JP2002120104A - Cutting tool made of surface coated cemented carbide alloy having chipping resistance - Google Patents

Cutting tool made of surface coated cemented carbide alloy having chipping resistance

Info

Publication number
JP2002120104A
JP2002120104A JP2000313689A JP2000313689A JP2002120104A JP 2002120104 A JP2002120104 A JP 2002120104A JP 2000313689 A JP2000313689 A JP 2000313689A JP 2000313689 A JP2000313689 A JP 2000313689A JP 2002120104 A JP2002120104 A JP 2002120104A
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
outermost
thickness
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000313689A
Other languages
Japanese (ja)
Inventor
Keiji Nakamura
惠滋 中村
Toshiaki Ueda
稔晃 植田
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000313689A priority Critical patent/JP2002120104A/en
Publication of JP2002120104A publication Critical patent/JP2002120104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of a surface coated cemented carbide alloy having high chipping resistance. SOLUTION: This cutting tool made of the surface coated cemented carbide alloy is formed by physically depositing a hard coating layer made of a single layer formed of one of formulas (Ti1-XAlX)N and (Ti1-XAlX)C1-YNY (where, X is 0.1 to 0.7 and Y is 0.5 to 0.99 in atomic ratio) or a double layer formed of both of them, with an average layer thickness of 1 to 10 μm, onto a surface of a tungsten carbide-based cemented carbide alloy substrate or a titanium carbonitride-based cermet substrate. A Ti oxide layer having average thickness of 0.1 to 3 μm represented by the formula TiOV (where, V is atomic ratio to Ti and satisfies 1.2 to 1.7) as the outermost ground layer, and a Ti oxynitride layer having average thickness of 0.05 to 2 μm represented by the formula TiN1-Z (O)Z (where, (O) is diffusion oxygen from the outermost ground layer and Z is atom ratio to Ti and satisfies 0.01 to 0.4) as the outermost layer are chemically and/or physically deposited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に各種の鋼や
鋳鉄などの高速切削加工に用いた場合に、硬質被覆層が
すぐれた耐チッピング性を発揮する表面被覆超硬合金製
切削工具(以下、被覆超硬工具という)に関するもので
ある。
The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a cutting tool) in which a hard coating layer exhibits excellent chipping resistance, particularly when used for high-speed cutting of various steels and cast irons. , Coated carbide tools).

【0002】[0002]

【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。
2. Description of the Related Art Generally, cutting tools include a throw-away tip which is detachably attached to a tip of a cutting tool for turning or planing of various materials such as steel and cast iron. Drills and miniature drills used for drilling and cutting of solids, and solid type end mills used for face milling and grooving of the work material, shoulder machining, and the like, and the detachable tip is detachably attached. In addition, a throw-away end mill tool or the like that performs cutting in the same manner as the solid type end mill is known.

【0003】また、一般に、例えば図1に概略説明図で
示される物理蒸着装置の1種であるアークイオンプレー
ティング装置を用い、ヒータで装置内を、例えば雰囲気
を20mtorrの真空として、500℃の温度に加熱
した状態で、アノード電極と所定組成を有するTi−A
l合金がセットされたカソード電極(蒸発源)との間
に、例えば電圧:35V、電流:90Aの条件でアーク
放電を発生させ、同時に装置内に反応ガスとして窒素ガ
ス、または窒素ガスとメタンガスを導入し、一方炭化タ
ングステン(以下、WCで示す)基超硬合金または炭窒
化チタン(以下、TiCNで示す)基サーメットからな
る基体(以下、これらを総称して超硬基体と云う)に
は、例えばー200Vのバイアス電圧を印加した条件
で、前記超硬合金基体の表面に、例えば特開昭62−5
6565号公報に記載されるように、組成式:(Ti
1-XAlX)Nおよび同(Ti1-XAlX)C1-YY(ただ
し、原子比で、Xは0.1〜0.7、Yは0.5〜0.
99を示す)を有するTiとAlの複合窒化物[以下、
(Ti,Al)Nで示す]および複合炭窒化物[以下、
(Ti,Al)CNで示す]のうちのいずれか、あるい
は両方で構成された単層または複層の硬質被覆層を1〜
10μmの平均層厚で蒸着することにより被覆超硬工具
を製造することが知られている。
In general, for example, an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. 1 is used, and the inside of the apparatus is heated to 500 ° C. by, for example, reducing the atmosphere to a vacuum of 20 mtorr. While heated to a temperature, an anode electrode and Ti-A having a predetermined composition
An arc discharge is generated between the cathode electrode (evaporation source) on which the alloy is set, for example, under the conditions of a voltage: 35 V and a current: 90 A, and at the same time, nitrogen gas or nitrogen gas and methane gas as a reaction gas in the apparatus. On the other hand, a substrate made of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a cermet based on titanium carbonitride (hereinafter, referred to as TiCN) (hereinafter, these are collectively referred to as a super-hard substrate) include: For example, under the condition that a bias voltage of -200 V is applied, the surface of the cemented carbide substrate is
No. 6565, the composition formula: (Ti
1-X Al X ) N and (Ti 1-X Al X ) C 1 -Y N Y (where X is 0.1 to 0.7 and Y is 0.5 to 0.
99)), and a composite nitride of Ti and Al having
(Ti, Al) N] and composite carbonitride [hereinafter, referred to as
(Ti, Al) CN], or a single or multilayer hard coating layer composed of one or both of them.
It is known to produce coated carbide tools by vapor deposition with an average layer thickness of 10 μm.

【0004】また、上記の従来被覆超硬工具において、
工具の使用前と使用後の識別を容易にするために、黄金
色の色調を有する窒化チタン(以下、TiNで示す)層
を上記(Ti,Al)N層および/または(Ti,A
l)CN層からなる硬質被覆層の表面に、最表面層とし
て0.05〜2μmの平均層厚で化学蒸着または物理蒸
着することが行われている。
In the above-mentioned conventional coated carbide tool,
In order to facilitate the discrimination between before and after use of the tool, a titanium nitride (hereinafter referred to as TiN) layer having a golden color tone is replaced with the (Ti, Al) N layer and / or the (Ti, A) layer.
1) Chemical vapor deposition or physical vapor deposition is performed on the surface of a hard coating layer composed of a CN layer with an average layer thickness of 0.05 to 2 μm as an outermost surface layer.

