JP2002116140A - Method for spectroscopic analysis and spectroscopic analyzer - Google Patents

Method for spectroscopic analysis and spectroscopic analyzer

Info

Publication number
JP2002116140A
JP2002116140A JP2000307204A JP2000307204A JP2002116140A JP 2002116140 A JP2002116140 A JP 2002116140A JP 2000307204 A JP2000307204 A JP 2000307204A JP 2000307204 A JP2000307204 A JP 2000307204A JP 2002116140 A JP2002116140 A JP 2002116140A
Authority
JP
Japan
Prior art keywords
light
measured
sample
short pulse
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000307204A
Other languages
Japanese (ja)
Inventor
Katsumi Isozaki
克巳 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2000307204A priority Critical patent/JP2002116140A/en
Publication of JP2002116140A publication Critical patent/JP2002116140A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve measurements of high precision by measuring with accuracy an average optical flight path length Lave, i.e., an optical path difference of a light to be measured, even in the case of diffuse reflectance measurements, so that Lambert-Beer law holds. SOLUTION: In the spectroscopic analyzer, a sample to be measured is irradiated with light and the characteristics of the sample are measured on the basis of the reflected light. A short-pulsed light beam as well as the light is made incident on the sample and the optical flight path lengths of the sample are measured from a temporal spread of the strength of the reflected short-pulsed light beam. An average optical flight path length is measured from the optical flight path lengths and the physical property of the sample such as density is measured using the average optical flight path length.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分光分析計に関
し、特に被測定サンプルに照射する光が拡散反射するも
のに関する分光分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrometer, and more particularly, to a spectrometer which diffusely reflects light applied to a sample to be measured.

【0002】[0002]

【従来の技術】従来技術における例えば近赤外分光分析
計は、測定する波長域により異なった検出器が利用され
る。例えば、1000〜2500nmでは2000nm
に感度の極大を有する硫化鉛(Pbs)の光導電検出器
(以下、Pbs検出器という)や非冷却InGaAs検出
器が使用され、600nm〜1100nmの波長範囲で
は850nmに極大を有する光起電力型のシリコン(S
i)光検出器(以下、シリコン検出器という)が広く用
いられている。
2. Description of the Related Art In the prior art, for example, a near-infrared spectrometer uses different detectors depending on the wavelength range to be measured. For example, 2000 nm for 1000 to 2500 nm
A photoconductive detector of lead sulfide (Pbs) (hereinafter referred to as a Pbs detector) or an uncooled InGaAs detector having a maximum sensitivity is used, and a photovoltaic type having a maximum at 850 nm in a wavelength range of 600 nm to 1100 nm. Silicon (S
i) Photodetectors (hereinafter, referred to as silicon detectors) are widely used.

【0003】Pbs検出器は、光の照射によって、半導
体の電気伝導度が変化する物理現象を応用した受光素子
を利用したものであり、シリコン検出器は、シリコンの
p−n接合部に光が当たると両端に電圧が発生する、所
謂光起電力の効果を利用した受光素子を利用したもので
ある。
A Pbs detector uses a light receiving element that utilizes a physical phenomenon in which the electrical conductivity of a semiconductor changes by irradiation of light. A silicon detector uses a photodetector at a pn junction of silicon. In this case, a light receiving element utilizing the effect of a so-called photovoltaic effect, in which a voltage is generated at both ends when hit, is used.

【0004】一方、近赤外法では有効数字が小数点以下
4桁の吸光度を必要とし、装置自体に高いSN比が要求
されることから、検出器の温度制御を含め様々なノイズ
対策が施されている。
On the other hand, in the near-infrared method, since significant figures require an absorbance of four digits after the decimal point and a high SN ratio is required for the apparatus itself, various noise measures including temperature control of the detector are taken. ing.

【0005】又、試料の不均一さ、特に粉体試料の場合
の粒度分布の不均一さから生じる信号の変動を抑えるこ
とも再現性の観点から重要であり、検出器の試料に対す
る配置に工夫がされている。この検出器の配置は、透過
方式と反射方式とで基本的な違いがあり、また反射方式
でも直接測光する方式と積分球を用いる方式とに分類さ
れる。
It is also important from the viewpoint of reproducibility to suppress signal fluctuations caused by non-uniformity of the sample, particularly, non-uniformity of the particle size distribution in the case of a powder sample. Have been. The arrangement of the detector has a fundamental difference between the transmission system and the reflection system, and the reflection system is also classified into a direct photometry system and a system using an integrating sphere.

【0006】透過方式の検出装置は、図3に示すよう
に、光源側から見て試料(被測定サンプル)300のす
ぐ後ろであって、試料300に対して平行に検出器31
0を配置した構造となっている。
[0006] As shown in FIG. 3, the transmission type detection device is a detector 31 which is located immediately behind a sample (sample to be measured) 300 as viewed from the light source side and parallel to the sample 300.
0 is arranged.

