JP2002118112A - Manufacturing method of semiconductor device having buried wiring structure - Google Patents

Manufacturing method of semiconductor device having buried wiring structure

Info

Publication number
JP2002118112A
JP2002118112A JP2000311724A JP2000311724A JP2002118112A JP 2002118112 A JP2002118112 A JP 2002118112A JP 2000311724 A JP2000311724 A JP 2000311724A JP 2000311724 A JP2000311724 A JP 2000311724A JP 2002118112 A JP2002118112 A JP 2002118112A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
semiconductor device
metal barrier
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000311724A
Other languages
Japanese (ja)
Inventor
Asako Koike
麻子 小池
Kazuatsu Tago
一農 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Science and Technology Agency
Original Assignee
Hitachi Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Science and Technology Corp filed Critical Hitachi Ltd
Priority to JP2000311724A priority Critical patent/JP2002118112A/en
Publication of JP2002118112A publication Critical patent/JP2002118112A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a buried wiring structure where the bonding property between Cu and an insulating film is superior, and wiring is reliable. SOLUTION: In this manufacturing method of a semiconductor device, after an insulating film 2 is formed on a semiconductor substrate 1, a groove for wiring and the surface of a hole is subjected to sputtering by Ar or ArF excimer laser irradiation between a process for forming the groove for wiring and hole, and a process for covering the groove and the side and bottom surface of the hole with a metal barrier, thus forming dangling bond such as Si and O on the surface of the insulating film, and manufacturing the semiconductor device having the buried wiring structure for improving the bonding property to a metal barrier 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置における
金属配線の形成法、並びに、該金属配線形成法を用いた
埋め込み配線構造を有する半導体装置に関する。
The present invention relates to a method for forming a metal wiring in a semiconductor device and a semiconductor device having a buried wiring structure using the metal wiring forming method.

【0002】[0002]

【従来の技術】IC、LSI等の半導体装置は、高集積
化、微細化と共に配線遅延時間の低減が必要とされてい
る。配線遅延時間は、配線金属の抵抗と絶縁膜の電気容
量の積に比例することから、絶縁膜の比誘電率の低下と
共に、低抵抗の配線金属の利用が不可避である。このこ
とから、配線用金属としてAlよりも低抵抗であるCu
へと移行しつつある。
2. Description of the Related Art Semiconductor devices such as ICs and LSIs are required to have high integration and miniaturization and to reduce wiring delay time. Since the wiring delay time is proportional to the product of the resistance of the wiring metal and the capacitance of the insulating film, it is inevitable to use a low-resistance wiring metal along with a decrease in the dielectric constant of the insulating film. From this, Cu having lower resistance than Al as a metal for wiring is used.
Is shifting to.

【0003】しかし、Cu原子は絶縁膜である酸化シリ
コン膜へ容易に拡散するため、トランジスタ特性の低下
と、絶縁膜の耐電圧を低下させる原因になっており、絶
縁膜とCu配線との間にメタルバリアを形成し、Cu原
子の拡散を防止することが必要である。
However, since Cu atoms easily diffuse into a silicon oxide film which is an insulating film, it causes a decrease in transistor characteristics and a decrease in withstand voltage of the insulating film. It is necessary to form a metal barrier to prevent the diffusion of Cu atoms.

【0004】また、Cu表面は酸化し易いために、メタ
ルバリアによって絶縁膜中のO原子がCuに拡散し酸化
銅になることを阻止しなくてはいけない。
Further, since the Cu surface is easily oxidized, it is necessary to prevent O atoms in the insulating film from diffusing into Cu and becoming copper oxide by a metal barrier.

【0005】さらに、Cuはハロゲン化物の蒸気圧が低
いため、Al系合金で用いられているハロゲン原子によ
るイオンエッチングが困難なことから、配線の形成には
絶縁膜に溝およびホールを形成した後、その溝およびホ
ールにメッキまたはスパッタによって銅を埋め込むダマ
シン構造をとっている。
Further, since Cu has a low vapor pressure of a halide and is difficult to ion-etch with a halogen atom used in an Al-based alloy, wiring is formed after forming grooves and holes in an insulating film. And a damascene structure in which copper is buried in the grooves and holes by plating or sputtering.

【0006】メッキを用いて多層配線するためには、不
均一に堆積したCuをCMP(Chemical Mechanical
Processing)によって平坦化させる技術が適用されて
いる。
In order to perform multi-layer wiring using plating, unevenly deposited Cu is removed by CMP (Chemical Mechanical).
Technology for flattening by Processing is applied.

