JP2002116274A - Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus - Google Patents

Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus

Info

Publication number
JP2002116274A
JP2002116274A JP2000304908A JP2000304908A JP2002116274A JP 2002116274 A JP2002116274 A JP 2002116274A JP 2000304908 A JP2000304908 A JP 2000304908A JP 2000304908 A JP2000304908 A JP 2000304908A JP 2002116274 A JP2002116274 A JP 2002116274A
Authority
JP
Japan
Prior art keywords
reaction
molten salt
nuclear fusion
fusion
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000304908A
Other languages
Japanese (ja)
Inventor
Hidetsugu Ikegami
栄胤 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegami Hidetsugu
Original Assignee
Ikegami Hidetsugu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegami Hidetsugu filed Critical Ikegami Hidetsugu
Priority to JP2000304908A priority Critical patent/JP2002116274A/en
Publication of JP2002116274A publication Critical patent/JP2002116274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear fusion reaction method for generating a high- density ions/electron plasma using a simple means, and to provide a clean energy which is environmentally friendly without emitting radioactive wastes. SOLUTION: High-density ions/electron plasma are generated by injecting ions accelerated by a gas discharge plasma to a molten salt surface of LiH or the like in a cathode. Coulomb barrier between atomic nuclei is countervailed by these high-density ions/electron plasma. Moreover, atomic nuclei are brought adjacent to reaction distance by a condensation force acting between the atomic nuclei in the molten salt, thereby inducing nuclear fusion reaction. Thermal energy, generated when an apparatus for inducing the nuclear fusion reaction is made a reactor core, is extracted via a coolant, while a nuclear fusion substance is separated from He which is a nuclear fusion reaction product material, and is returned to the reactor core and reused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融塩又は溶融金
属を触媒溶剤として行なう核融合反応方法および、該核
融合反応により得られる核融合エネルギーを供給する装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fusion reaction method using a molten salt or a molten metal as a catalyst solvent, and an apparatus for supplying nuclear fusion energy obtained by the nuclear fusion reaction.

【0002】[0002]

【発明が解決しようとする課題】従来から今日まで核融
合反応の実用に充分な高密度のイオン・電子プラズマは
未だ実現していない。本発明は既存の手段によって前記
高密度のイオン・電子プラズマを発生する核融合反応方
法を提供することを目的とする。さらに、放射性廃棄物
を殆ど排出しない環境にやさしいクリーンエネルギーを
提供することを目的とする。
A high-density ion / electron plasma sufficient for practical use of a nuclear fusion reaction has not yet been realized until now. An object of the present invention is to provide a nuclear fusion reaction method for generating the high-density ion-electron plasma by existing means. Another object of the present invention is to provide environmentally friendly clean energy that emits little radioactive waste.

【0003】[0003]

【課題を解決するための手段】上記課題を達成する手段
として本発明は、核融合物質を成分とするか溶解する溶
融塩または溶融金属を箱状陰極中に満たしこの表面にガ
ス放電プラズマで加速したイオンを注入して高密度のイ
オン・電子プラズマを生成し、これら高密度のイオン・
電子プラズマによって原子核間のクーロン障壁を減殺す
ると共に、原子核間に働く凝縮力によって、原子核同志
を反応距離に近接させ、核融合反応を誘発させることを
特徴とする。
As a means for achieving the above object, the present invention fills a box-shaped cathode with a molten salt or a molten metal which contains or dissolves a fusion material, and accelerates the surface with a gas discharge plasma. Implanted ions to generate high-density ion-electron plasma,
In addition to reducing the Coulomb barrier between nuclei by electron plasma, the condensing force acting between the nuclei brings nuclear nuclei close to the reaction distance and induces a nuclear fusion reaction.

