JP2002117814A - Square-shaped sheath can and battery using this - Google Patents

Square-shaped sheath can and battery using this

Info

Publication number
JP2002117814A
JP2002117814A JP2000306866A JP2000306866A JP2002117814A JP 2002117814 A JP2002117814 A JP 2002117814A JP 2000306866 A JP2000306866 A JP 2000306866A JP 2000306866 A JP2000306866 A JP 2000306866A JP 2002117814 A JP2002117814 A JP 2002117814A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
electrode body
electrode
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000306866A
Other languages
Japanese (ja)
Other versions
JP2002117814A5 (en
Inventor
Hironori Marubayashi
啓則 丸林
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000306866A priority Critical patent/JP2002117814A/en
Publication of JP2002117814A publication Critical patent/JP2002117814A/en
Publication of JP2002117814A5 publication Critical patent/JP2002117814A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a square-shaped sheath can consisting of a material mainly composed of aluminum wherein an electrolytic solution is possible to be more abundantly retained than before while an energy density of a battery is secured and a superior performance is exerted, and provide the battery using this. SOLUTION: Two streaks of groove recesses 302a, 302b to store the electrolytic solution are arranged and installed at an inner face of the bottom of the sheath can 30 along a lateral direction of the sheath can 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は角形外装缶とこれを
用いる電池に関し、特に電解液の保液性の技術改良に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectangular outer can and a battery using the same, and more particularly to a technical improvement of a liquid retaining property of an electrolytic solution.

【0002】[0002]

【従来の技術】近年、携帯電話機や携帯情報端末(PD
A)などの携帯型電子機器が急速に普及している。これ
らの電子機器には高エネルギー密度の電源としてリチウ
ムイオン電池などの角形外装缶を有する電池が多用され
ている。このような角形外装缶を有する電池には、角形
外装缶に電解液を含む発電素体が収納される。発電素体
は、例えばいずれも帯状のセパレータ、正極、負極とを
重ねてなる電極体に電解液を含浸したものである。電極
体の体積は、電池の高エネルギー密度を得るために外装
缶の容積近くまで大きくされる。
2. Description of the Related Art In recent years, portable telephones and portable information terminals (PDs)
Portable electronic devices such as A) are rapidly spreading. In these electronic devices, a battery having a rectangular outer can, such as a lithium ion battery, is frequently used as a power source having a high energy density. In a battery having such a rectangular outer can, a power generating element containing an electrolytic solution is housed in the rectangular outer can. The power generating element is obtained by impregnating an electrolytic solution into an electrode body formed by laminating a strip-shaped separator, a positive electrode, and a negative electrode, for example. The volume of the electrode body is increased to near the volume of the outer can to obtain a high energy density of the battery.

【0003】上記構成を持つ角形外装缶を有する電池で
は、アルミニウムを主体とする外装缶に電極体を収納し
た後、外装缶の開口部に封口体を装着し、外装缶と封口
体の境界をレーザ溶接する。そして封口体に設けた注入
口により必要量の電解液を注入し、注入口を封止栓で塞
ぎ、電池内部を密閉する。
In a battery having a rectangular outer can having the above structure, the electrode body is housed in an outer can made mainly of aluminum, and then a sealing body is attached to an opening of the outer can to form a boundary between the outer can and the sealing body. Laser welding. Then, a required amount of electrolyte is injected through an injection port provided in the sealing body, the injection port is closed with a sealing plug, and the inside of the battery is sealed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来に
おいては、すばやく電池内に必要量の電解液を注入し
て、電池内を密封することができないという問題点があ
った。すなわち、注入口から注入した電解液は最終的に
電極体に含浸されるが、電解液注入後すぐには電極体に
含浸せず、外装缶と電極体の隙間や封口体の隙間に一時
蓄えられ、徐々に電極体に含浸されていく。ところが、
電池の高エネルギー密度化に伴い、外装缶内に収納する
極板が増加することとなり、電解液を一時蓄える空間が
減少し、必要量の電解液を注入しようとしてもあふれ出
てしまい、必要量の電解液を密閉できず、電解液不足と
いう問題が発生した。また、あふれ出た電解液が注入口
付近に付着することにより、封止栓の溶接不良の原因と
なった。
However, in the prior art, there has been a problem that the required amount of electrolyte cannot be quickly injected into the battery to seal the inside of the battery. That is, the electrolyte injected from the injection port is finally impregnated into the electrode body, but is not impregnated immediately after the electrolyte injection, but is temporarily stored in the gap between the outer can and the electrode body or the gap between the sealing body. And is gradually impregnated into the electrode body. However,
As the energy density of batteries increases, the number of electrode plates housed in the outer can increases, the space for temporarily storing electrolyte decreases, and even if you try to inject the required amount of electrolyte, it overflows, The electrolyte solution could not be hermetically sealed, and the problem of insufficient electrolyte solution occurred. In addition, the overflowing electrolyte adhered to the vicinity of the injection port, thereby causing poor welding of the sealing plug.

【0005】これに対し、外装缶のサイズを大きくして
電解液の量を確保しようとすると、電極体に対する電池
体積が増大することになり、電池のエネルギー密度が減
少してしまい、高エネルギー密度電源としての性能を低
下させてしまう。また、外装缶の厚みを薄くすることも
考えられるが、アルミニウムを主体とする外装缶は強度
が比較的小さく、厚みを薄くすることで必要な強度を確
保できなくなる。また、電解液量を分割して少しずつ注
入するという方法も考えられるが、注入完了までに時間
がかかり、電池の大量生産の際に律速となる。
On the other hand, if an attempt is made to secure the amount of electrolyte by increasing the size of the outer can, the volume of the battery with respect to the electrode body increases, and the energy density of the battery decreases, resulting in a high energy density. This degrades the performance as a power supply. It is also conceivable to reduce the thickness of the outer can, but the outer can mainly composed of aluminum has a relatively small strength, and the required strength cannot be secured by reducing the thickness. A method of dividing the amount of the electrolyte and injecting it little by little is also conceivable. However, it takes time until the injection is completed, and the rate is limited in mass production of batteries.