【0007】この方法では、ウエハを研磨剤と化学物質
とを含むスラリを用いて研磨パッドで研磨するため、局
所的に大きな圧力が加わることから、Cuとメタルバリ
アの間、および、Cuと絶縁膜との間の接着力が高くな
いと、これらの界面で剥離が生じ易い。
In this method, since a wafer is polished with a polishing pad using a slurry containing an abrasive and a chemical substance, a large pressure is locally applied. If the adhesive strength between the film and the film is not high, peeling is likely to occur at these interfaces.

【0008】また、メッキで埋めたCu膜は、密度の高
い均一な埋め込みになっていないことから、メッキ後に
200〜400℃でアニールされるが、このアニール工
程ではその歪みを解消するようにCuが動くことから、
絶縁膜/Cu/メタルバリアの界面で剥離が起こりき、
ボイドが生ずる。
The Cu film buried by plating is annealed at 200 to 400 ° C. after plating because the film is not uniformly buried with high density. In this annealing step, the Cu film is removed so as to eliminate the distortion. Moves,
Peeling occurs at the interface of the insulating film / Cu / metal barrier,
Voids occur.

【0009】絶縁膜は現在、酸化シリコンまたは炭化水
素を含む酸化シリコンが用いられており、これらの絶縁
膜は通常プラズマCVD(Chemical Vapor Depositi
on)やSOG(Spin On Glass)を用いて形成され
る。
At present, silicon oxide or silicon oxide containing hydrocarbon is used for the insulating film, and these insulating films are usually formed by plasma CVD (Chemical Vapor Depositi).
on) or SOG (Spin On Glass).

【0010】絶縁膜形成後、リソグラフィーとエッチン
グにより溝およびホールを形成するが、この工程におい
ては、一般に溝およびホールの形成後、水素でパージし
て大気中にウエハを出したときに、不純物が絶縁膜表面
に付着しないようにする。
After the formation of the insulating film, grooves and holes are formed by lithography and etching. In this step, generally, after forming the grooves and holes, impurities are removed when the wafer is discharged into the atmosphere by purging with hydrogen. Do not adhere to the insulating film surface.

【0011】例えば、水素でパージしなくても、空気中
にウエハを出した時点で、殆ど絶縁膜表面はHまたはO
Hで終端され、表面エネルギーは低くなり、メタルバリ
アとして広く使われているTa,Ti,Mo,Cr,Z
r,Hf、および、これらのホウ化物,窒化物のいずれ
とも接着性は良好とは云えない。
For example, even when the wafer is taken out into air without purging with hydrogen, almost the surface of the insulating film is H or O
Terminated by H, the surface energy is reduced, and Ta, Ti, Mo, Cr, Z widely used as a metal barrier
Neither r nor Hf, nor any of these borides and nitrides has good adhesion.

【0012】またこの中で、より接着性の良いメタルバ
リアを使うことになるが、Cuに接着性の良いメタルバ
リアと、酸化シリコンに代表される絶縁膜に接着性の良
いメタルバリアとでは異なるために、前記メタルバリア
としては2,3種の金属を層構造にして用いている。
Among these, a metal barrier having better adhesion is used, but a metal barrier having good adhesion to Cu is different from a metal barrier having good adhesion to an insulating film represented by silicon oxide. Therefore, two or three kinds of metals are used in a layer structure as the metal barrier.

【0013】しかし、スパッタリングで層構造を形成し
ようとすると斑ができ、層間剥がれの原因になる。ま
た、メタルバリア層が厚くなることから、Cuよりも高
抵抗の部分が増え、Cuに替えたことによる抵抗の低減
効果が減少し、Cuを使うメリットがあまりない。ま
た、従来の一層のメタルバリアでは、アニールやCMP
によって銅とメタルバリアとの間が剥離して、導通不良
の原因を招くことになる。
However, when a layer structure is formed by sputtering, spots are formed, which causes peeling between layers. Further, since the thickness of the metal barrier layer is increased, a portion having a higher resistance than Cu is increased, the effect of reducing the resistance by replacing with Cu is reduced, and there is not much merit of using Cu. In addition, in the conventional one layer metal barrier, annealing or CMP
As a result, the copper and the metal barrier are separated from each other, which causes a conduction failure.

【0014】[0014]

【発明が解決しようとする課題】Al,Cuの金属配線
の上に被覆膜を形成して、該膜に配線の接続孔を形成
し、接続孔にWを埋め込む際の上記配線とWとの導電性
を良好にして、選択CVDを可能にするため、上記接続
孔にWを埋め込む前に接続孔の底部のCu面を不活性ガ
スプラズマに曝す技術が知られている(特開平9−82
798号公報,特開平9−22896号公報)。
A coating film is formed on an Al or Cu metal wiring, a connection hole for the wiring is formed in the film, and the wiring and the W when the W is embedded in the connection hole are formed. In order to improve the conductivity of the semiconductor device and to enable selective CVD, a technique is known in which the Cu surface at the bottom of the connection hole is exposed to an inert gas plasma before W is buried in the connection hole (Japanese Patent Laid-Open Publication No. 9-1997). 82
798, JP-A-9-22896).