【0007】反射方式であり且つ直接測光方式の検出装
置は、図4に示すように、試料(被測定サンプル)30
0セルの回りの試料面に対して45度の角度の位置に検
出器320を配置し、集光性と再現性を向上させるため
に等間隔に4個の検出器320が取り付けられた構造に
なっている。又、試料300セル自体を回転させながら
1個の検出器で受光する構造のものも存在する。
As shown in FIG. 4, a reflection type and direct photometry type detection device includes a sample (sample to be measured) 30.
Detector 320 is placed at a 45-degree angle to the sample plane around cell 0, and has a structure in which four detectors 320 are attached at equal intervals to improve light collection and reproducibility. Has become. There is also a structure in which the light is received by one detector while rotating the sample 300 cell itself.

【0008】積分球方式の検出装置は、図5に示すよう
に、上部位置に光束を受け入れる45度に傾斜した反射
部350と、この反射部350により方向を変えられて
垂直方向に入光する開口部360を設けた積分球370
と、積分球370の底部に配置した試料390と、積分
球370の内壁に金や硫化バリウムを塗布した位置であ
って、試料390寄りの外れた位置に設けた検出器38
0とから構成されている。このような構成の積分球方式
の検出装置においては、積分球370の下に位置した試
料390で拡散反射された光は積分球370内で攪拌さ
れ、その一部が検出器380で検出される。このような
構成の積分球方式の検出器においては安定性には優れて
いるが、透過方式に改造できない欠点がある。透過性の
高い液体試料のスペクトルを測定する場合は、透過・反
射型の特殊な試料セルが用いられる。
As shown in FIG. 5, the detector of the integrating sphere type has a reflecting portion 350 inclined at 45 degrees to receive a light beam at an upper position, and the direction of the light is changed by the reflecting portion 350 so that light enters in a vertical direction. Integrating sphere 370 provided with opening 360
A sample 390 arranged at the bottom of the integrating sphere 370, and a detector 38 provided at a position where gold or barium sulfide is applied to the inner wall of the integrating sphere 370 and located off the sample 390.
0. In the integrating sphere type detection device having such a configuration, light diffusely reflected by the sample 390 located below the integrating sphere 370 is stirred in the integrating sphere 370, and a part of the light is detected by the detector 380. . The integrating sphere type detector having such a configuration is excellent in stability, but has a drawback that it cannot be modified to the transmission type. When measuring the spectrum of a liquid sample having high transmittance, a special transmission / reflection type sample cell is used.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術における光散乱の起こらない試料の透過光で
は、成分濃度と吸光度との間には、公知のLamber
t−Beerの法則で示される線形関係が存在する。し
かし、多重散乱反射の起こるサンプルでは、成分濃度と
吸光度との関係は非線形になる。この非線形になる原因
は、試料の表面状態、内部構造、粉体の粒度や充填密度
等の違いにより、反射光や散乱光の方向や強度にバラツ
キが生じ、試料ごとに平均光路長が異なるためベースラ
インが変動したり、スペクトル全体にわたる乗算的変動
による誤差が生じる。拡散反射計測が難しい理由はここ
にあり、各メーカーは、平均飛行光路差の再現性を出す
ためのサンプルインターフエースの工夫をしたり、スペ
クトラム補正や感度補正を実施しているが、非散乱体サ
ンプル測定と比べて測定精度が低くなってしまうという
問題がある。
However, in the transmitted light of a sample in which light scattering does not occur in the above-described prior art, the known Lambert is between the component concentration and the absorbance.
There is a linear relationship expressed by t-Beer's law. However, in a sample in which multiple scattering reflection occurs, the relationship between the component concentration and the absorbance becomes non-linear. The reason for this nonlinearity is that the direction and intensity of reflected light and scattered light vary due to differences in the surface condition of the sample, the internal structure, the particle size and packing density of the powder, and the average optical path length differs for each sample. Errors can occur due to baseline fluctuations and multiplicative variations across the spectrum. This is why diffuse reflection measurement is difficult, and each manufacturer has devised a sample interface to achieve reproducibility of the average flight optical path difference, and has implemented spectrum correction and sensitivity correction. There is a problem that the measurement accuracy is lower than the sample measurement.

【0010】散乱体の場合でも、測定対象の光の光路差
である「平均飛行光路長Lave」を正確に測定し、L
ambertーBeerの法則を成り立たせることによ
り、高精度な測定ができる。従って、平均飛行光路長L
aveを測定するのが解決しなければならない課題であ
る。
[0010] Even in the case of a scatterer, the "average flight optical path length Lave", which is the optical path difference of the light to be measured, is accurately measured.
Highly accurate measurement can be performed by satisfying the Ambert-Beer law. Therefore, the average flight optical path length L
Measuring ave is a problem to be solved.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る分光分析計は次に示す構成にすること
である。
In order to solve the above-mentioned problems, a spectrometer according to the present invention has the following configuration.