【0004】さらに、溶融塩成分の調整や電極を水素等
の核融合物質を透過または吸着する多孔性材質とした
り、電子イオンの高密度化を図って電極表面を無数の突
起構造または鋸歯状とし、印加電圧を直流、交流両用或
いはパルス化することを特徴とする。
Further, the electrode is made of a porous material that allows for the adjustment of the molten salt component, and allows the fusion material such as hydrogen to permeate or adsorb, and the electrode surface is made to have a myriad of projection structures or saw-tooth shapes in order to increase the density of electron ions. The application voltage is used for both DC and AC or pulsed.

【0005】[0005]

【作用】本発明において、対象となる核融合反応は、水
素ー水素、水素ーリチウム、水素ーベリリウム、水素ー
ホウ素、水素ー炭素、水素ー窒素、水素ー酸素、水素ー
フッ素の安定同位体の全ての組み合わせに加えて、
e等の本発明の核融合反応で発生する二次粒子が誘発す
るものも対象となるが、説明の便宜上水素ーリチウムと
水素ー水素について説明する。
In the present invention, the target fusion reaction is hydrogen-hydrogen, hydrogen-lithium, hydrogen-beryllium, hydrogen-boron, hydrogen-carbon, hydrogen-nitrogen, hydrogen-oxygen, and hydrogen-fluorine stable isotopes. in addition to the combination of, 3 H
For example, hydrogen-lithium and hydrogen-hydrogen will be described for the sake of convenience.

【0006】リチウムと水素は次の化学式(1)で水素
化リチウム(LiH)を生成する。
[0006] Lithium and hydrogen form lithium hydride (LiH) by the following chemical formula (1).

【化1】 LiHはLi金属に比べ密度が大で、大気中でも安定で
ある。Liイオン半径はHイオン半径より小さく両
イオンは空間的に一部重なり合っている。したがって、
両イオンを更に近接せしめ原子核間クーロン障壁を減殺
するように電子遮蔽効果と溶融体内部の原子核間凝縮力
を増大せしめれば次の核反応式(2)および(3)の核
融合反応が起こる。
Embedded image LiH has a higher density than Li metal and is stable in the air. The Li + ion radius is smaller than the H ion radius, and both ions partially overlap spatially. Therefore,
When the electron shielding effect and the internuclear condensing force inside the melt are increased to bring both ions closer together and reduce the Coulomb barrier between nuclei, a nuclear fusion reaction of the following nuclear reaction equations (2) and (3) occurs. .

【0007】[0007]

【化2】 Embedded image

【化3】 ここで式の右辺の反応エネルギーはガンマ線や生成核の
運動エネルギーとして放出される。MeVはメガ電子ボ
ルトである。
Embedded image Here, the reaction energy on the right side of the equation is emitted as kinetic energy of gamma rays and generated nuclei. MeV is mega electron volts.

【0008】次に、水素同志すなわちH(陽子)と
H(重陽子)の間では次の(4)式および(5)式に加
えてn(中性子)発生の(6)式の核融合反応が起こ
る。
[0008] Next, two hydrogens, ie, 1 H (proton) and 2 H
Between H (deuteron), in addition to the following equations (4) and (5), a nuclear fusion reaction of equation (6) of n (neutron) generation occurs.

【化4】 Embedded image

【化5】 Embedded image

【化6】 Embedded image

【0009】一般に、核子当りの注入イオンエネルギー
がリントハルト領域と呼ばれる100keV以下、特に
本出願の特徴である1keV近傍の緩衝エネルギー領域
では物質中のイオン飛程に対する核阻止効果が顕著とな
りイオンが原子を励起することなく原子核と正面衝突を
する結果、衝突イオンの一部が核融合反応を起こすよう
になる。
In general, the ion energy implanted per nucleon is 100 keV or less, which is called the Lint-Hart region, and especially in the buffer energy region near 1 keV, which is a feature of the present invention, the nuclear blocking effect on the ion range in a substance becomes remarkable, and ions are converted into atoms. As a result of a head-on collision with the nucleus without excitation, some of the colliding ions will cause a nuclear fusion reaction.

【0010】この場合の反応断面積は下記数式(1)で
与えられる。
The reaction cross section in this case is given by the following equation (1).