【0015】しかし、この方法ではCuの拡散を防ぐた
めのバリアメタルの接着性が考慮されていない。また、
上記孔の側壁部のダングリングボンドは、終端により消
滅させるものである。
However, this method does not consider the adhesion of a barrier metal for preventing the diffusion of Cu. Also,
The dangling bond on the side wall of the hole disappears at the end.

【0016】本発明の目的は、メタルバリアとシリコン
系絶縁膜との接着不良に基づくアニールやCMP(Che
mical Mechanical Processing)を含む多層構造の剥
離に基づく、非導通の原因となるメタルバリアとシリコ
ン系絶縁膜との接着特性を向上した半導体装置の提供に
ある。
An object of the present invention is to provide annealing or CMP (Cheap) based on poor adhesion between a metal barrier and a silicon-based insulating film.
It is an object of the present invention to provide a semiconductor device which has improved adhesion characteristics between a metal barrier and a silicon-based insulating film which cause non-conduction based on peeling of a multi-layer structure including mical mechanical processing.

【0017】[0017]

【課題を解決するための手段】本発明は、メタルバリア
とシリコン系絶縁膜の接着特性を向上させるために、絶
縁膜に不活性ガスによるスパッタリング、または、Ar
Fエキシマレーザ照射(193nm)を行い、絶縁膜の
表面にSi,Oのダングリングボンドを形成することに
より、メタルバリアとシリコン系絶縁膜の接着性を上げ
て、両者の界面での剥離を防ぎ、配線の信頼性を向上す
る、埋め込み配線構造を有する半導体装置の製法にあ
る。
According to the present invention, in order to improve the adhesion characteristics between a metal barrier and a silicon-based insulating film, sputtering using an inert gas or Ar
Irradiation of F excimer laser (193 nm) to form dangling bonds of Si and O on the surface of the insulating film, thereby increasing the adhesiveness between the metal barrier and the silicon-based insulating film and preventing separation at the interface between the two. And a method of manufacturing a semiconductor device having a buried wiring structure for improving the reliability of wiring.

【0018】[0018]

【発明の実施の形態】本発明では、半導体基板上に絶縁
膜を形成した後、リソグラフィーとエッチングにより溝
とホールを形成する。
In the present invention, after forming an insulating film on a semiconductor substrate, grooves and holes are formed by lithography and etching.

【0019】溝とホールの形成後は、チャンバ内でH2
パージを行なって、新生表面をHで終端した後、スパッ
タリング装置のチャンバ内にウエハを移す。なお、スパ
ッタリング装置を真空に保ったままでウエハを移動させ
る場合は、絶縁膜表面をHで終端させる必要はないが、
空気に触れる場合は、空気中の不純物が付着するのを防
ぐためHで終端することが望ましい。
After the formation of the grooves and holes, H 2 is formed in the chamber.
After purging and terminating the nascent surface with H, the wafer is transferred into the chamber of the sputtering apparatus. When the wafer is moved while the sputtering apparatus is kept in a vacuum, it is not necessary to terminate the insulating film surface with H,
When contacting with air, it is desirable to terminate with H in order to prevent impurities in the air from adhering.

【0020】チャンバ内でウエハ表面を不活性ガスによ
るスパッタリング、または、ArFエキシマレーザをウ
エハ表面に照射し、Si,O等のダングリングボンドを
形成し絶縁膜表面を活性化させる。
In the chamber, the surface of the insulating film is activated by sputtering the surface of the wafer with an inert gas or irradiating the surface of the wafer with an ArF excimer laser to form dangling bonds of Si, O or the like.

【0021】この絶縁膜表面の活性化の工程と、メタル
バリアの形成工程とが真空のままでウエハを移動できる
ときは、絶縁膜表面の活性化をスパッタリング装置内で
行う必要はない。
When the step of activating the surface of the insulating film and the step of forming the metal barrier can move the wafer in a vacuum state, it is not necessary to activate the surface of the insulating film in the sputtering apparatus.

【0022】その後、必要に応じて加熱やレーザ照射等
により、メタルバリアを溝およびホール内に均一に流動
させる。真空を保ったままスパッタリングによりCuを
20〜50nm程度の膜厚に堆積させ後、Cuメッキを
施し、溝およびホールを埋める。次に、本発明を実施例
に基づき説明する。
Thereafter, the metal barrier is caused to flow uniformly in the grooves and holes by heating, laser irradiation, or the like, if necessary. After depositing Cu to a thickness of about 20 to 50 nm by sputtering while maintaining a vacuum, Cu plating is performed to fill the grooves and holes. Next, the present invention will be described based on examples.