【0012】(1)被測定サンプルに光を照射し、その
反射光により被測定サンプルの特性を計測する分光分析
計であって、前記被測定サンプルには、前記光の他に短
パルス光線を入射し、該短パルス光線の反射光強度の時
間的広がりから被測定サンプルの飛行光路長を計測し、
該飛行光路長から平均飛行光路長を算出し、該平均飛行
光路長を用いて被測定サンプルの濃度等の性状を計測す
るようにしたことを特徴とする分光分析方法。 (2)前記短パルス光線の短パルス反射光の時間的広が
りの飛行光路長のプロファイルを見ることにより、前記
被測定サンプルの反射光と、該被測定サンプルを搭載す
るトレイからの反射光を区別することにより、測定系の
適正化を判断するようにしたことを特徴とする(1)に
記載の分光分析方法。 (3)前記短パルス光線は、波長が可変なレーザ光線で
あることを特徴とする(1)又は(2)に記載の分光分
析方法。 (4)前記短パルス光線は、その波長を可変しながら、
前記被測定サンプルに照射し、その反射光強度とその強
度の時間的広がりからなる飛行光路長を同時に計測する
ようにして、平均飛行光路長と分光特性とを同一光学系
で同時に計測するようにしたことを特徴とする(1)に
記載の分光分析方法。 (5)前記被測定サンプルと前記分光して被測定サンプ
ルに照射する光との相対位置を移動させることにより、
光を照射している被測定サンプルの測定部位を設定でき
るようにしたことを特徴とする(1)に記載の分光分析
方法。
(1) A spectrophotometer for irradiating a sample to be measured with light and measuring the characteristics of the sample to be measured by reflected light, wherein the sample to be measured is irradiated with a short pulse light beam in addition to the light. Incident, measuring the flight optical path length of the measured sample from the temporal spread of the reflected light intensity of the short pulse light beam,
A spectral analysis method, wherein an average flight optical path length is calculated from the flight optical path length, and properties such as the concentration of the sample to be measured are measured using the average flight optical path length. (2) The reflected light of the sample to be measured and the reflected light from the tray mounting the sample to be measured are distinguished by looking at the profile of the flight optical path length of the temporal spread of the short pulse reflected light of the short pulse light beam. The spectroscopic analysis method according to (1), wherein the determination of the appropriateness of the measurement system is performed by performing the determination. (3) The spectral analysis method according to (1) or (2), wherein the short pulse light beam is a laser beam having a variable wavelength. (4) The short-pulse beam varies its wavelength,
By irradiating the sample to be measured, the reflected light intensity and the flight optical path length consisting of the temporal spread of the intensity are simultaneously measured, and the average flight optical path length and the spectral characteristics are simultaneously measured by the same optical system. The spectroscopic analysis method according to (1), wherein: (5) By moving the relative positions of the sample to be measured and the light that is spectrally irradiated to the sample to be measured,
The spectroscopic analysis method according to (1), wherein a measurement site of the sample to be measured irradiated with light can be set.