【0006】このような問題は、近年、アルミニウムを
主体とする材料からなる角形外装缶を持つリチウムイオ
ン電池などで比較的顕著にみられ、早急な対策が望まれ
ている。本発明は上記課題に鑑みてなされたものであっ
て、その目的は、電池のエネルギー密度を確保しながら
従来より豊富に電解液を保持し、良好な性能を発揮する
ことが可能な電池用のアルミニウムを主体とする材料か
らなる角形外装缶と、これを用いる電池を提供すること
にある。
[0006] Such a problem is relatively remarkable in recent years, for example, in a lithium ion battery having a rectangular outer can made of a material mainly composed of aluminum, and urgent countermeasures are desired. The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery for a battery capable of exhibiting good performance while retaining an electrolyte more abundantly than before while securing the energy density of the battery. An object of the present invention is to provide a rectangular outer can made of a material mainly composed of aluminum and a battery using the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、アルミニウムを主体とする材料からな
り、電解液と電極体からなる発電素体を収納する角形外
装缶であって、外装缶の内面に凹部が形成され、かつ、
当該凹部の周縁部に対応する外装缶の外面部分が面一状
に保たれた構成とした。このようにすれば、外装缶サイ
ズを電解液の保持のために大きくすることなく、良好に
電解液を保持できる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention relates to a rectangular outer can containing a power generating element made of a material mainly composed of aluminum and comprising an electrolyte and an electrode body, A recess is formed on the inner surface of the outer can, and
The outer can portion corresponding to the peripheral edge of the concave portion was configured to be flush. In this case, the electrolyte can be satisfactorily held without increasing the size of the outer can for holding the electrolyte.

【0008】すなわち、当該角形外装缶に従来と同量の
電解液を入れると、外装缶内部に形成された凹部に電解
液が確保されるぶん、外装缶内部に保持できる電解液量
は多くなる。これにより本発明では、電解液を外装缶に
注入する際において、従来より電解液がこぼれ出る心配
が少ない。しかも、このような凹部を形成しても、外装
缶の外寸は変わらないので、エネルギー密度が減少しな
い。
In other words, when the same amount of electrolyte as in the prior art is put into the rectangular outer can, the amount of electrolyte that can be held inside the outer can is increased because the electrolyte is secured in the recess formed inside the outer can. . Thus, in the present invention, when the electrolytic solution is injected into the outer can, there is less fear that the electrolytic solution spills out than before. Moreover, even if such a concave portion is formed, the outer size of the outer can does not change, so that the energy density does not decrease.

【0009】ここで、前記凹部は、具体的には外装缶の
底部に設けるのが望ましい。外装缶の底部はこれ以外の
部分よりも肉厚なため、比較的凹部を形成しやすい。ま
た、外装缶の底部に凹部を形成するようにすると、電極
体を外装缶に収納する際に凹部が支障になったり、これ
を変形させてしまうこともないので望ましい。なお、こ
の場合前記凹部は、外装缶に収納される電極体の底部よ
りも小さい寸法で形成すると、電極体が凹部にはまりこ
むのが防止され、電極体底部と外装缶の内面底部との間
に電解液を蓄える空間が確保でき、かつ外装缶の強度を
確保しやすいので望ましい。
[0009] Here, it is desirable that the recess is specifically provided at the bottom of the outer can. Since the bottom of the outer can is thicker than other parts, it is relatively easy to form a concave portion. Further, it is desirable to form a concave portion at the bottom of the outer can because the concave portion does not hinder or deform the electrode body when the electrode body is stored in the outer can. In this case, if the recess is formed to have a size smaller than the bottom of the electrode body housed in the outer can, the electrode body is prevented from being stuck in the recess, and the gap between the electrode body bottom and the inner surface bottom of the outer can is prevented. It is desirable because a space for storing the electrolyte can be secured and the strength of the outer can can be easily secured.

【0010】以上のような本発明の角形外装缶を用いる
電池によれば、従来と同様の電池サイズを維持しながら
電解液を良好に保持し、高いエネルギー密度を確保する
ことが可能となる。
[0010] According to the battery using the rectangular outer can of the present invention as described above, it is possible to maintain the same battery size as in the prior art, maintain the electrolyte well, and secure a high energy density.

【0011】[0011]

【発明の実施の形態】1.実施の形態 図1は、本発明の角形外装缶の一適用例であるリチウム
イオン電池の主要構成を示す一部切欠図である。当図の
ように、リチウムイオン電池1(以下、単に電池1とい
う)は、主として封口体10、電極体20、角形外装缶30
(以下、単に外装缶30という)の各部品から構成され
る。ここで当該電池1は、一例として、縦50mm(z方
向)×横34mm(y方向)×奥行(x方向)10mmのサ
イズに作製されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS 1. Embodiment FIG. 1 is a partially cutaway view showing a main structure of a lithium ion battery which is one application example of the rectangular outer can of the present invention. As shown in the figure, a lithium ion battery 1 (hereinafter simply referred to as a battery 1) mainly includes a sealing body 10, an electrode body 20, and a rectangular outer can 30.
(Hereinafter simply referred to as an outer can 30). Here, as an example, the battery 1 is manufactured in a size of 50 mm (z direction) × 34 mm (y direction) × 10 mm (x direction).