【0023】〔実施例 1〕図1に示すように、半導体
基板1上にSiOCH3とメタノールとの混合溶液を塗
布し、焼成することで酸化メチルシリコン2の膜を形成
後、フォトレジストを載せ、リソグラフィー技術により
パターンマスクを形成(図示省略)する。
[Embodiment 1] As shown in FIG. 1, a mixed solution of SiOCH 3 and methanol is applied on a semiconductor substrate 1 and baked to form a film of methyl silicon oxide 2 and then a photoresist is placed thereon. Then, a pattern mask is formed by lithography (not shown).

【0024】これを酸素、または、窒素とフロン系ガス
によりエッチングして溝を形成し、H2をチャンバ内で
パージしてスパッタリング装置に運ぶまでの間に、不純
物が着かないよう絶縁膜表面をHで終端する(図1
(a))。
This is etched with oxygen or nitrogen and a chlorofluorocarbon gas to form a groove, and H 2 is purged in a chamber and the surface of the insulating film is prevented from being contaminated by impurities before being transported to a sputtering apparatus. Terminate at H (Fig. 1
(A)).

【0025】スパッタリング装置内に移した上記ウエハ
は、真空を保ったままArFエキシマレーザでウエハ表
面を照射し、表面にSi、O等のダングリングボンドを
形成する。これにCrをターゲットとして、Arガス圧
0.5Pa、基板温度200℃、DC電力8kWでスパ
ッタリングを行い、厚さ50nmのCr膜から成るメタ
ルバリア3を形成する(図1(b))。
The wafer transferred into the sputtering apparatus is irradiated with an ArF excimer laser on the surface of the wafer while maintaining a vacuum, and dangling bonds such as Si and O are formed on the surface. Then, sputtering is performed using Cr as a target at an Ar gas pressure of 0.5 Pa, a substrate temperature of 200 ° C., and a DC power of 8 kW to form a metal barrier 3 made of a Cr film having a thickness of 50 nm (FIG. 1B).

【0026】次いで、真空を保ったままCuをターゲッ
トとして、Arガス、圧力0.5Pa、基板温度250
℃、DC電力10kWの条件で、約20nmのCu膜で
被覆した後、メッキにより溝に銅4を埋め込む(図1
(c))。
Next, while maintaining the vacuum, using Cu as a target, Ar gas, pressure 0.5 Pa, substrate temperature 250
After covering with a Cu film of about 20 nm at a temperature of 10 ° C. and DC power of 10 kW, copper 4 is embedded in the groove by plating (FIG. 1).
(C)).

【0027】次に、200℃のオーブンでアニールし、
CMPによってウエハ表面を平坦化する(図1
(d))。このウエハの断面をSEM写真で観察したと
ころCu,メタルバリア、絶縁膜の各界面間の剥がれは
生じていなかった。
Next, annealing in an oven at 200 ° C.
The wafer surface is planarized by CMP (FIG. 1)
(D)). Observation of the cross section of this wafer with an SEM photograph revealed that no peeling occurred between the interfaces of Cu, the metal barrier, and the insulating film.

【0028】〔実施例 2〕実施例1と同様にして、半
導体基板1上に絶縁膜2を形成し、リソグラフィーとエ
ッチングによりホールを形成する。その後、スパッタリ
ング装置内でArをターゲットに当てずに直接ウエハに
当てることにより膜表面をエッチングし、Si,O等の
ダングリングボンドを形成する。
[Embodiment 2] As in Embodiment 1, an insulating film 2 is formed on a semiconductor substrate 1, and holes are formed by lithography and etching. After that, the film surface is etched by directly applying Ar to the wafer without being applied to the target in the sputtering apparatus, thereby forming dangling bonds such as Si and O.

【0029】次いで、Taをターゲットとして、Arガ
ス圧0.8Pa、基板温度200℃、DC電力8kW
で、Arガスを用いて厚さ50nmのTa膜を形成し
た。
Then, using Ta as a target, an Ar gas pressure of 0.8 Pa, a substrate temperature of 200 ° C., and a DC power of 8 kW
Then, a Ta film having a thickness of 50 nm was formed using Ar gas.

【0030】真空を保ったままCuをターゲットとして
圧力0.5Pa、基板温℃250℃、DC電力10kW
でArガスを用いて約20nmのCu膜の被膜を形成
後、メッキによりホールを埋め込む。
While maintaining the vacuum, Cu was used as a target at a pressure of 0.5 Pa, a substrate temperature of 250 ° C., and a DC power of 10 kW.
After forming a film of a Cu film of about 20 nm using Ar gas, holes are filled by plating.

