extracted from the discharge port 6 by an appropriate extraction device. The superficial gas linear velocity of the gas flowing upward in the housing is 0.5 to 1.6 m / sec, particularly 1 to 1.4 m / sec.
It is preferred that If the superficial gas linear velocity is too high, particles separated by backwashing may be accompanied by the gas again and fly up, accumulate on the filtration surface, and make the operation of the filtration device unstable. The superficial gas linear velocity is a value obtained by dividing the flow rate (m 3 / sec) of the introduced gas by the cross-sectional area of the housing.

【0012】[0012]

【実施例】以下に実施例により本発明をさらに具体的に
説明するが、本発明は以下の実施例に限定されるもので
はない。 実施例1 リン−バナジウム系触媒が充填されている流動触媒床
に、ブタンと空気との混合ガスを連続的に導入して、ブ
タンの酸化により無水マレイン酸を生成させた。流動触
媒床から流出した反応生成ガスは、サイクロンに導入し
て含まれている粒子の大部分を除去した。サイクロンか
ら流出したガスの粒子含有量は平均して約20mg/m
3であり、その平均粒径は約10μmであった。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples. Example 1 A mixed gas of butane and air was continuously introduced into a fluidized catalyst bed filled with a phosphorus-vanadium-based catalyst, and maleic anhydride was generated by oxidation of butane. The reaction product gas flowing out of the fluidized catalyst bed was introduced into the cyclone to remove most of the contained particles. The particle content of the gas leaving the cyclone is on average about 20 mg / m
Is 3, the average particle size was about 10 [mu] m.

【0013】このガスを、焼結金属から成る濾過面2を
有する円筒状濾過体3がハウジング1内に多数設置され
ている図1の様式の濾過装置に導入し、温度260℃、
空塔ガス線速1.4m/sec、濾過線速3m/min
で濾過した。逆洗は4時間に1回の頻度で、圧力7.4
×105Pa、温度190℃の窒素ガスを用いてパルス
的に行った。この条件で3日間にわたり運転を行った
が、逆洗する毎に差圧は元に戻り、かつ逆洗と逆洗の間
における差圧の上昇状況にも変化は無かった。
This gas is introduced into a filter of the type shown in FIG. 1 in which a large number of cylindrical filter bodies 3 each having a filter surface 2 made of sintered metal are installed in a housing 1.
Empty tower gas linear velocity 1.4m / sec, filtration linear velocity 3m / min
And filtered. Backwashing is performed once every 4 hours at a pressure of 7.4.
Pulsed operation was performed using nitrogen gas at a temperature of × 10 5 Pa and a temperature of 190 ° C. The operation was carried out for three days under these conditions, but the differential pressure returned to its original value every time the backwash was performed, and there was no change in the state of increase in the differential pressure between the backwashes.

【0014】実施例2 リン−バナジウム系触媒が充填されている流動触媒床
に、ブタンと空気との混合ガスを連続的に導入して、ブ
タンの酸化により無水マレイン酸を生成させた。流動触
媒床から流出した反応生成ガスはサイクロンに導入して
含まれている粒子の大部分を除去した。サイクロンから
流出したガスの粒子含有量は平均して約80mg/m3
であり、その平均粒径は約7μmであった。
Example 2 A mixed gas of butane and air was continuously introduced into a fluidized catalyst bed filled with a phosphorus-vanadium-based catalyst, and maleic anhydride was formed by oxidation of butane. The reaction product gas flowing out of the fluidized catalyst bed was introduced into the cyclone to remove most of the contained particles. The particle content of the gas leaving the cyclone averages about 80 mg / m 3
And its average particle size was about 7 μm.

【0015】このガスを、焼結金属から成る濾過面を有
する円筒状濾過体が設置されている図1の様式の濾過装
置に導入し、温度270℃、空塔ガス線速0.8m/s
ec、濾過線速3.5m/minで濾過した。逆洗は実
施例1と全く同様に行った。この条件で7日間にわたり
運転を行ったが、逆洗する毎に差圧は元に戻り、かつ逆
洗と逆洗との間における差圧の上昇状況にも変化は無か
った。
This gas is introduced into a filter of the type shown in FIG. 1 provided with a cylindrical filter having a filter surface made of a sintered metal, and the temperature is 270 ° C., and the superficial gas linear velocity is 0.8 m / s.
ec, filtration was performed at a filtration linear speed of 3.5 m / min. Backwashing was performed exactly as in Example 1. The operation was carried out for 7 days under these conditions, but the differential pressure returned to its original value every time the backwash was performed, and there was no change in the state of increase in the differential pressure between the backwashes.