【0012】1-1.封口体と電極体 封口体10はアルミニウム板を打ち抜いてなる封口板104
を主体とし、その電池内部側の主面にポリプロピレン製
の絶縁板103、電池外側の主面中央に負極端子101をそれ
ぞれ配した構成をもつ。絶縁板103は、外装缶30内部で
電極体20が振動するのを防止する。
1-1. Sealing Body and Electrode Body The sealing body 10 is a sealing plate 104 formed by stamping an aluminum plate.
, And an insulation plate 103 made of polypropylene is arranged on the main surface on the inner side of the battery, and a negative electrode terminal 101 is arranged at the center of the main surface on the outer side of the battery. The insulating plate 103 prevents the electrode body 20 from vibrating inside the outer can 30.

【0013】封口板104と絶縁板103の主面中央は穿孔加
工されており、これにガスケット102を介して中空の負
極リベット106がカシメ固定されている。負極リベット1
06は、外装缶30の内部側において、電極タブ(不図示)
で電極体20の負極(不図示)と接続される。この負極リ
ベット106の中空部が、電解液の注入口となる。封口板1
04の上面(電池外面側)では、負極リベット106の中空
部分を覆うようにしてゴム製の封止栓107が配され、負
極リベット106の周囲が負極端子101と溶接されている。
これにより、電池内部の電解液が漏れ出ないようになっ
ている。
The center of the main surface of the sealing plate 104 and the center of the insulating plate 103 are perforated, and a hollow negative electrode rivet 106 is caulked and fixed thereto via a gasket 102. Negative rivet 1
06 is an electrode tab (not shown) on the inner side of the outer can 30
Is connected to a negative electrode (not shown) of the electrode body 20. The hollow portion of the negative electrode rivet 106 serves as an electrolyte injection port. Seal plate 1
On the upper surface of 04 (battery outer surface side), a rubber sealing plug 107 is disposed so as to cover the hollow portion of the negative electrode rivet 106, and the periphery of the negative electrode rivet 106 is welded to the negative electrode terminal 101.
This prevents the electrolyte inside the battery from leaking.

【0014】電極体20は、それぞれ帯状の負極、セパレ
ータ202、正極204、セパレータ202を順次積層させて巻
き回し、側面から押しつぶして外装缶30の形状に合わせ
たものである。ここで、電池1のエネルギー密度を出来
るだけ高くするために、電極体20の体積は外装缶30の容
積近くまで確保するのが望ましい。電極体20は電池1の
内部で電解液(ここでは非水電解液)に含浸される。
The electrode body 20 is formed by sequentially laminating a strip-shaped negative electrode, a separator 202, a positive electrode 204, and a separator 202, winding them, and crushing them from the side to conform to the shape of the outer can 30. Here, in order to increase the energy density of the battery 1 as much as possible, it is desirable that the volume of the electrode body 20 be secured close to the volume of the outer can 30. Electrode body 20 is impregnated with an electrolyte (here, a non-aqueous electrolyte) inside battery 1.

【0015】正極204は、アルミニウム製の正極芯体表
面に、正極活物質であるコバルト酸リチウムLiCoO2
を主体として、導電剤と結着剤を混合した正極合剤を塗
布してなる。当該正極204は、外装缶30の内部におい
て、外装缶30とタブ(不図示)で電気的に接続される。
負極は、銅製の負極芯体表面に、黒鉛を主体とし、結着
剤を混合した負極合剤を塗布してなる。
The positive electrode 204 has a positive electrode active material, lithium cobalt oxide LiCoO 2, on the surface of a positive electrode core made of aluminum.
And a positive electrode mixture obtained by mixing a conductive agent and a binder. The positive electrode 204 is electrically connected to the outer can 30 by a tab (not shown) inside the outer can 30.
The negative electrode is obtained by applying a negative electrode mixture mainly composed of graphite and a binder mixed to a surface of a copper negative electrode core body.

【0016】セパレータ202は、ポリエチレン製の微多
孔膜であって、負極と正極204の絶縁に用いられる。そ
の耐熱温度は120℃程度に設定されている。このような
構成の電池1では、充放電時に次の反応が起こってい
る。すなわち、充電時にはまず、正極204において、正
極活物質であるコバルト酸リチウムの結晶格子中のコバ
ルトが酸化され、これとともにリチウムイオンが放出さ
れる。放出されたリチウムイオンは、電解液を含浸した
セパレータ202を通って、負極側へ移動する。負極側で
は、リチウムイオンは黒鉛の結晶格子中に取り込まれ
る。
The separator 202 is a microporous membrane made of polyethylene, and is used for insulating the negative electrode and the positive electrode 204. Its heat-resistant temperature is set to about 120 ° C. In the battery 1 having such a configuration, the following reaction occurs during charging and discharging. That is, at the time of charging, first, in the positive electrode 204, cobalt in the crystal lattice of lithium cobalt oxide, which is a positive electrode active material, is oxidized, and lithium ions are released at the same time. The released lithium ions move to the negative electrode side through the separator 202 impregnated with the electrolytic solution. On the negative electrode side, lithium ions are incorporated into the graphite crystal lattice.

【0017】そして放電時においては、この充電時とは
逆の反応が起こって、電気エネルギーを外部へ取り出す
ことができる。 1-2.外装缶 外装缶30はアルミニウム板を絞り加工してなる有底缶の
角形筐体である。その内部には電極体20が収納され、開
口部301と封口体10の周縁部105がレーザ溶接される。外
装缶30は前記正極204と電気的に接続されており、主に
その底部が正極端子として使用される。
At the time of discharging, a reaction opposite to that at the time of charging occurs, and electric energy can be taken out. 1-2. Outer Can The outer can 30 is a square housing of a bottomed can made by drawing an aluminum plate. The electrode body 20 is housed in the inside, and the opening 301 and the peripheral edge 105 of the sealing body 10 are laser-welded. The outer can 30 is electrically connected to the positive electrode 204, and its bottom is mainly used as a positive electrode terminal.