【0031】次に、200℃のオーブンでアニールし、
CMPによってウエハ表面を平坦化した。SEM写真で
このウエハの断面を観察したところ、各界面間の剥がれ
は生じていなかった。
Next, annealing is performed in an oven at 200 ° C.
The wafer surface was flattened by CMP. Observation of the cross section of this wafer with an SEM photograph revealed that no peeling occurred between the interfaces.

【0032】〔比較例 1〕実施例1と同様に、半導体
基板1上に絶縁膜2を形成後、リソグラフィーとエッチ
ングで溝を形成し、H2パージを行なってHで絶縁膜表
面を終端する。
Comparative Example 1 In the same manner as in Example 1, after forming an insulating film 2 on a semiconductor substrate 1, a groove is formed by lithography and etching, and H 2 purge is performed to terminate the insulating film surface with H. .

【0033】このウエハに、前処理なしにCrをターゲ
ットとし、Arガス圧0.5Pa、基板温度200℃、
DC電力8kWでスパッタリングを行い、厚さ50nm
のCr膜を形成する。
Without subjecting the wafer to Cr as a target, the wafer was subjected to an Ar gas pressure of 0.5 Pa, a substrate temperature of 200 ° C.
Sputtering with DC power 8kW, thickness 50nm
Is formed.

【0034】次いで、真空を保ったままCuをターゲッ
トとし、Arガス圧0.5Pa、基板温度250℃、D
C電力10kWで約20nmのCu膜で被覆後、メッキ
により溝を埋め込む。
Then, while maintaining the vacuum, Cu was used as a target, the Ar gas pressure was 0.5 Pa, the substrate temperature was 250 ° C., and D
After covering with a Cu film of about 20 nm at a C power of 10 kW, the groove is filled by plating.

【0035】200℃のオーブンでアニールし、CMP
によりウエハ表面を平坦化後、このウエハの断面をSE
M写真で観察したところ、絶縁膜とメタルバリアとの間
に剥離が起こり、ボイドが生じていた。
Anneal in an oven at 200 ° C., CMP
After the surface of the wafer is flattened by
Observation with an M-photograph revealed that peeling occurred between the insulating film and the metal barrier, resulting in voids.

【0036】〔比較例 2〕実施例2と同様に、半導体
基板1上に絶縁膜2を形成後、リソグラフィーとエッチ
ングでホールを形成し、H2パージを行なってHで絶縁
膜表面を終端する。
Comparative Example 2 In the same manner as in Example 2, after forming the insulating film 2 on the semiconductor substrate 1, holes are formed by lithography and etching, and H 2 purge is performed to terminate the insulating film surface with H. .

【0037】このウエハに前処理なしにTaをターゲッ
トに用い、Arガス圧0.5Pa、基板温度200℃、
DC電力8kWでスパッタリングを行い、厚さ50nm
のTa膜を形成する。次いで、真空を保ったままCuを
ターゲットとして、Arガス圧0.5Pa、基板温度2
50℃、DC電力10kWで約20nmにCu膜で被覆
後、メッキによりホールを埋め込む。
Using Ta as a target for this wafer without pretreatment, Ar gas pressure of 0.5 Pa, substrate temperature of 200 ° C.
Sputtering with DC power 8kW, thickness 50nm
Is formed. Then, while maintaining the vacuum, using Cu as a target, an Ar gas pressure of 0.5 Pa, a substrate temperature of 2
After covering with a Cu film to about 20 nm at 50 ° C. and DC power of 10 kW, holes are buried by plating.

【0038】200℃のオーブンでアニールし、CMP
によりウエハ表面を平坦化後、このウエハの断面をSE
M写真で観察したところ、絶縁膜とメタルバリアとの間
に剥離が起こり、ボイドが生じていた。
Anneal in an oven at 200 ° C.
After the surface of the wafer is flattened by
Observation with an M-photograph revealed that peeling occurred between the insulating film and the metal barrier, resulting in voids.

【0039】〔比較例 3〕実施例1と同様に、半導体
基板1上に絶縁膜2を形成後、リソグラフィーとエッチ
ングで溝を形成し、H2パージを行なってHで絶縁膜表
面を終端する。
Comparative Example 3 In the same manner as in Example 1, after forming the insulating film 2 on the semiconductor substrate 1, a groove is formed by lithography and etching, and H 2 purge is performed to terminate the insulating film surface with H. .