【0005】[0005]

【発明が解決しようとする課題】一方、近年の切削加工
に対する省力化および省エネ化の要求は強く、これに伴
い、切削加工は高速化の傾向にあるが、上記の従来被覆
超硬工具において、特にこれの硬質被覆層の表面に、最
表面層として使用前後の識別目的でTiN層が蒸着形成
されている場合、このTiN層は被削材である各種鋼に
対する付着性の強いものであるため、特に高い発熱を伴
う高速切削加工では、切粉が高温加熱されることと相ま
って前記TiN層に強力に付着し、前記TiN層を硬質
被覆層から局部的に剥がし取るように作用するが、この
場合前記TiN層は硬質被覆層である(Ti,Al)N
層および(Ti,Al)CN層に対しても密着性のすぐ
れたものであることから、前記硬質被覆層も前記TiN
層と一緒に局部的に剥がし取られ、この結果刃先にチッ
ピング(微小欠け)が発生し、比較的短時間で使用寿命
に至るのが現状である。
On the other hand, in recent years, there has been a strong demand for labor saving and energy saving for cutting work, and with this, cutting work tends to be accelerated. In particular, when a TiN layer is deposited on the surface of the hard coating layer as the outermost surface layer for the purpose of identification before and after use, the TiN layer has a strong adhesiveness to various steels as work materials. In high-speed cutting with particularly high heat generation, the chips are strongly adhered to the TiN layer in combination with the high temperature heating, and act to locally peel the TiN layer from the hard coating layer. In this case, the TiN layer is a hard coating layer (Ti, Al) N
Layer and the (Ti, Al) CN layer, the hard coating layer is also made of the TiN
At present, the chip is locally peeled off together with the layer, and as a result, chipping (small chipping) occurs at the cutting edge, which results in a relatively short service life.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の硬質被覆層の表面に最表
面層として識別目的でTiN層が形成された従来被覆超
硬工具に着目し、特にこれの高速切削加工条件下での耐
チッピング性の向上を図るべく研究を行った結果、上記
の従来被覆超硬工具の表面に、まず、最表面下地層とし
て、反応ガス組成を、体積%で、TiCl4:0.2〜
10%、CO2:0.1〜10%、Ar:5〜60%、
2:残り、とし、かつ、 反応雰囲気温度:800〜1100℃、 反応雰囲気圧力:4〜70kPa(30〜525tor
r)、 とした条件で、0.1〜3μmの平均層厚を有し、か
つ、オージェ分光分析装置で測定して、Tiに対する酸
素の割合が原子比で1.25〜1.90、即ち、 組成式:TiOW、 で表わした場合、 W:Tiに対する原子比で1.25〜1.90、 を満足するTi酸化物層を形成し、このTi酸化物層の
上に、最表面層として、通常の条件、即ち、反応ガス組
成を、体積%で、TiCl4:0.2〜10%、N2:4
〜60%、H2:残り、とし、かつ、 反応雰囲気温度:800〜1100℃、 反応雰囲気圧力:4〜90kPa(30〜675tor
r)、 とした条件で、0.05〜2μmの平均層厚を有するT
iN層を形成すると、この最表面層形成時に上記最表面
下地層を構成するTi酸化物層の酸素が拡散してきてT
i窒酸化物層が形成されるようになり、この場合前記T
i窒酸化物層形成後の最表面下地層は、厚さ方向中央部
をオージェ分光分析装置で測定して、酸素の割合がTi
に対する原子比で1.2〜1.7、即ち、 組成式:TiOV 、 で表わした場合、 V:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層となり、一方前記最表面層は、
同じく厚さ方向中央部をオージェ分光分析装置で測定し
て、拡散酸素の割合がTiに対する原子比で0.01〜
0.4、即ち、 組成式:TiN1-Z(O)Z、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、 Z:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層となり、この結果の上記Ti
窒酸化物層およびTi酸化物層が上記硬質被覆層の表面
に最表面層および最表面下地層として化学蒸着および/
または物理蒸着された被覆超硬工具においては、特に前
記最表面層としてのTi窒酸化物層が、上記TiN層と
同等の黄金色の表面色調を具備するため、工具の使用前
後の識別を可能とし、かつ被削材である各種鋼に対する
付着性のきわめて低いものであるため、高熱発生を伴う
高速切削加工にも高温加熱された切粉が付着することが
なくなることから、切刃のチッピング発生が著しく抑制
され、長期に亘ってすぐれた切削性能を発揮するように
なるという研究結果が得られたのである。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, attention has been paid to a conventional coated carbide tool in which a TiN layer is formed as the outermost surface layer on the surface of the hard coating layer for the purpose of identification, and in particular, the chipping resistance under high-speed cutting conditions. As a result of conducting research to improve the surface roughness, the surface of the above-mentioned conventional coated carbide tool was firstly provided with a reactive gas composition in the form of TiCl 4 : 0.2 to
10%, CO 2: 0.1~10% , Ar: 5~60%,
H 2 : remaining, reaction atmosphere temperature: 800 to 1100 ° C., reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr)
r) under the following conditions, an average layer thickness of 0.1 to 3 μm, and the ratio of oxygen to Ti is 1.25 to 1.90 in atomic ratio, as measured by an Auger spectrometer, that is, In the case of the composition formula: TiO W , a Ti oxide layer satisfying an atomic ratio of W: Ti to 1.25 to 1.90 is formed, and a top surface layer is formed on the Ti oxide layer. Under normal conditions, that is, when the reaction gas composition is TiCl 4 : 0.2 to 10% by volume, N 2 : 4
6060%, H 2 : remaining, and reaction atmosphere temperature: 800 to 1100 ° C., reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr)
r) T having an average layer thickness of 0.05 to 2 μm under the following conditions:
When the iN layer is formed, oxygen of the Ti oxide layer constituting the outermost surface underlayer diffuses when the outermost surface layer is formed, and T
An i-nitride oxide layer is formed.
The outermost surface underlayer after the formation of the i-nitrogen oxide layer was measured by an Auger spectrometer at the center in the thickness direction, and the oxygen content was
When the atomic ratio with respect to V is 1.2 to 1.7, that is, when represented by the composition formula: TiO V , the Ti oxide layer satisfies the following: 1.2 to 1.7 with V: Ti. The outermost layer,
Similarly, the central part in the thickness direction is measured by an Auger spectrometer, and the ratio of the diffused oxygen is 0.01 to
0.4, that is, when represented by the composition formula: TiN 1-Z (O) Z , (where (O) indicates oxygen diffused from the outermost underlayer), the atomic ratio of Z to Ti is 0. .01 to 0.4, and a Ti nitride oxide layer satisfying
A nitrided oxide layer and a Ti oxide layer are formed on the surface of the hard coating layer by chemical vapor deposition and / or as an outermost surface layer and an outermost surface underlayer.
Or, in the case of a coated carbide tool subjected to physical vapor deposition, the Ti nitride oxide layer as the outermost surface layer has a golden surface tone equivalent to that of the TiN layer, so that it is possible to identify before and after use of the tool. And extremely low adhesion to various types of steel, which is the work material, so that high-temperature heated chips do not adhere to high-speed cutting with high heat generation. Have been remarkably suppressed, and a study result has been obtained that exhibits excellent cutting performance over a long period of time.

【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、組成式:(T
1-XAlX)Nおよび同(Ti1-XAlX)C1-YY(た
だし、原子比で、Xは0.1〜0.7、Yは0.5〜
0.99を示す)を有する(Ti,Al)Nおよび(T
i,Al)CNのうちのいずれか、あるいは両方で構成
された単層または複層の硬質被覆層を1〜10μmの平
均層厚で物理蒸着してなる被覆超硬工具において、上記
硬質被覆層の表面に、最表面下地層として、0.1〜3
μmの平均層厚を有し、かつ、 組成式:TiOV 、 で表わした場合、厚さ方向中央部をオージェ分光分析装
置で測定して、 V:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層、最表面層として、0.05〜
2μmの平均層厚を有し、かつ、 組成式:TiN1-Z(O)Z、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、同じく厚さ方向中央部をオージ
ェ分光分析装置で測定して、 Z:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層、を化学蒸着および/または
物理蒸着してなる、耐チッピング性のすぐれた被覆超硬
工具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and has a composition represented by the following formula: (T
i 1-X Al X ) N and (Ti 1-X Al X ) C 1-Y N Y (where X is 0.1 to 0.7 and Y is 0.5 to
(Indicating 0.99) (Ti, Al) N and (T
(i, Al) CN, in a coated cemented carbide tool obtained by physical vapor deposition of a single-layer or multiple-layer hard coating layer composed of one or both of them, with an average layer thickness of 1 to 10 μm. 0.1 to 3 as the outermost surface underlayer
When it has an average layer thickness of μm and is represented by the composition formula: TiO V , the center in the thickness direction is measured by an Auger spectroscopic analyzer, and the atomic ratio to V: Ti is 1.2 to 1. 7, a Ti oxide layer that satisfies
When it has an average layer thickness of 2 μm and is represented by the composition formula: TiN 1-Z (O) Z , (where (O) indicates oxygen diffused from the outermost underlayer), the same thickness The central part in the direction is measured by an Auger spectroscopic analyzer, and a Ti nitride oxide layer satisfying the following: 0.01 to 0.4 in atomic ratio with respect to Z: Ti is formed by chemical vapor deposition and / or physical vapor deposition. It is characterized by a coated carbide tool having excellent chipping properties.