【0013】(6)光を発生させる分光光源部と、該光
を所定の波長域に分光する分光手段と、該分光手段によ
り分光された光線を被測定サンプルに照射し、その反射
光を検出する光検出手段と、該光検出手段により検出し
た光強度からスペクトラムを演算する分光測定手段と、
該分光測定手段により得られた分光信号から濃度等の性
状を演算する演算手段と、短パルス光線を被測定サンプ
ルに照射する短パルス光源手段と、被測定サンプルに照
射した短パルス光線の短パルス反射光を前記光検出手段
により検出し、該検出した短パルス反射光強度の時間的
広がりから被測定サンプルの飛行光路長を測定して平均
飛行光路長を生成する飛行光路測定手段とからなり、前
記吸光度や濃度等の性状の演算手段は、前記飛行光路測
定手段により算出された平均飛行光路長と前記分光信号
の吸光度特性を用いて濃度等の性状を演算することを特
徴とする分光分析計。 (7)前記短パルス光線の短パルス反射光の時間的広が
りの飛行光路長のプロファイルを見ることにより、前記
被測定サンプルの反射光と、該被測定サンプルを搭載す
るトレイからの反射光を区別することにより、測定系の
適正化を判断するようにしたことを特徴とする(6)に
記載の分光分析計。 (8)前記短パルス光線は、波長が可変なレーザ光線で
あることを特徴とする(6)に記載の分光分析計。 (9)前記短パルス光線は、その波長を可変しながら、
前記被測定サンプルに照射し、その反射光強度とその強
度の時間的広がりの飛行光路長を同時に計測するように
して、平均飛行光路長と分光特性とを同時に計測するよ
うにしたことを特徴とする(6)に記載の分光分析計。 (10)前記被測定サンプルと前記分光して被測定サン
プルに照射する光との相対位置を移動させることによ
り、光を照射している被測定サンプルの測定部位を設定
できるようにしたことを特徴とする(6)に記載の分光
分析計。
(6) A spectral light source unit for generating light, spectral means for spectrally splitting the light into a predetermined wavelength range, and irradiating the sample to be measured with the light beam spectrally separated by the spectral means, and detecting the reflected light. Light detecting means, and a spectral measuring means for calculating a spectrum from the light intensity detected by the light detecting means,
Calculating means for calculating properties such as concentration from the spectral signal obtained by the spectroscopic measuring means; short pulse light source means for irradiating the sample to be measured with a short pulse beam; and short pulses of the short pulse beam irradiating the sample to be measured The reflected light is detected by the light detection means, and the flight light path measurement means for measuring the flight light path length of the sample to be measured from the temporal spread of the detected short pulse reflected light intensity to generate an average flight light path length, The spectrometer is characterized in that the calculating means for the properties such as absorbance and concentration calculates properties such as concentration using the average flight optical path length calculated by the flight optical path measuring means and the absorbance characteristics of the spectral signal. . (7) The reflected light of the sample to be measured and the reflected light from the tray mounting the sample to be measured can be distinguished by looking at the profile of the flight optical path length of the temporal spread of the short pulse reflected light of the short pulse light beam. The spectrometer according to (6), wherein the determination of the appropriateness of the measurement system is performed by performing the determination. (8) The spectrometer according to (6), wherein the short pulse light beam is a laser beam having a variable wavelength. (9) While changing the wavelength of the short pulse light,
By irradiating the sample to be measured, the reflected light intensity and the flight optical path length of the time spread of the intensity are simultaneously measured, and the average flight optical path length and the spectral characteristics are simultaneously measured. The spectrophotometer according to (6). (10) By moving the relative position between the sample to be measured and the light to be radiated and irradiating the sample to be measured, a measurement site of the sample to be irradiated with light can be set. The spectrometer described in (6).