【0040】このウエハに前処理なしにMoをターゲッ
トに用い、Arガス圧0.5Pa、基板温度200℃、
DC電力8kWでスパッタリングを行い、厚さ50nm
のMo膜を形成する。
Using Mo as a target for this wafer without pretreatment, an Ar gas pressure of 0.5 Pa, a substrate temperature of 200 ° C.
Sputtering with DC power 8kW, thickness 50nm
Is formed.

【0041】次いで、真空を保ったままCuをターゲッ
トとして、Arガス圧0.5Pa、基板温度250℃、
DC電力10kWで20nm程度にCu膜で被覆後、メ
ッキにより溝を埋め込む。
Next, while maintaining a vacuum, using Cu as a target, an Ar gas pressure of 0.5 Pa, a substrate temperature of 250 ° C.
After covering with a Cu film to about 20 nm at a DC power of 10 kW, the groove is filled by plating.

【0042】200℃のオーブンでアニールし、CMP
によりウエハ表面を平坦化する。このウエハの断面をS
EM写真で観察したところ、絶縁膜とメタルバリアとの
間に剥離が起こり、ボイドが生じていた。
Anneal in an oven at 200 ° C., CMP
To planarize the wafer surface. The cross section of this wafer is S
Observation with an EM photograph revealed that peeling occurred between the insulating film and the metal barrier, and that a void was generated.

【0043】〔比較例 4〕実施例1と同様に、半導体
基板1上に絶縁膜2を形成後、リソグラフィーとエッチ
ングで溝を形成し、H2パージを行なってHで絶縁膜表
面を終端する。
[Comparative Example 4] As in Example 1, after forming an insulating film 2 on a semiconductor substrate 1, a groove is formed by lithography and etching, and H 2 purge is performed to terminate the insulating film surface with H. .

【0044】このウエハに前処理なしにHfをターゲッ
トとして、Arガス圧0.5Pa、基板温度200℃、
DC電力8kWでスパッタリングを行い、厚さ50nm
のCr膜を形成する。
An Ar gas pressure of 0.5 Pa, a substrate temperature of 200.degree.
Sputtering with DC power 8kW, thickness 50nm
Is formed.

【0045】次いで、真空を保ったままHfをターゲッ
トとして、Arガス圧0.5Pa、基板温度250℃、
DC電力10kWで20nm程度にCu膜で被覆した
後、メッキにより溝を埋め込む。
Next, while maintaining the vacuum, using Hf as a target, an Ar gas pressure of 0.5 Pa, a substrate temperature of 250 ° C.
After covering with a Cu film to about 20 nm at a DC power of 10 kW, the groove is filled by plating.

【0046】200℃のオーブンでアニールし、CMP
によりウエハ表面を平坦化する。このウエハの断面をS
EM写真で観察したところ、絶縁膜とメタルバリアとの
間に剥離が起こり、ボイドが生じていた。
Anneal in an oven at 200 ° C., CMP
To planarize the wafer surface. The cross section of this wafer is S
Observation with an EM photograph revealed that peeling occurred between the insulating film and the metal barrier, and that a void was generated.

【0047】〔比較例 5〕実施例1と同様に、半導体
基板1上に絶縁膜2を形成後、リソグラフィーとエッチ
ングで溝を形成し、H2パージを行なってHで絶縁膜表
面を終端する。
Comparative Example 5 In the same manner as in Example 1, after forming the insulating film 2 on the semiconductor substrate 1, a groove is formed by lithography and etching, and H 2 purge is performed to terminate the insulating film surface with H. .

【0048】このウエハに前処理なしにHfをターゲッ
トとして、圧力0.8Pa、基板温度200℃、DC電
力8kWで、Arガスを用いて厚さ50nmのHf膜を
形成する。
An Hf film having a thickness of 50 nm is formed on this wafer at a pressure of 0.8 Pa, a substrate temperature of 200 ° C., a DC power of 8 kW and Ar gas using Hf as a target without any pretreatment.

【0049】次いで、真空を保ったままCuをターゲッ
トとしてArガス圧0.5Pa、基板温度250℃、D
C電力10kWで約20nmにCu膜で被膜させた後、
メッキにより溝を埋め込む。
Next, while maintaining a vacuum, using Cu as a target, an Ar gas pressure of 0.5 Pa, a substrate temperature of 250 ° C.,
After coating with a Cu film to about 20 nm at a C power of 10 kW,
The groove is buried by plating.

【0050】200℃のオーブンでアニールし、CMP
によりウエハ表面を平坦化後、SEM写真でこのウエハ
の断面を観察したところ、絶縁膜とメタルバリアとの間
に剥がれが起こり、ボイドが生じていた。
Anneal in an oven at 200 ° C.
After the wafer surface was flattened, the cross section of the wafer was observed with an SEM photograph. As a result, peeling occurred between the insulating film and the metal barrier, and voids were generated.