【0008】この発明の被覆超硬工具において、最表面
層を構成するTi窒酸物層の拡散酸素の割合(Z値)を
Tiに対する原子比で0.01〜0.40としたのは、
その値が0.01未満では切粉に対する付着性抑制に所
望の効果を確保することができず、一方その値が0.4
0を越えると、層中に気孔が形成され易くなり、健全な
最表面層の安定的形成が難しくなるという理由によるも
のである。
In the coated carbide tool of the present invention, the ratio (Z value) of the diffusion oxygen of the Ti nitride layer constituting the outermost surface layer is set to 0.01 to 0.40 in atomic ratio to Ti.
If the value is less than 0.01, the desired effect cannot be ensured in suppressing the adhesion to chips, while the value is 0.4
If it exceeds 0, pores are easily formed in the layer, and it is difficult to stably form a sound outermost surface layer.

【0009】また、同じく最表面層を構成するTi窒酸
化物層は、上記の通り、まず、最表面下地層として、酸
素の割合をTiに対する原子比で1.25〜1.90
(W値)としたTi酸化物層を形成し、ついで前記最表
面下地層の上に通常の条件でTiN層を蒸着することに
より形成されるものであり、したがって前記TiN層形
成時における前記最表面下地層からの酸素の拡散が不可
欠となるが、前記最表面下地層を構成するTi酸化物層
のW値が1.25未満であると、前記TiN層への酸素
の拡散反応が急激に低下し、最表面層における拡散酸素
の割合(Z値)をTiに対する原子比で0.01以上に
することができず、一方同W値が1.90を越えると、
前記最表面層における拡散酸素の割合がTiに対する原
子比で0.40を越えて多くなってしまうことから、W
値を1.25〜1.90と定めたものであり、この場合
最表面層形成後の最表面下地層における酸素の割合(V
値)はTiに対する原子比で1.2〜1.7の範囲内の
値をとるようになる、言い換えれば最表面層形成後の最
表面下地層のV値が1.2〜1.7を満足する場合に、
前記最表面層のZ値は0.01〜0.40を満足するも
のとなるのである。
Further, as described above, the Ti nitride oxide layer also constituting the outermost surface layer first serves as an outermost surface underlayer so that the oxygen ratio is 1.25 to 1.90 in atomic ratio to Ti.
(W value) is formed by forming a Ti oxide layer and then depositing a TiN layer on the outermost surface underlayer under ordinary conditions. Diffusion of oxygen from the surface underlayer is indispensable, but if the W value of the Ti oxide layer constituting the outermost surface underlayer is less than 1.25, the diffusion reaction of oxygen into the TiN layer rapidly increases. When the W value exceeds 1.90, the ratio (Z value) of the diffused oxygen in the outermost surface layer cannot be made 0.01 or more in atomic ratio with respect to Ti.
Since the atomic ratio of diffused oxygen in the outermost surface layer exceeds 0.40 in atomic ratio to Ti, W
The value is set to 1.25 to 1.90. In this case, the ratio of oxygen (V
Value) takes on a value in the range of 1.2 to 1.7 in atomic ratio with respect to Ti. In other words, the V value of the outermost underlayer after the outermost layer is formed is 1.2 to 1.7. If you are satisfied,
The Z value of the outermost surface layer satisfies 0.01 to 0.40.

【0010】さらに、同じく最表面層および最表面下地
層の平均層厚を、それぞれ0.05〜2μmおよび0.
1〜3μmとしたのは、その平均層厚が0.05μm未
満および0.1μm未満では、前者にあっては所望の表
面色調(黄金色)を確保することができず、また後者に
あっては最表面層への酸素供給が不十分になり、一方前
者の色調付与作用は2μm、後者の酸素供給作用は3μ
mの平均層厚で十分満足に行うことができるという理由
にもとづくものである。また、硬質被覆層の平均層厚を
1〜10μmとしたのは、その層厚が1μmでは所望の
すぐれた耐摩耗性を確保することができず、一方その層
厚が10μmを越えると、切刃に欠けやチッピングが発
生し易くなるという理由によるものである。
Further, the average layer thickness of the outermost surface layer and the outermost surface underlayer is 0.05 to 2 μm and 0.1 μm, respectively.
If the average layer thickness is less than 0.05 μm or less than 0.1 μm, the desired surface color (golden color) cannot be secured in the former case, and Means that the oxygen supply to the outermost surface layer is insufficient, whereas the former provides a color tone of 2 μm and the latter provides an oxygen supply of 3 μm.
This is based on the reason that an average layer thickness of m can be performed sufficiently satisfactorily. Further, the reason why the average layer thickness of the hard coating layer is set to 1 to 10 μm is that if the layer thickness is 1 μm, the desired excellent wear resistance cannot be secured, while if the layer thickness exceeds 10 μm, the cut-off occurs. This is because chipping and chipping easily occur in the blade.