【0018】さらに外装缶30の底部には、電池1の幅方
向(図1中のy方向)に沿って、2条の平行な溝状の凹部
302a、302bが形成されている。ここで、図2は外装缶30
を各方向から見た部分断面図である。当図における
(a)はA-A’断面図、(b)はB-B’断面図、(c)
はC-C’断面図である。
Further, two parallel groove-shaped concave portions are formed on the bottom of the outer can 30 along the width direction of the battery 1 (the y direction in FIG. 1).
302a and 302b are formed. Here, FIG.
Are partial cross-sectional views as viewed from each direction. In this figure, (a) is an AA 'cross-sectional view, (b) is a BB' cross-sectional view, (c)
Is a CC ′ cross-sectional view.

【0019】当図の(a)〜(c)から分かるように、凹
部302a、302bは、外装缶30の底部内面が、材料の厚み方
向に凹んだものである。さらに凹部302a、302bが外装缶
30の底部に形成されながらも外装缶30の底部外面が面一
状に維持されており、従来と変わらない外観となってい
る(すなわち凹部302a、302bを形成した影響が外観に出
ないようになっている)。
As can be seen from FIGS. 1A to 1C, the concave portions 302a and 302b are formed by denting the inner surface of the bottom of the outer can 30 in the thickness direction of the material. Further, the concave portions 302a and 302b are exterior cans.
The bottom outer surface of the outer can 30 is maintained flush with the bottom of the outer can 30 while being formed at the bottom of the base 30 and has the same appearance as that of the conventional case (ie, so that the influence of forming the concave portions 302a and 302b does not appear on the appearance). Has become).

【0020】このような凹部302a、302bは、具体的には
平らな台の上に外装缶30を載置し、凹部302a、302bの形
状に対応する金型(凸部を有するパンチ)を外装缶30底
部の内面にプレスして鍛造加工することにより形成でき
る。ここにおいて、凹部302a、302bは本発明の主な特徴
部分であって、主として電池1の製造プロセスにおい
て、外装缶30に電極体20と電解液を入れる際に、以下の
重要な役割を持っている。
In the concave portions 302a and 302b, specifically, the outer can 30 is placed on a flat table, and a mold (a punch having a convex portion) corresponding to the shape of the concave portions 302a and 302b is mounted on the outer can. It can be formed by pressing the inner surface of the bottom of the can 30 and forging. Here, the concave portions 302a and 302b are the main characteristic portions of the present invention, and mainly have the following important roles when the electrode body 20 and the electrolytic solution are put in the outer can 30 in the manufacturing process of the battery 1. I have.

【0021】すなわち、注入口から注入した電解液は、
最終的に電極体20に含浸されるものの、電解液注入後す
ぐには電極体20に含浸せず、外装缶30と電極体20の隙間
や封口体10と電極体20との隙間に一時蓄えられ、徐々に
電極体20に含浸される。したがって、必要量の電解液を
一度に注入しようとしてもあふれ出てしまい、十分な量
の電解液を注入できずに電解液不足を招くことがある。
また、あふれ出た電解液が外装缶30に付着すると、溶接
不良の原因となることがある。
That is, the electrolyte injected from the injection port is:
Although the electrode body 20 is finally impregnated, the electrode body 20 is not impregnated immediately after injection of the electrolytic solution, but is temporarily stored in a gap between the outer can 30 and the electrode body 20 or a gap between the sealing body 10 and the electrode body 20. Then, the electrode body 20 is gradually impregnated. Therefore, even if the required amount of the electrolyte is injected at once, the electrolyte overflows, and a sufficient amount of the electrolyte cannot be injected, which may cause a shortage of the electrolyte.
Further, if the overflowing electrolyte adheres to the outer can 30, it may cause welding failure.

【0022】このような問題に対し、本実施の形態で
は、上記凹部302a、302bを設けることにより、電極体20
を外装缶30の容積近くに設定しても、良好に電解液を保
持できるようになっている。すなわち、当該角形外装缶
に凹部302a、302bが形成されていない従来と比べると、
同量の電解液を入れたときに外装缶30の内部に形成され
た凹部302a、302bに電解液が確保されるぶん、外装缶30
内部に蓄えることができる電解液量が多くなる。
In order to solve such a problem, in the present embodiment, the provision of the concave portions 302a and 302b allows
Even if the volume is set close to the volume of the outer can 30, it is possible to satisfactorily hold the electrolytic solution. That is, compared to the conventional case in which the concave portions 302a and 302b are not formed in the rectangular outer can,
When the same amount of the electrolytic solution is put, the electrolytic solution is secured in the concave portions 302a and 302b formed inside the outer can 30.
The amount of electrolyte that can be stored inside increases.

【0023】また、凹部302a、302bに保持された電解液
は、電極体20を外装缶30に収納した後に、当該電極体20
に徐々に浸透してゆき、電解液は最終的にほとんど電極
体20に含浸されることとなる。そして、このような凹部
302a、302bを形成しても、外装缶30の外寸は変わらず、
外装缶30として必要な強度を保つことができるので、凹
部302a、302bを形成することによってエネルギー密度が
減少したり、強度不足になることもない。
The electrolyte held in the recesses 302a and 302b is applied to the electrode body 20 after the electrode body 20 is housed in the outer can 30.
The electrolyte gradually penetrates into the electrode body 20 finally. And such a recess
Even if 302a and 302b are formed, the outer size of the outer can 30 does not change,
Since the strength required for the outer can 30 can be maintained, the formation of the concave portions 302a and 302b does not reduce the energy density or cause insufficient strength.