【0014】(11)拡散された光を発生させる分光光
源部と、該拡散された光を平行光線にする第1の集光手
段と、該第1の集光手段からの光を所定の波長域に分光
する分光手段と、該分光手段により分光された光線を集
光する第2の集光手段と、該第2の集光手段により集光
された光線を被測定サンプルに照射し、その反射光を集
光する第3の集光手段と、該第3の集光手段により集光
された反射光を検出する第1の光検出手段と、該第1の
光検出手段により検出した吸光度を測定する分光測定手
段と、該分光測定手段により得られた分光信号から濃度
などの性状を演算する濃度演算手段と、短パルス光線を
被測定サンプルに照射する短パルス光源手段と、被測定
サンプルに照射した短パルス光線の反射光を集光する第
4の集光手段と、該第4の集光手段により集光された短
パルス反射光を検出する第2の光検出手段と、該第2の
光検出手段により検出された短パルス反射光強度の時間
的広がりから被測定サンプルの平均飛行光路長を測定す
る飛行光路測定手段とからなり、前記濃度計算手段は、
前記飛行光路測定手段により算出された平均飛行光路長
と前記分光信号の吸光度から濃度等の性状を演算するこ
とを特徴とする分光分析計。 (12)前記第3の集光手段と第4の集光手段及び第1
の光検出手段と第2の光検出手段は、同一の光学系であ
ることを特徴とする請求項11に記載の近赤外分光分析
計。 (13)前記短パルス光線の短パルス反射光の時間的広
がりである飛行光路長のプロファイルを見ることによ
り、前記被測定サンプルの反射光と、該被測定サンプル
を搭載するトレイからの反射光を区別することにより、
測定系の適正化を判断するようにしたことを特徴とする
請求項11に記載の近赤外分光分析計。 (14)前記短パルス光線は、波長が可変なレーザ光線
であることを特徴とする(11)に記載の近赤外分光分
析計。 (15)前記短パルス光線は、その波長を可変しなが
ら、前記被測定サンプルに照射し、その反射光強度とそ
の強度の時間的広がりの飛行光路長を同時に計測するよ
うにして、平均飛行光路長と分光特性とを同時に計測す
るようにしたことを特徴とする(11)に記載の近赤外
分光分析計。 (16)前記被測定サンプルと前記分光して被測定サン
プルに照射する近赤外光線との相対位置を移動させるこ
とにより、近赤外光線を照射している被測定サンプルの
測定部位を設定できるようにしたことを特徴とする(1
1)に記載の近赤外分光分析計。
(11) A spectral light source section for generating diffused light, first condensing means for converting the diffused light into parallel rays, and a light having a predetermined wavelength A spectroscopic unit for dispersing the light into a region, a second condensing unit for condensing the light beam dispersed by the dispersing unit, and irradiating the sample to be measured with the light beam condensed by the second condensing unit. Third light collecting means for collecting reflected light, first light detecting means for detecting reflected light collected by the third light collecting means, and absorbance detected by the first light detecting means , A concentration calculating means for calculating properties such as density from a spectral signal obtained by the spectral measuring means, a short pulse light source means for irradiating a short pulse light beam to the sample, and a sample to be measured. A fourth condensing means for condensing the reflected light of the short pulse light applied to the A second light detecting means for detecting the short pulse reflected light condensed by the fourth light condensing means, and a sample to be measured based on a temporal spread of the short pulse reflected light intensity detected by the second light detecting means. Flight optical path measuring means for measuring the average flight optical path length of, the concentration calculating means,
A spectrometer which calculates properties such as concentration from the average flight optical path length calculated by the flight optical path measuring means and the absorbance of the spectral signal. (12) The third light collector, the fourth light collector, and the first light collector.
The near-infrared spectrometer according to claim 11, wherein the light detecting means and the second light detecting means have the same optical system. (13) By looking at the profile of the flight optical path length, which is the temporal spread of the short pulse reflected light of the short pulse light beam, the reflected light of the sample to be measured and the reflected light from the tray on which the sample to be measured is mounted can be determined. By distinguishing,
The near-infrared spectrometer according to claim 11, wherein the determination of the appropriateness of the measurement system is performed. (14) The near-infrared spectrometer according to (11), wherein the short pulse beam is a laser beam having a variable wavelength. (15) The short pulse light beam is irradiated on the sample to be measured while changing its wavelength, and the reflected light intensity and the flight optical path length of the time spread of the intensity are measured simultaneously, so that the average flight optical path is obtained. The near-infrared spectrometer according to (11), wherein the length and the spectral characteristics are measured simultaneously. (16) By moving the relative position of the sample to be measured and the near-infrared light beam that irradiates the sample to be measured by the spectroscopy, the measurement site of the sample to be measured that is irradiated with the near-infrared light beam can be set. (1)
The near-infrared spectrometer according to 1).

【0015】このように、近赤外光線を被測定サンプル
に照射してその反射光から、被測定サンプルの特性を計
測する、所謂、拡散反射計測において、被測定サンプル
に対して短パルス光線を照射して平均飛行光路長を測定
して線形関係を算出するようにしたことによって、拡散
反射する被測定サンプルであっても、Lambert−
Beerの法則を採用することが可能になる。
As described above, in a so-called diffuse reflection measurement, in which near infrared rays are irradiated to a sample to be measured and the characteristics of the sample to be measured are measured from the reflected light, a short pulse beam is applied to the sample to be measured. By irradiating and measuring the average flight optical path length to calculate the linear relationship, even if the sample to be diffuse-reflected is a Lambert-
Beer's law can be adopted.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る分光分析方法
及び分光分析計の実施形態を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a spectroscopic analysis method and a spectrometer according to the present invention will be described with reference to the drawings.