【0011】さらに、また上記の最表面下地層のTi酸
化物層は、これを(Ti,Al)N層および/または
(Ti,Al)CN層からなる硬質被覆層の表面に、こ
れのW値が1.25〜1.90の範囲内の低い側、例え
ば1.25〜1.50の範囲内にある条件や、その平均
層厚が0.1〜3μmの範囲内の薄い側、例えば0.1
〜1μmの範囲内にある条件で形成した場合には、前記
硬質被覆層との間に十分な層間密着性が得られない場合
がある(勿論、上記Ti酸化物層の形成条件によって
は、この場合でも十分な層間密着性が得られるものであ
る)ので、この場合には上記Ti酸化物層形成後に、下
記の雰囲気、即ち、雰囲気ガス組成を、TiCl4
0.05〜10体積%、不活性ガス:残り、とし、か
つ、 雰囲気温度:800〜1100℃、 雰囲気圧力:4〜90kPa(30〜675Tor
r)、 とした雰囲気中に所定時間、例えば5分〜5時間程度保
持して、上記Ti酸化物層と硬質被覆層との界面部に、
望ましくは0.05〜2μmの平均層厚で相互拡散層を
形成し、これによって層間密着性の向上を図るのがよ
く、さらにこのTi酸化物層と硬質被覆層との層間密着
性向上処理は、上記Ti酸化物層のW値および平均層厚
が上記の低い側および薄い側の値以外の値である場合に
も、層間密着性のより一層の向上を図る目的で行っても
よい。
Further, the Ti oxide layer of the outermost surface underlayer is formed on the surface of the hard coating layer composed of the (Ti, Al) N layer and / or the (Ti, Al) CN layer, The condition where the value is on the low side in the range of 1.25 to 1.90, for example, in the range of 1.25 to 1.50, or the thin side in which the average layer thickness is in the range of 0.1 to 3 μm, for example, 0.1
When the film is formed under conditions within the range of 1 to 1 μm, sufficient interlayer adhesion with the hard coating layer may not be obtained (of course, depending on the formation conditions of the Ti oxide layer, In such a case, sufficient interlayer adhesion can be obtained). In this case, after forming the Ti oxide layer, the following atmosphere, that is, the atmosphere gas composition is changed to TiCl 4 :
0.05 to 10% by volume, inert gas: remaining, ambient temperature: 800 to 1100 ° C., atmospheric pressure: 4 to 90 kPa (30 to 675 Torr)
r) for a predetermined period of time, for example, about 5 minutes to 5 hours, in the atmosphere described above, and at the interface between the Ti oxide layer and the hard coating layer,
Desirably, an interdiffusion layer is formed with an average layer thickness of 0.05 to 2 μm so as to improve interlayer adhesion. Further, the treatment for improving the interlayer adhesion between the Ti oxide layer and the hard coating layer is performed as follows. Even when the W value and the average layer thickness of the Ti oxide layer are values other than the values on the low side and the thin side, it may be performed for the purpose of further improving interlayer adhesion.

【0012】なお、この発明の被覆超硬工具において、
硬質被覆層を構成する(Ti,Al)Nおよび(Ti,
Al)CNにおけるAlはTiCNに対して硬さを高
め、もって耐摩耗性を向上させるために固溶するもので
あり、したがって組成式:(Ti1-XAlX)Nおよび同
(Ti1-XAlX)C1-YYのX値が0.1未満では所望
の耐摩耗性を確保することができず、一方その値が0.
7を越えると、切刃に欠けやチッピングが発生し易くな
ると云う理由によりX値を0.1〜0.7(原子比)と
定めたものであり、また、(Ti,Al)CN層におけ
るC成分には、硬さを向上させる作用があるので、(T
i,Al)CN層は上記(Ti,Al)N層に比して相
対的に高い硬さをもつが、この場合C成分の割合が0.
01未満、すなわちY値が0.99を越えると所定の硬
さ向上効果が得られず、一方C成分の割合が0.5を越
える、すなわちY値が0.5未満になると靭性が急激に
低下するようになることから、Y値を0.5〜0.9
9、望ましくは0.55〜0.9と定めたのである。
[0012] In the coated carbide tool of the present invention,
(Ti, Al) N and (Ti,
Al in Al) CN increases the hardness with respect to TiCN and thus forms a solid solution in order to improve the wear resistance. Therefore, the composition formulas: (Ti 1-x Al x ) N and (Ti 1- If the X value of X Al X ) C 1-Y NY is less than 0.1, the desired abrasion resistance cannot be ensured, while the value is not more than 0.1.
When the value exceeds 7, the X value is determined to be 0.1 to 0.7 (atomic ratio) because chipping or chipping is likely to occur in the cutting edge, and the (Ti, Al) CN layer Since the C component has an effect of improving hardness, (T
The (i, Al) CN layer has a relatively high hardness as compared with the above (Ti, Al) N layer.
When the value is less than 01, that is, when the Y value exceeds 0.99, the predetermined hardness improving effect cannot be obtained. On the other hand, when the ratio of the C component exceeds 0.5, that is, when the Y value is less than 0.5, the toughness sharply increases. Since the value decreases, the Y value is set to 0.5 to 0.9.
9, preferably 0.55 to 0.9.

【0013】[0013]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408のチップ
形状をもったWC基超硬合金製の超硬基体A1〜A10
を形成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, Cr 3 C 2 powder, T
An iN powder, a TaN powder, and a Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried.
a into a green compact at a pressure of
a. Sintering is performed in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.05 to obtain a WC having a chip shape of ISO standard CNMG120408. Substrates A1 to A10 made of base cemented carbide
Was formed.

【0014】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。
Further, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to form a TiC having a chip shape of ISO standard CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed.

【0015】ついで、これら超硬基体A1〜A10およ
びB1〜B6を、アセトン中で超音波洗浄し、乾燥した
状態で、それぞれ図1に例示される通常のアークイオン
プレーティング装置に装入し、一方カソード電極(蒸発
源)として種々の成分組成をもったTi−Al合金を装
着し、装置内を排気して0.5Paの真空に保持しなが
ら、ヒーターで装置内を500℃に加熱した後、Arガ
スを装置内に導入して10PaのAr雰囲気とし、この
状態で超硬基体に−800vのバイアス電圧を印加して
超硬基体表面をArガスボンバート洗浄し、ついで装置
内に反応ガスとして窒素ガス、または窒素ガスとメタン
ガスを導入して6Paの反応雰囲気とすると共に、前記
超硬基体に印加するバイアス電圧を−200vに下げ
て、前記カソード電極とアノード電極との間にアーク放
電を発生させ、もって前記超硬基体A1〜A10および
B1〜B6のそれぞれの表面に、表3、4に示される目
標組成および目標層厚の硬質被覆層を蒸着形成し、さら
に引き続いて通常の化学蒸着装置にて、前記硬質被覆層
の表面に、反応ガス組成を、体積%で、TiCl4:
4.2%、N2:35%、H2:残り、とし、 反応雰囲気温度:1040℃、 反応雰囲気圧力:30kPa、 とした条件で最表面層としてのTiN層を同じく表3、
4に示される目標層厚で形成することにより、図2
(a)に概略斜視図で、同(b)に概略縦断面図で示さ
れる形状を有する従来被覆超硬工具としての従来表面被
覆超硬合金製スローアウエイチップ(以下、従来被覆超
硬チップと云う)1〜24をそれぞれ製造した。
Then, these super-hard substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone, dried, and charged into a usual arc ion plating apparatus illustrated in FIG. 1, respectively. On the other hand, after mounting the Ti-Al alloys having various component compositions as a cathode electrode (evaporation source), and evacuating the inside of the apparatus to maintain a vacuum of 0.5 Pa, the inside of the apparatus was heated to 500 ° C. by a heater. Ar gas was introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of -800 V was applied to the super-hard substrate to clean the surface of the super-hard substrate with Ar gas bombardment. Nitrogen gas or nitrogen gas and methane gas were introduced to make a reaction atmosphere of 6 Pa, and the bias voltage applied to the superhard substrate was reduced to -200 V, and the cathode voltage was lowered. Arc discharge is generated between the substrate and the anode electrode, and a hard coating layer having a target composition and a target layer thickness shown in Tables 3 and 4 is deposited on the surfaces of the super-hard substrates A1 to A10 and B1 to B6. Then, using a conventional chemical vapor deposition apparatus, the surface of the hard coating layer is coated with a reaction gas composition in TiCl 4:
4.2%, N2: 35%, H2: remaining, reaction atmosphere temperature: 1040 ° C., reaction atmosphere pressure: 30 kPa.
By forming with the target layer thickness shown in FIG.
(A) is a schematic perspective view, and (b) is a conventional coated cemented carbide throwaway tip as a conventionally coated cemented carbide tool having a shape shown in a schematic longitudinal sectional view (hereinafter referred to as a conventionally coated cemented carbide tip). ) Were prepared respectively.