【数1】 (Equation 1)

【0011】上記数式(1)の右辺の断面積因子S
(E)以外は、二つの原子核がクーロン障壁を貫いて反
応距離に近接する確率であり、Eはガモフ・エネルギ
ーで次の数式(2)で表される。
The cross-sectional area factor S on the right side of the above equation (1)
(E) other than is the probability that two nuclei close to the reaction distance through the Coulomb barrier, E G is represented by the following formula (2) in Gamow energy.

【数2】 (Equation 2)

【0012】上記数式(2)において、In the above equation (2),

【数3】 数式(3)で示されるr*は電荷がz、zの2種の
原子核の換算質量μに対応する核ボーア半径である。
(Equation 3) R * shown in Expression (3) is a nuclear Bohr radius corresponding to the reduced mass μ of two kinds of nuclei having charges z 1 and z 2 .

【0013】上記数式(1)中のEは原子核周辺の電
子集団による原子核間クーロン障壁減殺の遮蔽エネルギ
ーで次の数式(4)で表される。
[0013] E S of the equation (1) is represented by shielding the energy of the nuclei between Coulomb barrier attenuation by electron population near nuclei by the following equation (4).

【数4】 (Equation 4)

【0014】本発明のような場合の遮蔽距離Dは、ボー
ア半径aとウィグナー・ザイツ半径aでD≒(a
a)1/2となり、aは電子数密度neで数式(5)
で表される。
[0014] Shielding the distance D in the case such as the present invention, the Bohr radius a B and Wigner-Seitz radius a with D ≒ (a
B a) 1/2 , where a is the electron number density ne and the equation (5)
It is represented by

【数5】 (Equation 5)

【0015】数式(1)における反応断面積は、溶融物
質中では原子核間の凝縮力で20桁ないし30桁以上に
も増大する。
The reaction cross section in the equation (1) increases to 20 to 30 or more digits due to the condensing force between nuclei in a molten material.

【0016】凝縮力で誘発した核融合反応の例は、自然
界で起きている超新星過程にかかわる白色矮星内の核反
応と考えられている。そして、同様な反応は原理的には
1Gbar(ギガバール)の超高圧下のLiと金属化し
たHの混合流体をつくれば可能とされ反応断面積の増大
度が次の文献に開示されている。 S.Ichimaru and H.Kitamura, Physics of Plasmas 6, 2
649 (1999) S.Ichimaru, Physics Letters A266, 167 (2000) しかしながら実用規模の大きさの空間で1Gbarの超
高圧を定常的に発生させる技術手段は目下のところ期待
できない。
An example of a condensation reaction induced by a condensing force is considered to be a nuclear reaction in a white dwarf involved in a supernova process occurring in nature. A similar reaction is theoretically possible if a mixed fluid of Li and metallized H is formed under an ultra-high pressure of 1 Gbar (gigabar), and the degree of increase in the reaction cross-section is disclosed in the following document. S.Ichimaru and H.Kitamura, Physics of Plasmas 6 , 2
649 (1999) S. Ichimaru, Physics Letters A266 , 167 (2000) However, technical means for constantly generating an ultrahigh pressure of 1 Gbar in a space of a practical scale cannot be expected at present.

【0017】本発明では高密度の電子・イオンプラズマ
が大気中の溶融塩で得られていることを考慮して、前記
引用文献で示されている増大度に加えて反応断面積をイ
オンの熱エネルギー領域の値より大幅に大きくするため
にイオンをガス放電プラズマ中で加速し、緩衝領域のエ
ネルギーで溶融塩または溶融金属中に注入し核融合反応
を実現するものである。
In the present invention, in consideration of the fact that a high-density electron / ion plasma is obtained from a molten salt in the atmosphere, the reaction cross-section is calculated in addition to the degree of increase shown in the above cited document. The ion is accelerated in the gas discharge plasma in order to greatly increase the value in the energy region, and is injected into the molten salt or molten metal with the energy in the buffer region to realize a nuclear fusion reaction.