【0017】本発明に係る分光分析方法を具現化するた
めの分光分析計は、図1に示すように、例えば近赤外光
線を含む白色光線を発生させる分光光源部110と、こ
の拡散された近赤外光線を平行光線にする第1の集光手
段である第1のレンズ120と、この第1のレンズ12
0からの光線を所定の波長域に分光する分光手段である
分光素子130と、この分光素子130により分光され
た光線を集光する第2の集光手段である第2のレンズ1
40と、この第2のレンズ140により集光された光線
をトレイ150に載せてある被測定サンプル(試料)1
60に照射し、その反射光を集光する第3の集光手段で
ある第3のレンズ170と、この第3のレンズ170に
より集光された反射光を検出する第1の光検出手段であ
る光検出器180と、この光検出器180により検出し
た光強度から吸光度スペクトラムを演算する分光特性測
定部190と、この分光特性測定部190により得られ
た分光信号から濃度等の性状を測定する濃度計算手段で
ある濃度計算部200と、可変波長レーザー光線である
短パルス光線を被測定サンプル160に照射する短パル
ス光源手段である短パルス光源部210と、被測定サン
プル160に照射した短パルス光線の反射光を集光する
第4の集光手段である第3のレンズ170と、この第3
のレンズ170により集光された短パルス反射光を検出
する第2の光検出手段である光検出器180と、この光
検出器180により検出された短パルス反射光強度の時
間的広がりから被測定サンプル160の飛行光路長を測
定する飛行光路測定手段である飛行光路測定部220と
から構成されている。
As shown in FIG. 1, a spectrometer for embodying the spectroscopic analysis method according to the present invention includes a spectroscopic light source section 110 for generating a white ray including a near infrared ray, and A first lens 120 serving as a first condensing means for converting a near-infrared ray into a parallel ray;
A spectroscopic element 130 which is a spectroscopic means for dispersing the light rays from 0 into a predetermined wavelength range, and a second lens 1 which is a second condensing means for condensing the light rays dispersed by the dispersive element 130
40 and a light beam condensed by the second lens 140 on the tray 150
The third lens 170 is a third light collecting means for irradiating the light 60 and condensing the reflected light, and the first light detecting means for detecting the reflected light condensed by the third lens 170. A certain photodetector 180, a spectral characteristic measuring section 190 for calculating an absorbance spectrum from the light intensity detected by the photodetector 180, and properties such as concentration from the spectral signal obtained by the spectral characteristic measuring section 190 are measured. A concentration calculator 200 as a concentration calculator, a short pulse light source 210 as a short pulse light source for irradiating the sample 160 with a short pulse light as a variable wavelength laser beam, and a short pulse light as an irradiation on the sample 160 A third lens 170 as a fourth light collecting means for collecting the reflected light of
A light detector 180 as a second light detecting means for detecting the short pulse reflected light condensed by the lens 170, and measuring the short pulse reflected light intensity detected by the light detector 180 based on the time spread. And a flight light path measuring unit 220 which is a flight light path measurement means for measuring the flight light path length of the sample 160.

【0018】ここで、第3の集光手段と第4の集光手段
である第3のレンズ170は同一の光学系で構成されて
おり、又、第1の光検出手段と第2の光検出手段である
光検出器180も同じ光学系で構成されており、近赤外
光線と短パルス光線とはこれらの第3のレンズ170及
び光検出器180を利用して同一光ルートを形成する。
分光素子130は、フィルタ、回折格子、フーリェ変換
法等にこだわらなく、全ての分光素子が使用できる構成
になっている。濃度計算手段である濃度計算部200
は、飛行光路測定部220により算出された飛行光路長
から生成された平均飛行光路長Laveに基いて分光信
号の濃度等の性状を測定する。
Here, the third condenser 170 and the third lens 170 serving as the fourth condenser are constituted by the same optical system, and the first light detector and the second light are combined. The photodetector 180, which is a detecting means, also has the same optical system, and the near-infrared ray and the short-pulse ray form the same optical route using the third lens 170 and the photodetector 180. .
The spectroscopic element 130 has a configuration in which all spectroscopic elements can be used regardless of a filter, a diffraction grating, a Fourier transform method, or the like. Density calculation unit 200 as density calculation means
Measures the properties such as the density of the spectral signal based on the average flight light path length Lave generated from the flight light path length calculated by the flight light path measurement unit 220.

【0019】このような構成からなる近赤外分光分析計
は、分光光源部110からの近赤外光線を分光素子13
0に入射して所定波長領域に分光された出力光線を被測
定サンプル(試料)160に入射する。被測定サンプル
160で拡散反射された反射光は第3のレンズ170で
集光され光検出器180で受光する。この光検出器18
0で検出された反射光は、その分光特性、吸光度及び濃
度が測定され、この吸光度の変化による濃度、性状等を
濃度計算部200で計算される。ここで、濃度計算部2
00における計算には、短パルス光線に基く時間的な広
がりから測定した平均飛行光路長Laveを用いて計算
する。
The near-infrared spectrometer configured as described above converts the near-infrared light from the spectral light source unit 110 into the spectral element 13.
The output light beam which is incident on the zero and is separated into a predetermined wavelength region is incident on the sample 160 to be measured. The reflected light diffusely reflected by the sample under measurement 160 is collected by the third lens 170 and received by the photodetector 180. This photodetector 18
The reflected light detected at 0 has its spectral characteristics, absorbance and concentration measured, and the concentration calculator 200 calculates the concentration, properties, and the like due to the change in absorbance. Here, the density calculation unit 2
The calculation at 00 is performed using the average flight optical path length Lave measured from the temporal spread based on the short pulse light beam.