【0016】また、表5に示される通り、上記の従来被
覆超硬チップ1〜24において、最表面層としてのTi
N層の形成を行わない状態で、(Ti,Al)N層およ
び/または(Ti,Al)CN層からなる硬質被覆層の
表面に、通常の化学蒸着装置にて、表6に示される条件
で同じく表6に示される目標組成および表5に示される
目標層厚のTi酸化物層からなる最表面下地層を形成
し、引き続いて上記の従来被覆超硬チップ1〜24にお
ける最表面層としてのTiN層の形成と同じ条件でTi
N(O)層からなる最表面層を同じく表5に示される目
標層厚で形成することにより同じく図2に示される形状
をもった本発明被覆超硬工具としての本発明表面被覆超
硬合金製スローアウエイチップ(以下、本発明被覆超硬
チップと云う)1〜24をそれぞれ製造した。
Further, as shown in Table 5, in the conventional coated carbide tips 1 to 24, Ti
In the state where the N layer was not formed, the conditions shown in Table 6 were applied to the surface of the hard coating layer composed of the (Ti, Al) N layer and / or the (Ti, Al) CN layer using a normal chemical vapor deposition apparatus. To form an outermost surface underlayer comprising a Ti oxide layer having a target composition also shown in Table 6 and a target layer thickness shown in Table 5, and subsequently as the outermost surface layer in the conventional coated carbide tips 1 to 24 described above. Under the same conditions as the formation of the TiN layer
The surface-coated cemented carbide of the present invention as the coated cemented carbide tool of the present invention also having the shape shown in FIG. 2 by forming the outermost surface layer composed of the N (O) layer with the target layer thickness also shown in Table 5. Slow-away tips (hereinafter referred to as coated carbide tips) 1 to 24 were manufactured.

【0017】また、上記の本発明被覆超硬チップ1〜2
4のうちの本発明被覆超硬チップ6および本発明被覆超
硬チップ19については、Ti酸化物層からなる最表面
下地層の形成直後に、前者では、雰囲気ガス組成をTi
Cl4:1体積%、Ar:残りとし、雰囲気温度を10
20℃、雰囲気圧力を7kPa(50Torr)とした
雰囲気中に1時間保持の条件で、また後者では、雰囲気
ガス組成をTiCl4:0.2体積%、Ar:残りと
し、雰囲気温度を1000℃、雰囲気圧力を20kPa
(150Torr)とした雰囲気中に2時間保持の条件
で、(Ti,Al)N層および/または(Ti,Al)
CN層からなる硬質被覆層とTi酸化物層からなる最表
面下地層の界面部に相互拡散層を形成する層間密着性向
上処理を施した。この結果走査型電子顕微鏡およびオー
ジェ分光分析装置による断面測定で、上記硬質被覆層と
最表面下地層の界面部に、本発明被覆超硬チップ3では
平均層厚(5点平均)で0.6μm、本発明被覆超硬チ
ップ7では同じく平均層厚(5点平均)で0.8μmの
相互拡散層の形成が観察された。
Also, the above-mentioned coated carbide tips 1-2 of the present invention
4, the coated super hard tip 6 of the present invention and the coated super hard tip 19 of the present invention were prepared immediately after the formation of the outermost surface underlayer composed of the Ti oxide layer.
Cl 4 : 1% by volume, Ar: Remaining, ambient temperature is 10
At 20 ° C., an atmosphere pressure of 7 kPa (50 Torr) was maintained for 1 hour in an atmosphere. In the latter, the atmosphere gas composition was TiCl 4 : 0.2 vol%, Ar: the balance, and the atmosphere temperature was 1000 ° C. Atmospheric pressure is 20 kPa
(Ti, Al) N layer and / or (Ti, Al) under the condition of holding for 2 hours in an atmosphere of (150 Torr).
An interlayer adhesion improving treatment for forming an interdiffusion layer was performed on the interface between the hard coating layer composed of the CN layer and the outermost surface underlayer composed of the Ti oxide layer. As a result, according to a cross-sectional measurement using a scanning electron microscope and an Auger spectroscopic analyzer, the average layer thickness (average of five points) of the coated superhard chip 3 of the present invention was 0.6 μm at the interface between the hard coating layer and the outermost underlayer. On the other hand, in the coated super-hard tip 7 of the present invention, formation of an interdiffusion layer having an average layer thickness (average of 5 points) of 0.8 μm was observed.

【0018】さらに、この結果得られた本発明被覆超硬
チップ1〜24において、硬質被覆層の表面に形成され
た最表面層および最表面下地層について、その厚さ方向
中央部の酸素含有割合(Z値およびV値)をオージェ分
光分析装置を用いて測定したところ、表7、8に示され
る値を示した。また、上記の本発明被覆超硬チップ1〜
24および従来被覆超硬チップ1〜24について、硬質
被覆層の組成については、オージェ分光分析装置を用
い、また硬質被覆層、最表面下地層、および最表面層の
層厚については、走査型電子顕微鏡を用いて断面測定し
たところ、それぞれ目標組成および目標層厚と実質的に
同じ値(層厚については5点平均の平均層厚と比較)を
示した。この目標組成および目標層厚と実測値の関係は
以下の実施例2、3でも同じ結果を示した。
Further, in the coated superhard chips 1 to 24 of the present invention obtained as described above, the oxygen content ratio at the center in the thickness direction of the outermost surface layer and the outermost surface underlayer formed on the surface of the hard coating layer When (Z value and V value) were measured using an Auger spectrometer, the values shown in Tables 7 and 8 were shown. In addition, the above-mentioned coated carbide tips 1 of the present invention
24 and the conventional coated carbide tips 1 to 24, the composition of the hard coating layer was measured using an Auger spectrometer, and the thicknesses of the hard coating layer, the outermost underlayer, and the outermost layer were determined by scanning electron beam. When the cross section was measured using a microscope, the values were substantially the same as the target composition and the target layer thickness, respectively (the layer thickness was compared with the average layer thickness of the five-point average). The relationship between the target composition, the target layer thickness, and the measured value showed the same results in Examples 2 and 3 below.

【0019】つぎに、上記本発明被覆超硬チップ1〜2
4および従来被覆超硬チップ1〜24について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:250m/min.、 切り込み:2.0mm、 送り:0.3mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高速連続旋削加工試験、並び
に、 被削材:JIS・SNCM439の長さ方向等間隔4本
縦溝入り丸棒、 切削速度:200m/min.、 切り込み:2.0mm、 送り:0.25mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式高速断続旋削加工試験を行い、
いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表7、8に示した。
Next, the coated carbide tips 1-2 of the present invention will be described.
4 and the conventional coated carbide tips 1 to 24 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 250 m / min . Infeed: 2.0 mm Feed: 0.3 mm / rev. , Cutting time: 10 minutes, Dry high-speed continuous turning test of alloy steel under the following conditions: Work material: JIS SNCM439 Longitudinal four equally-rounded round bars, Cutting speed: 200 m / min . Infeed: 2.0 mm Feed: 0.25 mm / rev. , Cutting time: 5 minutes, Dry high-speed intermittent turning test of alloy steel under the conditions of
In each turning test, the flank wear width of the cutting edge was measured. The measurement results are shown in Tables 7 and 8.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】[0026]