【0051】実施例1,2と比較例1〜5とから分かる
ように、Arによる絶縁膜表面のエッチング、または、
ArFエキシマレーザ照射、あるいは、SiO2系のタ
ーゲットを用い、SiO2系の膜を絶縁膜表面に新たに
形成した場合は、それぞれのメタルバリアとの接着性は
良好で、アニールとCMP後でも絶縁膜とメタルバリア
との間に剥がれは生じない。しかし、メタルバリアをス
パッタする前にこれらの処理を行わない場合は剥がれを
生ずる。
As can be seen from Examples 1 and 2 and Comparative Examples 1 to 5, etching of the insulating film surface with Ar, or
When ArF excimer laser irradiation or a SiO 2 -based target is used and a SiO 2 -based film is newly formed on the insulating film surface, the adhesion to each metal barrier is good, and the insulation is maintained even after annealing and CMP. No peeling occurs between the film and the metal barrier. However, if these processes are not performed before the metal barrier is sputtered, peeling occurs.

【0052】従って、メタルバリアをスパッタする前
に、絶縁膜表面を活性化する工程を入れることにより、
配線の信頼性を向上できると云う効果がある。
Therefore, before the metal barrier is sputtered, a step of activating the surface of the insulating film is provided.
There is an effect that the reliability of the wiring can be improved.

【0053】比較例1〜5で作製した銅配線を有する半
導体装置に対し、実施例1,2で作製した銅配線を有す
る半導体装置では、全工程を終えた後での非導通による
不良の割合を85%以上回避できることを確認した。
In contrast to the semiconductor device having the copper wiring manufactured in Comparative Examples 1 to 5, in the semiconductor device having the copper wiring manufactured in Examples 1 and 2, the percentage of defects due to non-conduction after completing all the steps. It was confirmed that 85% or more could be avoided.

【0054】[0054]

【発明の効果】本発明では、メタルバリアをスパッタリ
ングによって形成する前にArによる絶縁膜表面のスパ
ッタリング、または、ArFエキシマレーザ照射によ
り、配線用溝およびホールの表面にダングリングボンド
を形成することにより、メタルバリアとの接着性を高め
ることができる。
According to the present invention, before the metal barrier is formed by sputtering, the dangling bond is formed on the surface of the wiring groove and the hole by Ar sputtering of the insulating film surface or by ArF excimer laser irradiation. , The adhesion to the metal barrier can be enhanced.

【0055】これにより、その製造工程におけるCMP
やアニールと云った界面間に歪み応力が加わる工程にも
耐え得るため、信頼性の高い半導体装置を得ることがで
きる。
As a result, CMP in the manufacturing process
Since it can withstand a process in which strain stress is applied between interfaces such as annealing and annealing, a highly reliable semiconductor device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の工程を説明する模式断面図
である。
FIG. 1 is a schematic cross-sectional view illustrating a process of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…絶縁膜、3…メタルバリア、4…
銅。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Insulating film, 3 ... Metal barrier, 4 ...
copper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田子 一農 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5F033 HH11 HH17 HH21 MM01 MM12 MM13 PP15 PP26 PP33 QQ09 QQ11 QQ48 QQ54 QQ73 RR25 SS22 XX14  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazunori Tago 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Research Laboratory, Hitachi Ltd. 5F033 HH11 HH17 HH21 MM01 MM12 MM13 PP15 PP26 PP33 QQ09 QQ11 QQ48 QQ54 QQ73 RR25 SS22 XX14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜を形成した後に、
配線用溝およびホールを形成する工程と、前記配線用溝
およびホールの表面(ホール内の側面と底面)をメタル
バリアにより被覆する工程との間に、配線用溝およびホ
ールの表面を活性化させる工程を含む埋め込み配線構造
を有する半導体装置の製法。
1. After forming an insulating film on a semiconductor substrate,
Activating the surfaces of the wiring grooves and holes between the step of forming the wiring grooves and holes and the step of covering the surfaces (side surfaces and bottom surfaces in the holes) of the wiring grooves and holes with a metal barrier A method for manufacturing a semiconductor device having a buried wiring structure including steps.
【請求項2】 前記配線用溝およびホールの表面を活性
化させる工程が、不活性ガスプラズマに曝すか、また
は、ArFエキシマレーザ(193nm)を照射してダ
ングリングボンドを形成する請求項1に記載の埋め込み
配線構造を有する半導体装置の製法。
2. The method according to claim 1, wherein the step of activating the surface of the wiring groove and the hole forms a dangling bond by exposing to an inert gas plasma or irradiating an ArF excimer laser (193 nm). A method of manufacturing a semiconductor device having the embedded wiring structure according to the above.
【請求項3】 請求項1または2に記載の方法により形
成した埋め込み配線構造を有する半導体装置。
3. A semiconductor device having an embedded wiring structure formed by the method according to claim 1.
JP2000311724A 2000-10-05 2000-10-05 Manufacturing method of semiconductor device having buried wiring structure Withdrawn JP2002118112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311724A JP2002118112A (en) 2000-10-05 2000-10-05 Manufacturing method of semiconductor device having buried wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311724A JP2002118112A (en) 2000-10-05 2000-10-05 Manufacturing method of semiconductor device having buried wiring structure