【0024】以上のようなことから、本実施の形態で
は、従来と同様の電池サイズを維持しながらも電解液を
良好に保持し、高いエネルギー密度を確保することが可
能になっている。 1-3.実施の形態に関するその他の事項 ここで、前記凹部302a、302bは外装缶20内部のどこに設
けてもよいが、その場合は電池強度を考慮して、なるべ
く外装缶20の材料厚みが比較的厚い場所を選ぶのが望ま
しい。その点、外装缶30の底部はこれ以外の部分よりも
肉厚なので比較的凹部302a、302bを形成するのに適して
いる。また、外装缶30の側面に凹部302a、302bを形成す
ると、電極体20を外装缶30に収納する際にひっかかり、
電極体20を損傷する可能性があるが、外装缶の底部に凹
部302a、302bを形成するようにすると、電極体20を外装
缶30に収納する際に電極体20が凹部302a、302bの縁に引
っ掛かることもないので、製造プロセスにおける作業効
率としても有利である。
As described above, in the present embodiment, it is possible to maintain the electrolyte size well and maintain a high energy density while maintaining the same battery size as the conventional one. 1-3.Other matters relating to the embodiment Here, the recesses 302a and 302b may be provided anywhere inside the outer can 20, but in that case, in consideration of battery strength, the material thickness of the outer can 20 is preferably as small as possible. It is desirable to choose a relatively thick place. In this respect, the bottom of the outer can 30 is thicker than the other portions, so that it is relatively suitable for forming the concave portions 302a and 302b. Further, when the concave portions 302a and 302b are formed on the side surface of the outer can 30, the electrode body 20 is caught when being stored in the outer can 30,
Although there is a possibility that the electrode body 20 may be damaged, if the recesses 302a and 302b are formed at the bottom of the outer can, the electrode body 20 may be positioned at the edges of the recesses 302a and 302b when the electrode body 20 is stored in the outer can 30. This is also advantageous in terms of work efficiency in the manufacturing process.

【0025】また、前記凹部302a、302bは、外装缶に収
納される電極体の底部よりも小さい寸法で形成されてい
るので、電極体20が凹部302a、302bにはまりこむのが防
止されるので、電極体20の底部と外装缶30の内面底部と
の間に電解液を蓄える空間が確保でき、かつ外装缶30の
強度を保つことができるので望ましい。特に、上記のよ
うに凹部302a、302bを電池1の横方向(y方向)に沿っ
て2条の溝状に形成すれば、外装缶30の強度を維持しな
がら凹部302a、302bの容積を比較的大きく確保できるの
で有利である。
Further, since the recesses 302a and 302b are formed to have a size smaller than the bottom of the electrode body accommodated in the outer can, the electrode body 20 is prevented from being fitted into the recesses 302a and 302b. In addition, a space for storing the electrolyte can be secured between the bottom of the electrode body 20 and the bottom of the inner surface of the outer can 30, and the strength of the outer can 30 can be maintained. In particular, if the concave portions 302a and 302b are formed in two grooves along the lateral direction (y direction) of the battery 1 as described above, the volume of the concave portions 302a and 302b can be compared while maintaining the strength of the outer can 30. This is advantageous because it can secure a large target.

【0026】また、この形態の電池では、過放電や過充
電から電池を保護するために保護回路(不図示)を取り
付けることがある。この場合、保護回路から延長した電
力供給用のタブが、負極端子101と外装缶30底部の正極
端子にそれぞれ取り付けられる。このとき、電池1で
は、凹部302a、302bを形成した外装缶30の内面底部に対
応する外面底部が、面一状に加工されているので、この
部分に容易に導電タブを取り付けることができるといっ
た効果も奏される。
In the battery of this embodiment, a protection circuit (not shown) may be attached to protect the battery from overdischarge or overcharge. In this case, power supply tabs extending from the protection circuit are attached to the negative terminal 101 and the positive terminal at the bottom of the outer can 30, respectively. At this time, in the battery 1, since the outer bottom corresponding to the inner bottom of the outer can 30 in which the concave portions 302a and 302b are formed is processed to be flush, the conductive tab can be easily attached to this portion. The effect is also achieved.

【0027】なお、本発明は単純に外装缶30の材料厚み
を薄くする(例えば外装缶30の底面を薄くする)ことに
よって、外装缶30の容積を確保する技術とは異なる。す
なわち、単純に外装缶30の厚みを薄くするだけでは十分
な電池強度が得られないため、本発明では外装缶30の内
面に凹部302a、302bを形成するものとしている。ここ
で、凹部302a、302bの面積としては、実施の形態のよう
に凹部302a、302bを外装缶30の底部に形成する場合に
は、外装缶内底面の面積の6割程度の大きさで作製する
のが望ましい。
The present invention is different from the technique of simply reducing the material thickness of the outer can 30 (for example, reducing the bottom surface of the outer can 30) to secure the volume of the outer can 30. That is, simply reducing the thickness of the outer can 30 does not provide sufficient battery strength. Therefore, in the present invention, the concave portions 302a and 302b are formed on the inner surface of the outer can 30. Here, as for the area of the concave portions 302a and 302b, when the concave portions 302a and 302b are formed at the bottom of the outer can 30 as in the embodiment, the area is about 60% of the area of the inner bottom surface of the outer can. It is desirable to do.

【0028】2.実施例の作製 上記実施の形態に基づき、下記の仕様を実施例のリチウ
ムイオン電池(縦50mm×横34mm×奥行き(厚さ)10mmの
寸法)として、また凹部302a、302bを形成しない電池を
比較例としてそれぞれ作製し、両者の性能比較実験を行
った。電池仕様は以下の通りである。ここで実施例と比
較例とは、実施例の外装缶に凹部302a、302bの形成する
ことで差違をつけるのみとした。
2. Preparation of Example Based on the above-described embodiment, the following specifications were used as the lithium-ion battery of the example (dimensions of 50 mm in length × 34 mm in width × 10 mm in depth (thickness)), and concave portions 302 a and 302 b were formed. Batteries that were not formed were manufactured as comparative examples, respectively, and a performance comparison experiment of both batteries was performed. The battery specifications are as follows. The difference between the example and the comparative example is that only the recesses 302a and 302b are formed in the outer can of the example.