【表7】 [Table 7]

【0027】[0027]

【表8】 [Table 8]

【0028】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、同1.8μmのCo粉末、
および同1.2μmの炭素(C)粉末を用意し、これら
原料粉末をそれぞれ表9に示される配合組成に配合し、
さらにワックスを加えてアセトン中で24時間ボールミ
ル混合し、減圧乾燥した後、100MPaの圧力で所定
形状の各種の圧粉体にプレス成形し、これらの圧粉体
を、6Paの真空雰囲気中、7℃/分の昇温速度で13
70〜1470℃の範囲内の所定の温度に昇温し、この
温度に1時間保持後、炉冷の条件で焼結して、直径が8
mm、13mm、および26mmの3種の超硬基体形成
用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体
から、研削加工にて、表9に示される組合せで、切刃部
の直径×長さがそれぞれ6mm×13mm、10mm×
22mm、および20mm×45mmの寸法をもった超
硬基体(エンドミル)a〜hをそれぞれ製造した。
(Example 2) As raw material powder, average particle size:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm
μm (Ti, W) C powder, 1.8 μm Co powder,
And 1.2 μm carbon (C) powder were prepared, and these raw material powders were respectively blended into the blending composition shown in Table 9;
Further, the wax was added, and the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and press-molded into various compacts having a predetermined shape at a pressure of 100 MPa. 13 ° C / min.
The temperature was raised to a predetermined temperature in the range of 70 to 1470 ° C., maintained at this temperature for 1 hour, and then sintered under furnace cooling conditions to obtain a diameter of 8 mm.
mm, 13 mm, and 26 mm to form three types of round bar sintered bodies for forming a cemented carbide substrate, and from the three types of round bar sintered bodies, by grinding, in a combination shown in Table 9, The diameter x length of the cutting edge is 6mm x 13mm, 10mm x
Carbide substrates (end mills) a to h having dimensions of 22 mm and 20 mm × 45 mm were produced, respectively.

【0029】ついで、これらの超硬基体(エンドミル)
a〜hの表面に、ホーニングを施し、アセトン中で超音
波洗浄し、乾燥した状態で、同じく図1に例示される通
常のアークイオンプレーティング装置に装入し、上記実
施例1と同一の条件で、表10に示される目標組成およ
び目標層厚をもった硬質被覆層を蒸着形成し、さらに引
き続いて通常の化学蒸着装置にて、上記実施例1におけ
ると同一の条件で、表10に示される目標層厚をもった
最表面層としてのTiN層を蒸着形成することにより、
図3(a)に概略正面図で、同(b)に概略横断面図で
示される形状を有する従来被覆超硬工具としての従来表
面被覆超硬合金製エンドミル(以下、従来被覆超硬エン
ドミルと云う)1〜8をそれぞれ製造した。
Next, these carbide substrates (end mills)
Honing was performed on the surfaces of a to h, ultrasonic cleaning was performed in acetone, and the dried state was charged into a normal arc ion plating apparatus also illustrated in FIG. Under the conditions, a hard coating layer having a target composition and a target layer thickness shown in Table 10 was formed by vapor deposition, and subsequently, using a general chemical vapor deposition apparatus, the same conditions as in Example 1 were used. By vapor-depositing a TiN layer as the outermost layer having the target layer thickness shown,
FIG. 3 (a) is a schematic front view, and FIG. 3 (b) is a conventional surface-coated cemented carbide end mill (hereinafter, referred to as a conventional coated carbide end mill) as a conventional coated carbide tool having a shape shown in a schematic cross-sectional view. 1 to 8 were manufactured respectively.

【0030】また、表11に示される通り、上記の従来
被覆超硬エンドミル1〜8において、最表面層としての
TiN層の形成を行わない状態で、(Ti,Al)N層
および/または(Ti,Al)CN層からなる硬質被覆
層の表面に、通常の化学蒸着装置にて、表6に示される
条件で同じく表6に示される目標組成および表11に示
される目標層厚のTi酸化物層からなる最表面下地層を
形成し、引き続いて上記実施例1の従来被覆超硬チップ
1〜24における最表面層としてのTiN層の形成と同
じ条件でTiN(O)層からなる最表面層を同じく表1
1に示される目標層厚で形成することにより同じく図3
に示される形状をもった本発明被覆超硬工具としての本
発明表面被覆超硬合金製エンドミル(以下、本発明被覆
超硬エンドミルと云う)1〜8をそれぞれ製造した。
Also, as shown in Table 11, in the conventional coated carbide end mills 1 to 8 described above, the (Ti, Al) N layer and / or the (Ti, Al) N layer was formed without forming the TiN layer as the outermost surface layer. On the surface of the hard coating layer composed of the (Ti, Al) CN layer, the Ti oxide having the target composition shown in Table 6 and the target layer thickness shown in Table 11 was also formed under the conditions shown in Table 6 by using a conventional chemical vapor deposition apparatus. The outermost surface layer made of a TiN (O) layer is formed under the same conditions as the formation of the TiN layer as the outermost layer in the conventional coated carbide tips 1 to 24 of Example 1 above. Table 1
3 by forming with the target layer thickness shown in FIG.
The surface-coated cemented carbide end mills (hereinafter, referred to as the present invention coated carbide end mills) 1 to 8 as the inventive coated cemented carbide tools having the shapes shown in FIG.

【0031】つぎに、この結果得られた本発明被覆超硬
エンドミル1〜8において、硬質被覆層の表面に形成さ
れた最表面層および最表面下地層について、その厚さ方
向中央部の酸素含有割合(Z値およびV値)をオージェ
分光分析装置を用いて測定したところ、表11に示され
る値を示した。つぎに、上記本発明被覆超硬エンドミル
1〜8および従来被覆超硬エンドミル1〜8のうち、本
発明被覆超硬エンドミル1〜3および従来被覆超硬エン
ドミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:80m/min.、 溝深さ(切り込み):3mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル4〜6および従来被覆超硬エンドミル
4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:90m/min.、 溝深さ(切り込み):6mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、本発明被
覆超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:90m/min.、 溝深さ(切り込み):15mm、 テーブル送り:500mm/分、 の条件での合金鋼の乾式高速溝切削加工試験、をそれぞ
れ行い、いずれの溝切削加工試験でも切刃部先端面の直
径が使用寿命の目安とされる0.2mm減少するまでの
切削溝長を測定した。この測定結果を表10、11にそ
れぞれ示した。
Next, in the coated superhard end mills 1 to 8 of the present invention obtained as described above, the outermost surface layer and the outermost underlayer formed on the surface of the hard coating layer have the oxygen content at the center in the thickness direction. When the ratios (Z value and V value) were measured using an Auger spectrometer, the values shown in Table 11 were shown. Next, of the coated carbide end mills 1 to 8 of the present invention and the coated carbide end mills 1 to 8 of the present invention, the coated carbide end mills 1 to 3 of the present invention and the conventionally coated carbide end mills 1 to 3 are: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 80 m / min. , Groove depth (cut): 3 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 4 to 6 of the present invention and conventional coated carbide end mills 4 to 6 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 90 m / min. , Groove depth (cut): 6 mm, Table feed: 500 mm / min, Dry high-speed grooving test of alloy steel, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 90 m / min. , Groove depth (cut): 15 mm, table feed: 500 mm / min, dry high-speed grooving test of alloy steel under the following conditions. The length of the cutting groove up to a reduction of 0.2 mm, which is a measure of the service life, was measured. The measurement results are shown in Tables 10 and 11, respectively.