【0018】[0018]

【発明の実施の形態】本発明にかかる核融合反応発生方
法および核融合エネルギー供給装置の実施の形態につい
て図1と図2を参照して説明する。図1は本発明方法を
実施する核融合反応装置1の要部の概略配置図であっ
て、陰極2、陽極3、溶融塩4、水素、重水素ガス補給
口5、リチウム補給口6、絶縁材7、反応槽8、電源9
の各構成要素で構成されている。ただし、陽極の補給構
造や対陰極は簡略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a nuclear fusion reaction generating method and a nuclear fusion energy supply apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic layout view of a main part of a nuclear fusion reactor 1 for carrying out the method of the present invention. The cathode 2, anode 3, molten salt 4, hydrogen and deuterium gas supply port 5, lithium supply port 6, insulation Material 7, reaction tank 8, power supply 9
Of each component. However, the supply structure of the anode and the counter cathode are simplified.

【0019】陰極2は核融合物質補給型の構造をしてお
り、水素やリチウムを透過しやすい多孔質材料で製作さ
れている。
The cathode 2 has a fusion material supply type structure, and is made of a porous material that easily permeates hydrogen and lithium.

【0020】しかして、陰極2の中の溶融塩表面に接し
ている放電プラズマ中で発生する高電界のため、ガスプ
ラズマ中の水素イオン(重陽子)は溶融塩表面に注入さ
れる。一方、陰極内の電子は溶融塩表面に集まり、ここ
でイオンと共に高密度プラズマを発生して数式(4)に
よれば10eV以上の遮蔽エネルギーESで数式(1)
の反応断面積を大きくする。
However, due to the high electric field generated in the discharge plasma in contact with the surface of the molten salt in the cathode 2, hydrogen ions (deuterons) in the gas plasma are injected into the surface of the molten salt. On the other hand, electrons in the cathode collect in the molten salt surface, where it generates a high density plasma with ions formula in Equation (4) above 10eV According to shield energy E S (1)
To increase the reaction cross section.

【0021】数式(1)に、この遮蔽エネルギーと重陽
子の注入エネルギーEd=1keVに対応するE=(2
/3)keVを代入して得られる反応断面積は非常に小
さいが、前記引用文献に提示されている増大度は本発明
の例では1030ないし1040近くなり、溶融塩中の前記
核反応式(4)に示す核融合反応の反応断面積がウラニ
ウム核***の場合に比肩するようになる。
Equation (1) shows that E = (2) corresponding to the shielding energy and the deuteron injection energy Ed = 1 keV.
/ 3) Although the reaction cross section obtained by substituting keV is very small, the degree of increase presented in the cited document is close to 10 30 to 10 40 in the example of the present invention, and the nuclear reaction in the molten salt is increased. The reaction cross section of the nuclear fusion reaction shown in equation (4) becomes comparable to that of uranium fission.

【0022】上記の例で中性子発生をする化学式(6)
の核融合反応を避けたい場合は溶融塩に重水素を混入し
ないでよい。
In the above example, the chemical formula (6) for generating neutrons
In order to avoid the nuclear fusion reaction, deuterium does not have to be mixed in the molten salt.

【0023】陰極2と陽極3の構造および放電機構は磁
界中のペンニング放電の場合若しくはこれに近いもので
あり、溶融塩表面プラズマ高密化を図って電源9を交流
ないしはパルス化することも可能である。
The structure and discharge mechanism of the cathode 2 and the anode 3 are the same as or similar to those in the case of penning discharge in a magnetic field, and the power source 9 can be AC or pulsed in order to increase the density of the molten salt surface plasma. is there.

【0024】なお、上記発明の実施態様の説明では溶融
塩として水素化リチウムを想定しているが、別の水素化
合物の溶融塩に置換してもよい。又、加速を水素イオン
ではなくリチウムイオンにし注入エネルギーを3.5k
eV程度にすれば前記核反応式(2)および(3)がお
こる。
In the above description of the embodiment of the present invention, lithium hydride is assumed as the molten salt, but it may be replaced with another molten salt of a hydrogen compound. In addition, the acceleration is set to lithium ions instead of hydrogen ions, and the implantation energy is set to 3.5 k.
At about eV, the nuclear reaction equations (2) and (3) occur.