【0020】この平均飛行光路長Laveを測定するに
は、短パルス光源部210から短パルス光線を被測定サ
ンプルに照射すると、光検出器180で得られる短パル
ス反射光の強度は、図2に示すように、時間の広がり
(光の飛行光路長)によって、検出光量は異なり、平均
飛行光路長Laveも異なってくる。即ち、被測定サン
プル160の表面近くを多重反射した光は短時間(短
い光路長)で光検出器180まで到達し、被測定サンプ
ル160の奥まで多重反射していった光は、遅く到達
する。ここで、Lambert−Beerの法則が使え
るのは平均飛行光路長Laveを用いたときであり、平
均飛行光路長Laveは検出光量の平均となる光路長を
計算して求める。通常はLaveを検出する手段がない
ので誤差が大きくなる。
In order to measure the average flight optical path length Lave, when the sample to be measured is irradiated with a short pulse light from the short pulse light source section 210, the intensity of the short pulse reflected light obtained by the photodetector 180 is shown in FIG. As shown in the figure, the amount of detected light varies and the average flight light path Lave also varies depending on the spread of time (the flight optical path length of light). That is, the light that has been multiply reflected near the surface of the sample 160 reaches the photodetector 180 in a short time (short optical path length), and the light that has been multiply reflected to the depth of the sample 160 reaches later. . Here, Lambert-Beer's law can be used when the average flight optical path length Lave is used, and the average flight optical path length Lave is obtained by calculating the optical path length that is the average of the detected light amounts. Normally, since there is no means for detecting the “Lave”, the error increases.

【0021】次に、短パルス光源部210からの短パル
ス光線の照射を止め、分光光源からの近赤外光線を被測
定サンプル160に入射し、その反射光から分光特性測
定部190により分光を測定して吸光度変化を算出す
る。この吸光度の変化は、濃度計算部200に送られ、
被測定サンプル160の濃度・性状・品質等をケモメト
リクスを使って計算する。この時、先ほど求めた平均飛
行光路長Laveに基づいて計算することにより、高精
度の測定が実現できる。
Next, irradiation of the short pulse light from the short pulse light source section 210 is stopped, near-infrared light from the spectral light source enters the sample 160 to be measured, and the spectral characteristic is measured by the spectral characteristic measuring section 190 from the reflected light. Measure and calculate the change in absorbance. This change in absorbance is sent to the concentration calculator 200,
The concentration, properties, quality, and the like of the sample 160 to be measured are calculated using chemometrics. At this time, high-precision measurement can be realized by calculating based on the average flight optical path length Lave obtained earlier.

【0022】ここで、短パルス光線による平均飛行光路
長Laveの測定と、同じ短パルス光線を使用して分光
特性を同時に測定することが同じ光学系を使用している
ために測定することができる。即ち、短パルス光源部2
10からの短パルス光線の波長を可変しながら発振させ
て被測定サンプル160に照射する。そして、被測定サ
ンプル160に照射された短パルス光線の拡散反射光強
度を分光特性測定部190で測定すると共に、その強度
の時間的広がりからなる平均飛行光路長Laveを飛行
光路測定部220により同時に計測するようにすればよ
い。
Here, the measurement of the average flight optical path length Lave by the short pulse light beam and the simultaneous measurement of the spectral characteristics using the same short pulse light beam can be measured because the same optical system is used. . That is, the short pulse light source unit 2
Oscillation is performed while varying the wavelength of the short pulse light beam from No. 10 to irradiate the measured sample 160. Then, the diffuse reflection light intensity of the short pulse light applied to the sample 160 to be measured is measured by the spectral characteristic measurement unit 190, and the average flight optical path length Lave including the temporal spread of the intensity is simultaneously measured by the flight optical path measurement unit 220. What is necessary is just to measure.

【0023】更に、応用として、反射光の時間的広がり
である飛行光路長のプロフアイルを観察することにより
被測定サンプル160の表面反射光の影響や、被測定サ
ンプル160を載せるトレイ150での反射光の影響が
検出でき、測定系が適正か否かの検査機能を持たせるこ
とができる。
Further, as an application, by observing a profile of the flight optical path length, which is the temporal spread of the reflected light, the influence of the surface reflected light of the sample 160 to be measured and the reflection on the tray 150 on which the sample 160 is placed are reflected. The effect of light can be detected, and an inspection function for determining whether the measurement system is appropriate can be provided.

【0024】更に、近赤外光線を被測定サンプル160
に照射している位置を特定するようにして、被測定サン
プル160の測定部位を予め設定することができる。具
体的には、分光光源部110及び分光素子130と被測
定サンプル160との相対位置が移動できるようにする
と共に、光線の照射している位置が観察できるようにす
ればよい。
Further, a near infrared ray is applied to the sample 160 to be measured.
The measurement site of the sample 160 to be measured can be set in advance by specifying the position where the light is irradiated. Specifically, the relative positions of the spectral light source unit 110 and the spectral element 130 and the sample 160 to be measured may be moved, and the position irradiated with the light beam may be observed.