【0029】<電極体の作製>正極204は、長さ708mm、
幅38.5mm、厚さ20μmのアルミニウム製正極芯体の表面
に、コバルト酸リチウムを主体として、その他導電剤と
して黒鉛と、結着剤としてポリフッ化ビニリデンを含む
正極合剤スラリー(溶剤はN-メチル-2-ピロリドン)を
塗布後、溶剤を乾燥揮発させ、厚さ165μmに圧縮して
作製した。
<Preparation of Electrode Body> The positive electrode 204 has a length of 708 mm,
A positive electrode mixture slurry containing lithium cobaltate as a main component, graphite as a conductive agent, and polyvinylidene fluoride as a binder (solvent is N-methyl) was formed on the surface of a 38.5 mm wide, 20 μm thick aluminum positive electrode core. After coating with (-2-pyrrolidone), the solvent was dried and volatilized and compressed to a thickness of 165 μm.

【0030】なお、電極体20の最外周部分になる領域
は、タブを取り出すためにスラリーを塗布しないことと
した。そして正極204の最外周の一部(スラリーを塗布
しない領域の一部)にほぼU字型の切り込みを入れ、当
該切り込み部分を起こしてタブ(正極タブ)とした。負
極は、長さ670mm、幅40.5mm、厚さ18μmの銅製負極芯
体表面に、天然黒鉛を主体として、その他結着剤として
ポリフッ化ビニリデンを含む負極合剤スラリー(溶剤は
N-メチル-2-ピロリドン)を塗布後、溶剤を乾燥揮発さ
せ、厚さ150μmに圧縮したものである。
It should be noted that no slurry was applied to the region that would be the outermost periphery of the electrode body 20 in order to take out the tab. Then, a substantially U-shaped cut was made in a part of the outermost periphery of the positive electrode 204 (part of a region where the slurry was not applied), and the cut part was raised to form a tab (positive electrode tab). The negative electrode is a negative electrode mixture slurry containing natural graphite as the main component and polyvinylidene fluoride as a binder (solvent is N-methyl-2) on the surface of a copper negative electrode core having a length of 670 mm, a width of 40.5 mm and a thickness of 18 μm. -Pyrrolidone), the solvent was dried and volatilized and compressed to a thickness of 150 μm.

【0031】なお、当該負極については、電極体20の巻
き始めになる部分(電極体20の中心部分)にニッケル製
のタブ(負極タブ)を取り付けた。このように作製した
正極204および負極を、正極204が外面となるように、幅
43mm、厚さ27μmのポリエチレン製セパレータ202を介
して巻き回し、巻き終わり部分を粘着テープで固定す
る。そして、これを外装缶30の形状に合わせて押しつぶ
し、縦43mm、横31mm、厚さ8mmの電極体20として成形す
る。 <電池の組立て>上記のように組み立てた電極体20は、
外装缶30(底面材厚0.7mm、それ以外の部分の材厚0.6m
m)の内部に収納する。このとき、負極タブと負極リベ
ット106とを電気的に接続する。また、正極タブは、開
口部301と封口体10の周縁部105との間に挟み込んで長さ
を調整し、これらとともにレーザ溶接した。
The negative electrode was provided with a nickel tab (negative electrode tab) at the portion where the winding of the electrode body 20 started (the central portion of the electrode body 20). The positive electrode 204 and the negative electrode manufactured in this manner were wrapped so that the positive electrode 204 became the outer surface.
It is wound around a polyethylene separator 202 having a thickness of 43 mm and a thickness of 27 μm, and the end of the winding is fixed with an adhesive tape. Then, this is crushed according to the shape of the outer can 30 to form an electrode body 20 having a length of 43 mm, a width of 31 mm, and a thickness of 8 mm. <Assembly of Battery> The electrode assembly 20 assembled as described above
Outer can 30 (bottom material thickness 0.7mm, other material thickness 0.6m
m). At this time, the negative electrode tab and the negative electrode rivet 106 are electrically connected. The length of the positive electrode tab was adjusted by sandwiching it between the opening 301 and the peripheral portion 105 of the sealing body 10, and laser welding was performed together with these.

【0032】これにより、電解液注入前の電池を完成し
た。 <実験>上記のように組み立てた電解液注入前の電池
を、実施例と比較例で各100個ずつ作製した。そして、
個々の電池の質量を計測したのち、電解液4.8gを注入し
た。電解液は、エチレンカーボネートとジメチルカーボ
ネートを体積比で3:7の割合で混合した溶媒に、電解質
として六フッ化リン酸リチウムを1mol/lの濃度で溶解
して調整したものを用いた。なお電解液の注入量として
は、電池性能が十分発揮するのに最適と思われる量を用
いた。そして注入終了直後に、注入口からあふれて外装
缶の外面に付着している電解液をふき取り、再度質量を
計測して、次の式1によりあふれ出た電解液質量(電解
液吐出量)を求めた。 (式1) あふれた電解液量(電解液吐出量、g)=4.8-(注入後
質量-注入前質量) この実験結果を次の表1にまとめる。
Thus, the battery before the injection of the electrolyte was completed. <Experiment> The batteries assembled as described above before the injection of the electrolyte solution were manufactured in Examples and Comparative Examples. And
After measuring the mass of each battery, 4.8 g of electrolyte was injected. The electrolyte used was prepared by dissolving lithium hexafluorophosphate at a concentration of 1 mol / l as an electrolyte in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 3: 7. As the injection amount of the electrolytic solution, an amount considered to be optimal for sufficiently exhibiting battery performance was used. Immediately after the end of the injection, the electrolyte overflowing from the injection port and adhering to the outer surface of the outer can is wiped off, the mass is measured again, and the mass of the overflowed electrolyte (electrolyte discharge amount) is calculated by the following equation 1. I asked. (Equation 1) Amount of overflowing electrolyte solution (discharge amount of electrolyte solution, g) = 4.8-(mass after injection-mass before injection) The experimental results are summarized in Table 1 below.