【0025】次に、図1で説明した核融合反応装置1を
炉心として組み込んだ本発明にかかる核融合エネルギー
供給装置の実施の形態について図2に示す核融合発電装
置を実施例として説明する。本発明にかかる核融合エネ
ルギー供給装置は、炉心10、燃料・ヘリウム分離加圧
器11、ヘリウム循環ポンプ12、核融合炉圧力容器1
3、格納容器14、蒸気発生器15、タービン16、発
電機17、復水ポンプ18、給水加熱器19、給水ポン
プ20から構成されている。
Next, an embodiment of a nuclear fusion energy supply apparatus according to the present invention in which the nuclear fusion reactor 1 described in FIG. 1 is incorporated as a core will be described with reference to the nuclear fusion power generation apparatus shown in FIG. 2 as an example. The fusion energy supply apparatus according to the present invention includes a reactor core 10, a fuel / helium separation / pressurizer 11, a helium circulation pump 12, a fusion reactor pressure vessel 1
3, a containment vessel 14, a steam generator 15, a turbine 16, a generator 17, a condensate pump 18, a feed water heater 19, and a feed water pump 20.

【0026】炉心10は図1に示す核融合装置1の中に
縦横に冷却用高圧ヘリウム配管が敷設されており、ヘリ
ウムを冷媒として炉心を冷却している。本発明ではヘリ
ウムが燃焼生成物であるので、この燃焼生成物から燃料
物質を燃料・ヘリウム分離加圧器11で分離して取り出
し炉心にもどして再利用するため放射性廃棄物は排出さ
れない。なお、ヘリウム循環ポンプ12までを除く核融
合炉圧力容器13から給水ポンプ20までの各要素は従
来型の加圧水型原子炉発電装置と同じである。
A high-pressure helium pipe for cooling is laid vertically and horizontally in the nuclear fusion device 1 shown in FIG. 1, and the core 10 is cooled by using helium as a refrigerant. In the present invention, since helium is a combustion product, a fuel substance is separated from the combustion product by the fuel / helium separation / pressurizer 11, taken out, returned to the core, and reused, so that radioactive waste is not discharged. The components from the fusion reactor pressure vessel 13 to the water supply pump 20 except for the helium circulation pump 12 are the same as those of the conventional pressurized water reactor power generation device.

【0027】[0027]

【発明の効果】本発明によれば、溶融塩又は溶融金属中
の高密度のイオン・電子プラズマと強い原子核間凝縮力
を利用することにより、従来検討された方式に比べ、簡
便かつ、実現性の高い核融合反応を提供できるものであ
る。
According to the present invention, by utilizing a high-density ion-electron plasma and a strong internuclear condensing force in a molten salt or a molten metal, the method is simpler and more feasible than conventional methods. It is possible to provide a fusion reaction with a high degree of reaction.

【0028】さらに、本発明では従来型原子力発電の環
境上の問題が皆無のクリーンエネルギーである特徴を有
する。即ち、本発明の核融合では事実上放射性廃棄物は
排出されないようにできる。燃焼生成物は近年安全冷媒
として評価されているヘリウムガスだからである。した
がって、本発明はエネルギー問題および、これに付随す
る環境問題を同時に解決するものである。
Further, the present invention has a feature that clean energy is free from environmental problems of conventional nuclear power generation. That is, the nuclear fusion of the present invention can effectively prevent radioactive waste from being discharged. This is because the combustion products are helium gas, which has recently been evaluated as a safe refrigerant. Therefore, the present invention simultaneously solves the energy problem and the accompanying environmental problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する核融合反応装置の要部の
概略配置図。
FIG. 1 is a schematic layout view of a main part of a nuclear fusion reactor for carrying out the method of the present invention.