【0032】[0032]

【表9】 [Table 9]

【0033】[0033]

【表10】 [Table 10]

【0034】[0034]

【表11】 [Table 11]

【0035】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a‘〜c’)、8mm
×22mm(超硬基体d‘〜f’)、および16mm×
45mm(超硬基体g‘、h’)の寸法をもった超硬基
体(ドリル)a‘〜h’をそれぞれ製造した。
(Example 3) The diameters of 8 mm (for forming the super-hard substrates a to c), 13 mm (for forming the super-hard substrates d to f), and 26 mm (for the super-hard substrate g) produced in Example 2 described above. h
(For forming), the diameter x length of the groove forming portion was 4 mm x 13 mm (the carbide substrate a ') by grinding from the three types of round rod sintered bodies. ~ C '), 8mm
× 22 mm (carbide substrate d ′ to f ′) and 16 mm ×
Carbide substrates (drills) a 'to h' each having a size of 45 mm (carbide substrates g 'and h') were manufactured.

【0036】ついで、これらの超硬基体(ドリル)a
‘〜h’の表面に、ホーニングを施し、アセトン中で超
音波洗浄し、乾燥した状態で、同じく図1に例示される
通常のアークイオンプレーティング装置に装入し、上記
実施例1におけると同一の条件で、表12に示される目
標組成および目標層厚をもった硬質被覆層を蒸着形成
し、さらに引き続いて通常の化学蒸着装置にて、上記実
施例1におけると同一の条件で、同じく表12に示され
る目標層厚をもった最表面層としてのTiN層を蒸着形
成することにより、図4(a)に概略正面図で、同
(b)に概略横断面図で示される形状を有する従来被覆
超硬工具としての従来表面被覆超硬合金製ドリル(以
下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造
した。
Next, these carbide substrates (drills) a
The surface of '~ h' was honed, ultrasonically cleaned in acetone, dried and charged in a usual arc ion plating apparatus also illustrated in FIG. Under the same conditions, a hard coating layer having a target composition and a target layer thickness shown in Table 12 was formed by vapor deposition, and subsequently, using a conventional chemical vapor deposition apparatus, under the same conditions as in Example 1 above. By evaporating and forming a TiN layer as the outermost layer having the target layer thickness shown in Table 12, the shape shown in the schematic front view in FIG. Drills made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated cemented carbide tools were manufactured.

【0037】また、表13に示される通り、上記の従来
被覆超硬ドリル1〜8において、最表面層としてのTi
N層の形成を行わない状態で、(Ti,Al)N層およ
び/または(Ti,Al)CN層からなる硬質被覆層の
表面に、通常の化学蒸着装置にて、表6に示される条件
で同じく表6に示される目標組成および表13に示され
る目標層厚のTi酸化物層からなる最表面下地層を形成
し、引き続いて上記実施例1の従来被覆超硬チップ1〜
24における最表面層としてのTiN層の形成と同じ条
件でTiN(O)層からなる最表面層を同じく表13に
示される目標層厚で形成することにより同じく図4に示
される形状をもった本発明被覆超硬工具としての本発明
表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリ
ルと云う)1〜8をそれぞれ製造した。
Further, as shown in Table 13, in the conventional coated carbide drills 1 to 8 described above, Ti
In the state where the N layer was not formed, the conditions shown in Table 6 were applied to the surface of the hard coating layer composed of the (Ti, Al) N layer and / or the (Ti, Al) CN layer using a normal chemical vapor deposition apparatus. In the same manner, the outermost surface underlayer composed of the Ti oxide layer having the target composition shown in Table 6 and the target layer thickness shown in Table 13 was formed.
Under the same conditions as in the formation of the TiN layer as the outermost layer in 24, the outermost layer made of the TiN (O) layer was also formed with the target layer thickness shown in Table 13 to have the shape shown in FIG. Drills made of the surface-coated cemented carbide of the present invention (hereinafter referred to as the coated carbide drills of the present invention) 1 to 8 as the coated carbide tools of the present invention were manufactured.

【0038】この結果得られた本発明被覆超硬ドリル1
〜8において、硬質被覆層の表面に形成された最表面層
および最表面下地層について、その厚さ方向中央部の酸
素含有割合(Z値およびV値)をオージェ分光分析装置
を用いて測定したところ、表13に示される値を示し
た。つぎに、上記本発明被覆超硬ドリル1〜8および従
来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル
1〜3および従来被覆超硬ドリル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:50m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜
6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:60m/min.、 送り:0.2mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、本発
明被覆超硬ドリル7,8および従来被覆超硬ドリル7,
8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM415の板材、 切削速度:75m/min.、 送り:0.35mm/分、 の条件での合金鋼の湿式高速穴あけ切削加工試験、をそ
れぞれ行い、いずれの湿式(水溶性切削油使用)高速穴
あけ切削加工試験でも先端切刃面の逃げ面摩耗幅が0.
3mmに至るまでの穴あけ加工数を測定した。この測定
結果を表13にそれぞれ示した。
The coated carbide drill 1 of the present invention obtained as a result
In Nos. To 8, the oxygen content ratio (Z value and V value) of the center portion in the thickness direction of the outermost surface layer and the outermost surface underlayer formed on the surface of the hard coating layer was measured using an Auger spectroscopic analyzer. However, the values shown in Table 13 were shown. Next, among the above coated carbide drills 1 to 8 of the present invention and conventional coated carbide drills 1 to 8, the coated carbide drills 1 to 3 of the present invention and the conventionally coated carbide drills 1 to 3 are as follows. Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 50 m / min. , Feed: 0.2 mm / min, Wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 4 to 6 of the present invention and conventional coated carbide drills 4 to
About 6, work material: plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate, Cutting speed: 60 m / min. , Feed: 0.2 mm / min, wet high-speed drilling test of alloy steel under the following conditions: coated carbide drills 7 and 8 of the present invention and coated carbide drills 7 of the prior art.
For No. 8, Work material: Plane dimensions: 100 mm × 250 mm, thickness: 5
0 mm JIS SCM415 plate, Cutting speed: 75 m / min. , Feed: 0.35 mm / min, Wet cutting high-speed drilling test of alloy steel under the following conditions, and the flank of the cutting edge at the tip of any wet type (using water-soluble cutting oil) high-speed drilling cutting test. Wear width is 0.
The number of drilling processes up to 3 mm was measured. Table 13 shows the measurement results.