Publications (1)

Publication Number Publication Date
JP2002118112A true JP2002118112A (en) 2002-04-19

Family

ID=18791441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311724A Withdrawn JP2002118112A (en) 2000-10-05 2000-10-05 Manufacturing method of semiconductor device having buried wiring structure

Country Status (1)

Country Link
JP (1) JP2002118112A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134771A (en) * 2002-09-17 2004-04-30 Advanced Lcd Technologies Development Center Co Ltd Interconnection, method for forming the interconnection, thin-film transistor and indicating device
JP2004335847A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for manufacturing semiconductor integrated circuit wafer
JP2005340478A (en) * 2004-05-26 2005-12-08 Toshiba Corp Manufacturing method of semiconductor device
US7563705B2 (en) 2002-02-14 2009-07-21 Nec Electronics Corporation Manufacturing method of semiconductor device
WO2010147141A1 (en) * 2009-06-16 2010-12-23 東京エレクトロン株式会社 Film deposition method, pretreatment device, and treating system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563705B2 (en) 2002-02-14 2009-07-21 Nec Electronics Corporation Manufacturing method of semiconductor device
JP2004134771A (en) * 2002-09-17 2004-04-30 Advanced Lcd Technologies Development Center Co Ltd Interconnection, method for forming the interconnection, thin-film transistor and indicating device
JP4495428B2 (en) * 2002-09-17 2010-07-07 株式会社 液晶先端技術開発センター Method for forming thin film transistor
JP2004335847A (en) * 2003-05-09 2004-11-25 Mitsubishi Electric Corp Method for manufacturing semiconductor integrated circuit wafer
JP2005340478A (en) * 2004-05-26 2005-12-08 Toshiba Corp Manufacturing method of semiconductor device
JP4660119B2 (en) * 2004-05-26 2011-03-30 株式会社東芝 Manufacturing method of semiconductor device
WO2010147141A1 (en) * 2009-06-16 2010-12-23 東京エレクトロン株式会社 Film deposition method, pretreatment device, and treating system
US8865590B2 (en) 2009-06-16 2014-10-21 Tokyo Electron Limited Film forming method, pretreatment device, and processing system

Similar Documents

Publication Publication Date Title
TWI326903B (en) Method of manufacturing semiconductor device
US6949450B2 (en) Method for integrated in-situ cleaning and subsequent atomic layer deposition within a single processing chamber
US8916232B2 (en) Method for barrier interface preparation of copper interconnect
KR100516337B1 (en) Semiconductor device and manufacturing method thereof
JP3189781B2 (en) Method for manufacturing semiconductor device
US20090304914A1 (en) Self assembled monolayer for improving adhesion between copper and barrier layer
TWI267912B (en) Novel method to implement stress free polishing
JP2001144090A (en) Method of manufacturing semiconductor device
JP2003017561A (en) Method of manufacturing semiconductor device, and semiconductor device
TW516174B (en) Diffusion barrier layer and semiconductor device containing same
KR100319588B1 (en) Method for forming interconnection structure
JP2001176842A (en) Method for etching silicon nitride film and method for manufacturing semiconductor device
WO2010097190A1 (en) Providing superior electromigration performance and reducing deterioration of sensitive low-k dielectrics in metallization systems of semiconductor devices
JP4169950B2 (en) Manufacturing method of semiconductor device
JP2002509356A (en) Highly integrated borderless vias in which voids in the patterned conductive layer are filled with HSQ
JP4638140B2 (en) Method for forming copper wiring of semiconductor element
JPH06349950A (en) Semiconductor device and manufacture thereof
JP2002118112A (en) Manufacturing method of semiconductor device having buried wiring structure
JP5823359B2 (en) Manufacturing method of semiconductor device
JP2010040771A (en) Method of manufacturing semiconductor device
KR20000058160A (en) Manufacturing method of semiconductor device
JP2004235569A (en) Method of forming semiconductor device
JP2011124472A (en) Method of manufacturing semiconductor device
KR100286253B1 (en) Selective deposit method of metal thin film using n2 plasma and it's application to multi-level metal interconnection
JP3843275B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040614