【図2】本発明にかかる核融合エネルギー供給装置(図
では発電装置)の概略説明図。
FIG. 2 is a schematic explanatory view of a nuclear fusion energy supply device (power generation device in the figure) according to the present invention.

【符号の説明】[Explanation of symbols]

1 核融合反応装置 2 陰極 3 陽極 4 溶融塩 5 水素、重水素ガス補給口 6 リチウム補給口 7 絶縁材 8 反応槽 9 電源 10 炉心 11 燃料・ヘリウム分離加圧器 12 ヘリウム循環ポンプ 13 核融合炉圧力容器 14 格納容器 15 蒸気発生器 16 タービン 17 発電機 18 復水ポンプ 19 給水加熱器 20 給水ポンプ DESCRIPTION OF SYMBOLS 1 Fusion reaction apparatus 2 Cathode 3 Anode 4 Molten salt 5 Hydrogen and deuterium gas supply port 6 Lithium supply port 7 Insulation material 8 Reaction tank 9 Power supply 10 Core 11 Fuel / helium separation pressurizer 12 Helium circulation pump 13 Fusion reactor pressure Vessel 14 Containment vessel 15 Steam generator 16 Turbine 17 Generator 18 Condensate pump 19 Feedwater heater 20 Feedwater pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】箱状陰極中の溶融塩表面にガス放電プラズ
マで加速したイオンを注入して、高密度のイオン・電子
プラズマを生成し、これら高密度のイオン・電子プラズ
マによって原子核間のクーロン障壁を減殺するととも
に、前記溶融塩内の原子核間に働く凝縮力によって原子
核同志を反応距離に近接させて核融合反応を誘発させる
ことを特徴とする核融合反応発生方法。
1. A high-density ion-electron plasma is generated by injecting ions accelerated by gas discharge plasma into the surface of a molten salt in a box-shaped cathode, and Coulomb between nuclei is generated by the high-density ion-electron plasma. A method for generating a nuclear fusion reaction, which comprises reducing a barrier and causing a nuclear fusion reaction by bringing nuclear nuclei close to a reaction distance by a condensing force acting between nuclei in the molten salt.
【請求項2】溶融塩は核融合物質を成分とするか、溶解
する塩または金属であり放電プラズマのガスも核融合物
質であることを特徴とする請求項1記載の核融合反応発
生方法。
2. The fusion reaction generating method according to claim 1, wherein the molten salt contains a fusion material as a component, or is a salt or a metal that dissolves, and the gas of the discharge plasma is also a fusion material.
【請求項3】陰極は、核融合物質補給型構造でこれらを
透過するか結合または吸着する多孔性材質からなり、放
電スパッタリング等による陰極汚染防止又は清浄化機能
をもつことを特徴とする請求項1または請求項2記載の
核融合反応発生方法。
3. The cathode according to claim 1, wherein the cathode has a fusion material supply type structure and is made of a porous material that transmits, binds or adsorbs them, and has a function of preventing or cleaning the cathode by discharge sputtering or the like. The method for generating a nuclear fusion reaction according to claim 1 or 2.
【請求項4】溶融塩温度やガスプラズマに印加する電界
あるいは磁界を変えることにより、反応を調整すること
を特徴とする請求項1または請求項2または請求項3記
載の核融合反応発生方法。
4. The method according to claim 1, wherein the reaction is adjusted by changing the temperature of the molten salt or the electric or magnetic field applied to the gas plasma.
【請求項5】箱状陰極中の溶融塩表面に放電プラズマで
加速したイオンを注入して、高密度のイオン・電子プラ
ズマを生成し、これら高密度のイオン・電子プラズマに
よって原子核間のクーロン障壁を減殺するとともに、前
記溶融塩内の原子核間に働く凝縮力によって原子核同志
を反応距離に近接させて核融合反応を誘発させる核融合
反応装置を炉心として、前記核融合反応装置で発生され
る熱エネルギーを冷媒を介して取出し、核融合反応生成
物のヘリウムからは燃料物質を分離して炉心にもどし再
利用することを特徴とする核融合エネルギー供給装置。
5. A high-density ion-electron plasma is generated by injecting ions accelerated by discharge plasma into the surface of a molten salt in a box-shaped cathode, and a Coulomb barrier between atomic nuclei is generated by the high-density ion-electron plasma. And the heat generated by the fusion reactor, using a fusion reactor that induces a fusion reaction by bringing nuclear nuclei close to a reaction distance by a condensing force acting between nuclei in the molten salt and inducing a nuclear fusion reaction. A fusion energy supply device, wherein energy is taken out through a refrigerant, and a fuel substance is separated from helium as a fusion reaction product, returned to a core, and reused.
JP2000304908A 2000-10-04 2000-10-04 Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus Pending JP2002116274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304908A JP2002116274A (en) 2000-10-04 2000-10-04 Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304908A JP2002116274A (en) 2000-10-04 2000-10-04 Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus

Publications (1)

Publication Number Publication Date
JP2002116274A true JP2002116274A (en) 2002-04-19

Family

ID=18785871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304908A Pending JP2002116274A (en) 2000-10-04 2000-10-04 Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus

Country Status (1)

Country Link
JP (1) JP2002116274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163382A3 (en) * 2012-04-25 2014-01-30 Ionic Solutions Ltd. Apparatus and process for penetration of the coulomb barrier
JP2016524705A (en) * 2013-05-22 2016-08-18 ユニファイド グラヴィティー コーポレイションUnified Gravity Corporation Hydrogen-lithium fusion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163382A3 (en) * 2012-04-25 2014-01-30 Ionic Solutions Ltd. Apparatus and process for penetration of the coulomb barrier
JP2016524705A (en) * 2013-05-22 2016-08-18 ユニファイド グラヴィティー コーポレイションUnified Gravity Corporation Hydrogen-lithium fusion device

Similar Documents

Publication Publication Date Title
US4267488A (en) Containment of plasmas at thermonuclear temperatures
US5764715A (en) Method and apparatus for transmutation of atomic nuclei
Dudnikov Development and Applications of Negative Ion Sources
Molvik et al. A gas dynamic trap neutron source for fusion material and subcomponent testing
Lhersonneau et al. Production of neutron-rich isotopes in fission of uranium induced by neutrons of 20 MeV average energy
WO2017187730A1 (en) Long-lived fission product processing method using neutrons
Eliezer et al. Muon catalysed fusion-fission reactor driven by a recirculating beam
US20030058980A1 (en) Method and apparatus for the transmutation of nuclear waste with tandem production of tritium
JP2002116274A (en) Method of generating molten salt nuclear fusion reaction, and nuclear fusion energy supply apparatus
Coensgen et al. HIGH-PERFORMANCE BEAM-PLASMA Neutron sources for fusion materials development
Habs et al. The Munich fission fragment accelerator
CZ20014161A3 (en) Energy obtained from fission of used nuclear waste
US20210358649A1 (en) Systems and methods for laser driven neutron generation for a liquid-phase based transmutation
Bacal Physics and Applications of Hydrogen Negative Ion Sources
Tanabe Introduction of a nuclear fusion reactor
Gruenwald Proposal for a novel type of small scale aneutronic fusion reactor
Yang et al. Hot spot heating process estimate using a laser-accelerated quasi-Maxwellian deuteron beam
Triftshäuser et al. A high intense reactor based positron source
JP2002207092A (en) Generation method for molten lithium nuclear fusion reaction and nuclear fusion energy supplier device
Meyer-ter-Vehn et al. Inertial confinement fusion
JP2018044851A (en) Processing system and processing method for shortening lifetime of long-life fission product by nuclear transmutation
JP2007163393A (en) Recoil lithium chemical nuclear fusion energy generating method and apparatus
Robouch et al. Neutronic characteristics of the Novosibirsk GDT-NS fusion material irradiation facility
Nagamine et al. Contribution of muon catalyzed fusion to fusion energy development
Järvinen Radiative divertor studies in JET high confinement mode plasmas