【0033】[0033]

【表1】 3.実験結果の考察 実施例と比較例の電解液吐出量は、表1に示すように、
それぞれ平均0.00g、平均0.11gであった。このように、
同じ条件下でも比較例では吐出量の平均値が多いのに対
し、実施例では吐出量の平均値が皆無になるまで改善さ
れており、凹部302a、302bによって電解液の吐出が良好
に防止されているのが窺える。
【table 1】 3.Discussion of the experimental results The discharge amount of the electrolyte of the example and the comparative example is as shown in Table 1,
The average was 0.00 g and the average was 0.11 g, respectively. in this way,
Even under the same condition, the average value of the discharge amount is large in the comparative example, whereas in the example, the average value of the discharge amount is improved until there is no average, and the discharge of the electrolytic solution is favorably prevented by the concave portions 302a and 302b. It can be seen that it is.

【0034】4.その他の事項 実施の形態および実施例で角形のリチウムイオン電池の
例を示したが、本発明はこれに限定するものではなく、
他の発電素体を有する角形外装缶を持つ電池に適用して
もよい。また、外装缶の材質としてアルミニウム材を用
いる例を示したが、アルミニウム合金をはじめ、アルミ
ニウムを主体とする材料であれば、他の成分が混合され
ていてもよい。
4. Other Matters Although an example of a prismatic lithium-ion battery has been described in the embodiments and examples, the present invention is not limited to this.
The present invention may be applied to a battery having a rectangular outer can having another power generating element. Further, although an example in which an aluminum material is used as the material of the outer can has been described, other components may be mixed as long as the material is mainly aluminum, such as an aluminum alloy.

【0035】また、凹部の形状は上記2条の溝状に限定
するものではなく、これ以外の形状であってもよいが、
外装缶の強度を良好に確保するためには、大型の凹部を
1つ設けるよりも小型の凹部を複数設ける方がよいと思
われる。さらに、電極体は帯状の電極およびセパレータ
を巻回した構成に限定せず、例えば短冊型など、これ以
外のタイプであってもよい。
The shape of the recess is not limited to the above-mentioned two grooves, but may be any other shape.
In order to ensure the strength of the outer can, a large concave
It seems better to provide a plurality of small recesses than to provide one. Further, the electrode body is not limited to a configuration in which a strip-shaped electrode and a separator are wound, and may be another type such as a strip shape.

【0036】[0036]

【発明の効果】 以上のことから明らかなように、本発
明はアルミニウムを主体とする材料からなり、電解液と
電極体からなる発電素体を収納する角形外装缶であっ
て、外装缶の内面に凹部が形成され、かつ、当該凹部の
周縁部に対応する外装缶の外面部分が面一状に保たれた
構成なので、外装缶のサイズを増大させることなく良好
に電解液を保持できる。しかも、凹部を形成しても外装
缶の外観は従来と変わらないので、高いエネルギー密度
を維持できるといった効果が得られる。
As is apparent from the above, the present invention relates to a rectangular outer can which is made of a material mainly composed of aluminum and stores a power generating element composed of an electrolyte and an electrode body. Since the concave portion is formed in the outer can and the outer surface portion of the outer can corresponding to the peripheral portion of the concave portion is kept flush, the electrolyte can be satisfactorily held without increasing the size of the outer can. In addition, the appearance of the outer can remains unchanged even when the recess is formed, so that an effect of maintaining a high energy density can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一適用例である角形外装缶電池の主要
構成を示す一部切欠図である。
FIG. 1 is a partially cutaway view showing a main configuration of a rectangular outer can battery which is one application example of the present invention.

【図2】角形外装缶の形状を示す一部切欠図である。 (a)主面方向から見た一部切欠図である。 (b)開口部方向から見た一部切欠図である。 (c)側面方向から見た一部切欠図である。FIG. 2 is a partially cutaway view showing the shape of a rectangular outer can. (A) is a partially cutaway view seen from the main surface direction. (B) It is the partially cutaway view seen from the opening part direction. (C) is a partially cutaway view as viewed from the side.

【符号の説明】[Explanation of symbols]

10 封口体 20 電極体 30 外装缶 202 セパレータ 204 正極 302a、302b 凹部 10 Sealing body 20 Electrode body 30 Outer can 202 Separator 204 Positive electrode 302a, 302b Recess