【0039】[0039]

【表12】 [Table 12]

【0040】[0040]

【表13】 [Table 13]

【0041】[0041]

【発明の効果】表3〜13に示される結果から、硬質被
覆層の最表面層がTiN層の形成時に最表面下地層から
拡散してきた酸素と反応して形成されたTi窒酸化物層
で構成された本発明被覆超硬工具は、いずれも高い発熱
を伴う鋼の高速切削加工でも、前記Ti窒酸化物層が高
温加熱の切粉との親和性がきわめて低く、切粉が前記T
i窒酸化物層に付着することがないことから、切刃にチ
ッピングの発生なく、すぐれた耐摩耗性を発揮するのに
対して、硬質被覆層の最表面層がTiN層で構成された
従来被覆超硬工具においては、いずれも切粉が前記Ti
N層に付着し易く、前記TiN層が他の構成層とともに
前記切粉によって剥がし取られることから、切刃にチッ
ピングの発生し易く、これが原因で比較的短時間で使用
寿命に至ることが明らかである。上述のように、この発
明の被覆超硬工具は、使用前後の識別工具の特に各種鋼
や鋳鉄などの高速切削加工での実用を可能とするもので
あり、かつ実用に際しては切刃にチッピングの発生な
く、すぐれた耐摩耗性を長期に亘って発揮するものであ
る。
From the results shown in Tables 3 to 13, it can be seen that the outermost surface layer of the hard coating layer is formed of a Ti oxynitride layer formed by reacting with oxygen diffused from the outermost underlayer at the time of forming the TiN layer. The coated carbide tool according to the present invention is characterized in that the Ti nitride oxide layer has an extremely low affinity for high-temperature heated chips even in high-speed cutting of steel with high heat generation.
Since it does not adhere to the i-nitride oxide layer, it exhibits excellent wear resistance without chipping on the cutting edge, whereas the outermost layer of the hard coating layer is made of a TiN layer. In the case of coated carbide tools, the chips
Since the TiN layer easily adheres to the N layer and the TiN layer is peeled off together with the other constituent layers by the cutting powder, chipping easily occurs in the cutting blade, and it is apparent that this causes a service life in a relatively short time. It is. As described above, the coated cemented carbide tool of the present invention enables the practical use of the identification tool before and after use, particularly in high-speed cutting of various steels and cast irons. No wear is exhibited, and excellent wear resistance is exhibited over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アークイオンプレーティング装置の概略説明図
である。
FIG. 1 is a schematic explanatory view of an arc ion plating apparatus.

【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。
FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic longitudinal sectional view of a coated carbide tip.

【図3】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。
FIG. 3A is a schematic front view of a coated carbide end mill,
(B) is a schematic cross-sectional view of the cutting blade portion.

【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 16/30 C23C 16/30 16/40 16/40 (72)発明者 大鹿 高歳 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF22 FF25 4K029 AA04 BA54 BA58 BA60 BD05 CA03 DD06 EA01 4K030 AA03 AA17 AA18 BA18 BA35 BA38 BA46 BB12 CA03 FA10 HA04 JA01 JA06 LA22 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C23C 16/30 C23C 16/30 16/40 16/40 (72) Inventor Takashi Oga 1-Kitabukurocho, Omiya City, Saitama Prefecture 297 Mitsubishi Materials Co., Ltd. Research Laboratory F-term (reference) JA06 LA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、組成式:(T
1-XAlX)Nおよび同(Ti1-XAlX)C 1-YY(た
だし、原子比で、Xは0.1〜0.7、Yは0.5〜
0.99を示す)を有するTiとAlの複合窒化物およ
びTiとAlの複合炭窒化物のうちのいずれかで構成さ
れた単層または両方で構成された複層からなる硬質被覆
層を1〜10μmの平均層厚で物理蒸着してなる表面被
覆超硬合金製切削工具において、上記硬質被覆層の表面
に、最表面下地層として、0.1〜3μmの平均層厚を
有し、かつ、 組成式:TiOV 、 で表わした場合、厚さ方向中央部をオージェ分光分析装
置で測定して、 V:Tiに対する原子比で1.2〜1.7、 を満足するTi酸化物層、 最表面層として、0.05〜2μmの平均層厚を有し、
かつ、 組成式:TiN1-Z(O)Z、 で表わした場合(ただし、(O)は上記最表面下地層か
らの拡散酸素を示す)、同じく厚さ方向中央部をオージ
ェ分光分析装置で測定して、 Z:Tiに対する原子比で0.01〜0.4、 を満足するTi窒酸化物層、を化学蒸着および/または
物理蒸着してなる、耐チッピング性のすぐれた表面被覆
超硬合金製切削工具。
1. A tungsten carbide based cemented carbide substrate or
On the surface of the titanium carbonitride-based cermet substrate, the composition formula: (T
i1-XAlX) N and (Ti)1-XAlX) C 1-YNY(T
However, X is 0.1 to 0.7 and Y is 0.5 to
0.99) and a composite nitride of Ti and Al having
And one of the composite carbonitrides of Ti and Al
Hard coating consisting of a single layer or multiple layers composed of both
The surface coating formed by physical vapor deposition of the layer with an average layer thickness of 1 to 10 μm
In the case of coated hard metal cutting tools, the surface of the hard coating layer
In addition, an average layer thickness of 0.1 to 3 μm is used as the outermost underlayer.
Having the composition formula: TiOV When represented by,, the center in the thickness direction is
A Ti oxide layer that satisfies the following: V: Ti in an atomic ratio of 1.2 to 1.7, and has an average layer thickness of 0.05 to 2 μm as a top surface layer,
And a composition formula: TiN1-Z(O)Z(Where (O) is the outermost underlayer)
The diffused oxygen is shown).
A Ti oxynitride layer that satisfies the following formula: an atomic ratio to Z: Ti of 0.01 to 0.4, as measured by a spectroscopic analyzer, by chemical vapor deposition and / or
Excellent chipping resistant surface coating by physical vapor deposition
Cemented carbide cutting tool.
JP2000313689A 2000-10-13 2000-10-13 Cutting tool made of surface coated cemented carbide alloy having chipping resistance Withdrawn JP2002120104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313689A JP2002120104A (en) 2000-10-13 2000-10-13 Cutting tool made of surface coated cemented carbide alloy having chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313689A JP2002120104A (en) 2000-10-13 2000-10-13 Cutting tool made of surface coated cemented carbide alloy having chipping resistance

Publications (1)

Publication Number Publication Date
JP2002120104A true JP2002120104A (en) 2002-04-23

Family

ID=18793066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313689A Withdrawn JP2002120104A (en) 2000-10-13 2000-10-13 Cutting tool made of surface coated cemented carbide alloy having chipping resistance

Country Status (1)

Country Link
JP (1) JP2002120104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070993A1 (en) * 2015-10-29 2017-05-04 西迪技术股份有限公司 Alloy drill and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070993A1 (en) * 2015-10-29 2017-05-04 西迪技术股份有限公司 Alloy drill and manufacturing method thereof
US10697048B2 (en) 2015-10-29 2020-06-30 Seed Technologies Corp., Ltd. Alloy drill and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP3844285B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP3931325B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2007136655A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP3982301B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP2002120104A (en) Cutting tool made of surface coated cemented carbide alloy having chipping resistance
JP2000158206A (en) Surface-covering cemented carbide alloy cutting tool having its surface covering layer exhibiting excellent chipping resistance and wear resistance
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP2002126911A (en) Cutting tool made of surface-covered cemented carbide excellent in surface lubricity against chip
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP4019345B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3580271B2 (en) Surface coated cemented carbide cutting tool with excellent chip slipperiness
JP3985413B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance
JP3928459B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP3620480B2 (en) Surface-coated cemented carbide end mill or drill with excellent wear-resistant coating layer for excellent chipping resistance
JP3951292B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent chipping resistance with a hard coating layer in high-speed intermittent machining
JP3573115B2 (en) Surface-coated cemented carbide cutting tool with excellent surface lubricity to chips
JPH10251832A (en) Cutting tool made of surface-coated cemented carbide excellent in wear resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108