【0016】実施例3 リン−バナジウム系触媒が充填されている流動触媒床
に、ブタンと空気との混合ガスを連続的に導入して、ブ
タンの酸化により無水マレイン酸を生成させた。流動触
媒床から流出した反応生成ガスはサイクロンに導入し
て、含まれている粒子の大部分を除去した。サイクロン
から流出したガスの粒子含有量は平均して約30mg/
3であり、その平均粒径は約7μmであった。
Example 3 A mixed gas of butane and air was continuously introduced into a fluidized catalyst bed filled with a phosphorus-vanadium-based catalyst, and maleic anhydride was produced by oxidation of butane. The reaction product gas flowing out of the fluidized catalyst bed was introduced into a cyclone to remove most of the contained particles. On average, the particle content of the gas leaving the cyclone is about 30 mg /
m 3 and its average particle size was about 7 μm.

【0017】このガスを、焼結金属から成る濾過面を有
する円筒状濾過体が設置されている図1の様式の濾過装
置に導入し、温度285℃、空塔ガス線速1.6m/s
ec、濾過線速3.5m/minで濾過した。逆洗は実
施例1と全く同様に行った。この条件で3日間にわたり
運転を行ったところ、逆洗後の差圧が0.2KPa上昇
した。この程度の差圧上昇であれば1年間の連続運転が
可能である。
This gas is introduced into a filtration apparatus of the type shown in FIG. 1 provided with a cylindrical filter having a filtration surface made of sintered metal, and the temperature is 285 ° C., and the superficial gas linear velocity is 1.6 m / s.
ec, filtration was performed at a filtration linear speed of 3.5 m / min. Backwashing was performed exactly as in Example 1. When the operation was performed under these conditions for three days, the differential pressure after the backwash increased by 0.2 KPa. With such a differential pressure rise, continuous operation for one year is possible.

【0018】比較例1 実施例3において、空塔ガス線速を1.8m/sec、
濾過線速を3.83m/minとした以外は実施例3と
全く同様にして運転したとろ、7日間で逆洗後の差圧が
1.7KPa上昇した。この差圧上昇は濾過装置の安定
な運転を不可能とする大きなものである。
Comparative Example 1 In Example 3, the superficial gas linear velocity was 1.8 m / sec.
When operated in exactly the same manner as in Example 3 except that the filtration linear velocity was 3.83 m / min, the differential pressure after backwashing increased by 1.7 KPa in 7 days. This increase in differential pressure is a large one that makes stable operation of the filtration device impossible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる濾過装置の1例の模式図であ
る。
FIG. 1 is a schematic view of one example of a filtration device used in the present invention.

【符号の説明】[Explanation of symbols]

1 ハウジング 2 濾過面 3 濾過体 4 ガス導入口 5 ガス流出口 6 剥離した粒子の排出口 DESCRIPTION OF SYMBOLS 1 Housing 2 Filtration surface 3 Filtration body 4 Gas inlet 5 Gas outlet 6 Exhaust port of peeled particles