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H011 AA03 AA09 BB04 CC06 DD03 KK01 5H029 AJ03 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ03 CJ13 DJ02 DJ14 EJ01 HJ04 HJ12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H011 AA03 AA09 BB04 CC06 DD03 KK01 5H029 AJ03 AJ14 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ03 CJ13 DJ02 DJ14 EJ01 HJ04 HJ12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを主体とする材料からな
り、電解液と電極体からなる発電素体を収納する角形外
装缶であって、 外装缶の内面に凹部が形成され、 かつ、当該凹部の周縁部に対応する外装缶の外面部分が
面一状に保たれた構成であることを特徴とする角形外装
缶。
Claims 1. A rectangular outer can made of a material mainly composed of aluminum and containing a power generating element composed of an electrolyte and an electrode body, wherein a concave portion is formed on an inner surface of the outer can, and a peripheral edge of the concave portion is provided. A rectangular outer can having a configuration in which an outer surface portion of the outer can corresponding to the portion is kept flush.
【請求項2】 前記凹部は、外装缶の底部に形成されて
いることを特徴とする請求項1に記載の角形外装缶。
2. The rectangular outer can according to claim 1, wherein the recess is formed at a bottom of the outer can.
【請求項3】 前記凹部は、外装缶に収納される電極体
の底部よりも小さい寸法で形成されていることを特徴と
する請求項2に記載の角形外装缶。
3. The rectangular outer can according to claim 2, wherein the recess is formed to have a size smaller than a bottom of an electrode body housed in the outer can.
【請求項4】 請求項1〜3のいずれかに記載の角形外装
缶を用いることを特徴とする電池。
4. A battery using the rectangular outer can according to any one of claims 1 to 3.
【請求項5】 アルミニウムを主体とする材料から角形
外装缶を作製する外装缶作製ステップと、電解液と電極
体からなる発電素体を前記外装缶に収納する第一ステッ
プを経る電池の製造方法であって、 前記外装缶作製ステップでは、外装缶の外面部分を面一
状に保ちながら、前記板材をその厚み方向に変形させて
外装缶の内面に凹部を形成することを特徴とする電池の
製造方法。
5. A method for producing a battery, comprising: an outer can manufacturing step of manufacturing a rectangular outer can from a material mainly composed of aluminum; and a first step of storing a power generating element including an electrolyte and an electrode body in the outer can. In the outer can manufacturing step, the battery is characterized in that the plate is deformed in its thickness direction to form a recess on the inner surface of the outer can, while keeping the outer surface portion of the outer can flush. Production method.
【請求項6】 前記外装缶作製ステップでは、前記外装
缶の底部において、当該外装缶に収納される電極体の底
部よりも小さい寸法で前記凹部を形成することを特徴と
する請求項5に記載の電池の製造方法。
6. The outer can manufacturing step, wherein the recess is formed at the bottom of the outer can with a smaller size than the bottom of the electrode body housed in the outer can. Battery manufacturing method.
JP2000306866A 2000-10-05 2000-10-05 Square-shaped sheath can and battery using this Withdrawn JP2002117814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306866A JP2002117814A (en) 2000-10-05 2000-10-05 Square-shaped sheath can and battery using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306866A JP2002117814A (en) 2000-10-05 2000-10-05 Square-shaped sheath can and battery using this

Publications (2)

Publication Number Publication Date
JP2002117814A true JP2002117814A (en) 2002-04-19
JP2002117814A5 JP2002117814A5 (en) 2007-11-15

Family

ID=18787476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306866A Withdrawn JP2002117814A (en) 2000-10-05 2000-10-05 Square-shaped sheath can and battery using this

Country Status (1)

Country Link
JP (1) JP2002117814A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778980B1 (en) 2005-12-29 2007-11-22 삼성에스디아이 주식회사 Lithuim rechargeable battery
JP2009076248A (en) * 2007-09-19 2009-04-09 Fuji Heavy Ind Ltd Power storage device and its manufacturing method
EP2639850A1 (en) 2012-03-12 2013-09-18 GS Yuasa International Ltd. Electric Storage Device
KR20130105370A (en) 2012-03-12 2013-09-25 가부시키가이샤 지에스 유아사 Electric storage device
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
CN103748707A (en) * 2011-08-24 2014-04-23 Sk新技术株式会社 Battery module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778980B1 (en) 2005-12-29 2007-11-22 삼성에스디아이 주식회사 Lithuim rechargeable battery
JP2009076248A (en) * 2007-09-19 2009-04-09 Fuji Heavy Ind Ltd Power storage device and its manufacturing method
CN103748707A (en) * 2011-08-24 2014-04-23 Sk新技术株式会社 Battery module
JP2014529855A (en) * 2011-08-24 2014-11-13 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Battery module
EP2748881A4 (en) * 2011-08-24 2015-05-20 Sk Innovation Co Ltd Battery module
EP2639850A1 (en) 2012-03-12 2013-09-18 GS Yuasa International Ltd. Electric Storage Device
KR20130105370A (en) 2012-03-12 2013-09-25 가부시키가이샤 지에스 유아사 Electric storage device
US9065082B2 (en) 2012-03-12 2015-06-23 Gs Yuasa International Ltd. Electric storage device
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery

Similar Documents

Publication Publication Date Title
JP4806270B2 (en) Square battery
KR100883179B1 (en) Sealed and square type battery
CN101552336B (en) Secondary battery
EP1760820A1 (en) Rectangular lithium secondary battery
JP3732945B2 (en) Sealed battery
TW201729451A (en) Electrode part for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2000077061A (en) Lithium ion battery
KR100670482B1 (en) Jelly-roll electrode assembly and the secondary batter employing the same
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP3470051B2 (en) Lithium secondary battery
JP2004127541A (en) Electrode group for battery, and nonaqueous electrolyte secondary battery using the same
JP2006278184A (en) Square battery and its manufacturing method
JP5000080B2 (en) Battery with spiral electrode group
JP2011129446A (en) Laminated type battery
WO2013047515A1 (en) Non-aqueous electrolyte secondary battery
JP2020102311A (en) Wound type battery and manufacturing method of wound type battery
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2000123860A (en) Electrolyte filling method of lithium secondary battery and electrode terminal structure
JP2002117814A (en) Square-shaped sheath can and battery using this
JP2011222128A (en) Secondary battery
JPH11154500A (en) Nonaqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2011233462A (en) Battery and manufacturing method thereof and method for joining metal sheet
JP5334109B2 (en) Laminated battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091119