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流動触媒床から流出する触媒由来の粒子
を含むガスをサイクロンに導入して粒子濃度が10〜2
00mg/m3となるまで除塵し、サイクロンから流出
する粒子濃度が低下したガスを逆洗式濾過装置に導入し
て、2.0〜3.5m/minの濾過線速で濾過体を通
過させることにより、ガス中の粒子濃度を更に低下させ
ることを特徴とする、流動触媒床から流出するガスの除
塵方法。
1. A gas containing particles derived from a catalyst flowing out of a fluidized catalyst bed is introduced into a cyclone so that a particle concentration of 10 to 2 is obtained.
Dust is removed until the concentration becomes 00 mg / m 3, and a gas having a reduced particle concentration flowing out of the cyclone is introduced into a backwash filter, and is passed through the filter at a linear filtration speed of 2.0 to 3.5 m / min. Thereby reducing the concentration of particles in the gas, thereby removing dust from the fluidized catalyst bed.
【請求項2】 サイクロンから流出するガス中の粒子の
平均粒径が5〜20μmであることを特徴とする請求項
1記載のガスの除塵方法。
2. The method according to claim 1, wherein the average particle size of the particles in the gas flowing out of the cyclone is 5 to 20 μm.
【請求項3】 逆洗式濾過装置が、垂直方向に伸びる濾
過面を有する多数の濾過体がハウジング内に設置されて
おり、かつガスはハウジングの下方からハウジング内に
導入され、ハウジング内を上方に流れつつ濾過面を通過
するように構成されていることを特徴とする請求項1又
は2記載のガスの除塵方法。
3. A backwash type filtration device, wherein a number of filters having a vertically extending filtration surface are installed in a housing, and gas is introduced into the housing from below the housing, and the gas is passed through the housing upward. 3. The method according to claim 1, wherein the gas is passed through a filtration surface while flowing through the filter.
【請求項4】 ハウジング内に導入されたガスが、0.
5〜1.6m/secの空塔ガス線速でハウジング内を
上方に流れることを特徴とする請求項3記載のガスの除
塵方法。
4. The method according to claim 1, wherein the gas introduced into the housing is 0.1.
4. The method according to claim 3, wherein the gas flows upward in the housing at a superficial gas linear velocity of 5 to 1.6 m / sec.
【請求項5】 流動触媒床に収容されている触媒が、リ
ン及びバナジウムを含む炭化水素の酸化による無水マレ
イン酸製造用触媒であることを特徴とする請求項1ない
し4のいずれかに記載のガスの除塵方法。
5. The catalyst according to claim 1, wherein the catalyst contained in the fluidized catalyst bed is a catalyst for producing maleic anhydride by oxidizing a hydrocarbon containing phosphorus and vanadium. How to remove gas.
JP2000323496A 2000-10-24 2000-10-24 Method of collecting dust from gas flowing out from fluidized catalytic bed Pending JP2002126434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323496A JP2002126434A (en) 2000-10-24 2000-10-24 Method of collecting dust from gas flowing out from fluidized catalytic bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323496A JP2002126434A (en) 2000-10-24 2000-10-24 Method of collecting dust from gas flowing out from fluidized catalytic bed

Publications (1)

Publication Number Publication Date
JP2002126434A true JP2002126434A (en) 2002-05-08

Family

ID=18801154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323496A Pending JP2002126434A (en) 2000-10-24 2000-10-24 Method of collecting dust from gas flowing out from fluidized catalytic bed

Country Status (1)

Country Link
JP (1) JP2002126434A (en)

Similar Documents

Publication Publication Date Title
US6068760A (en) Catalyst/wax separation device for slurry Fischer-Tropsch reactor
JP5823384B2 (en) Method for separating a liquid from a multiphase mixture
US9278891B2 (en) Apparatus and method for conducting a fischer-tropsch synthesis reaction
US20200376414A1 (en) Structured elements and methods of use
US20230405510A1 (en) Methods and systems for adsorbing organometallic vapor
AU720266B2 (en) Catalyst/wax separation device for slurry fischer-tropsch reactor
EA005795B1 (en) Process for the production of liquid hydrocarbons
JP2002126434A (en) Method of collecting dust from gas flowing out from fluidized catalytic bed
US3521428A (en) Phase separation
JPH0648708A (en) Method for separating catalyst-free working solution from palladium black-containing working solution in hydrogenation circulating passage in anthraquinone process for preparing hydrogen peroxide
US20140286834A1 (en) Integrated multi-step solid/liquid separation system for fischer-tropsch processes
JPH06115929A (en) Method for producing and purifying hydroxylammonium salt solution
EP3247776B1 (en) Ltft catalyst fines removal
EP2379215B1 (en) Method for fines management in slurry processes
EP2445629A2 (en) Apparatus and process for three-phase reaction
KR100518753B1 (en) Acid gas solvent filtration system
JPH01139125A (en) Exhaust treatment equipment
CN116161727A (en) Method and device for reducing operation load of stripping tower for preparing olefin from methanol
JPH06246102A (en) Packed tower
JP2000008051A (en) Hydrocracking of liquid heavy hydrocarbon and apparatus therefor