【0025】[0025]

【発明の効果】上記説明したように、本発明の近赤外分
光分析方法及び近赤外分光分析計は、被測定サンプルに
対して、近赤外光線以外の短パルス光線を照射して飛行
光路長の変化をリアルタイムに検出して平均飛行光路長
を算出し、この算出した平均飛行光路長を近赤外光線に
よる反射光の吸光度変化の計算に使用するようにしたこ
とにより、例え、被測定サンプルが移動しているときで
も正確な飛行光路長に基く濃度計測ができるという効果
がある。
As described above, the near-infrared spectroscopy method and near-infrared spectrometer according to the present invention fly by irradiating a sample to be measured with a short pulse light other than a near-infrared light. The average flight optical path length is calculated by detecting the change in the optical path length in real time, and the calculated average flight optical path length is used for calculating the change in the absorbance of the reflected light by the near infrared ray. There is an effect that concentration measurement based on an accurate flight optical path length can be performed even when the measurement sample is moving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る近赤外分光分析計の構成を示した
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a near-infrared spectrometer according to the present invention.

【図2】同飛行光路長と光検出量との関係を示したグラ
フである。
FIG. 2 is a graph showing a relationship between a flight optical path length and a light detection amount.

【図3】従来技術における透過方式の検出装置の概念図
である。
FIG. 3 is a conceptual diagram of a transmission type detection device according to the related art.

【図4】従来技術における直接測光方式の検出装置の概
念図である。
FIG. 4 is a conceptual diagram of a direct photometric detection device according to the related art.

【図5】従来技術における積分球方式の検出装置の概念
図である。
FIG. 5 is a conceptual diagram of an integrating sphere detection device according to the related art.

【符号の説明】[Explanation of symbols]

110 分光光源部 120 第1のレンズ(第1の集光手段) 130 分光素子 140 第2のレンズ(第2の集光手段) 150 トレイ 160 被測定サンプル 170 第3のレンズ(第3の集光手段、第4の集
光手段) 180 光検出器(第1の光検出器、第2の光検出
器) 190 分光測定手段(分光測定部) 200 濃度計算手段(濃度計算部) 210 短パルス光源部 220 飛行光路測定部
Reference Signs List 110 spectral light source section 120 first lens (first light collecting means) 130 spectral element 140 second lens (second light collecting means) 150 tray 160 sample to be measured 170 third lens (third light collecting means) Means, fourth light condensing means) 180 photodetector (first photodetector, second photodetector) 190 spectrophotometer (spectrometer) 200 density calculator (density calculator) 210 short pulse light source Unit 220 Flight light path measurement unit

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】被測定サンプルに光を照射し、その反射光
により被測定サンプルの特性を計測する分光分析計であ
って、 前記被測定サンプルには、前記光の他に短パルス光線を
入射し、該短パルス光線の反射光強度の時間的広がりか
ら被測定サンプルの飛行光路長を計測し、該飛行光路長
から平均飛行光路長を算出し、該平均飛行光路長を用い
て被測定サンプルの濃度等の性状を計測するようにした
ことを特徴とする分光分析方法。
1. A spectrophotometer for irradiating a sample to be measured with light and measuring characteristics of the sample to be measured by reflected light, wherein a short pulse light beam is incident on the sample to be measured in addition to the light. Then, the flight optical path length of the sample to be measured is measured from the temporal spread of the reflected light intensity of the short pulse light beam, the average flight optical path length is calculated from the flight optical path length, and the sample to be measured is measured using the average flight optical path length. A spectroscopic analysis method characterized in that properties such as the concentration of a compound are measured.
【請求項2】前記短パルス光線の短パルス反射光の時間
的広がりの飛行光路長のプロファイルを見ることによ
り、前記被測定サンプルの反射光と、該被測定サンプル
を搭載するトレイからの反射光を区別することにより、
測定系の適正化を判断するようにしたことを特徴とする
請求項1に記載の分光分析方法。
2. The reflected light of the sample to be measured and the reflected light from a tray on which the sample to be measured is mounted, by observing the profile of the flight optical path length of the short-pulse reflected light of the short-pulse beam with respect to time. By distinguishing
The spectroscopic analysis method according to claim 1, wherein the determination of the appropriateness of the measurement system is performed.
【請求項3】前記短パルス光線は、波長が可変なレーザ
光線であることを特徴とする請求項1又は2に記載の分
光分析方法。
3. The method according to claim 1, wherein the short pulse light beam is a laser beam having a variable wavelength.
【請求項4】前記短パルス光線は、その波長を可変しな
がら、前記被測定サンプルに照射し、その反射光強度と
その強度の時間的広がりからなる飛行光路長を同時に計
測するようにして、平均飛行光路長と分光特性とを同一
光学系で同時に計測するようにしたことを特徴とする請
求項1に記載の分光分析方法。
4. The short pulse light beam is radiated to the sample under measurement while its wavelength is varied, and the reflected light intensity and the flight optical path length consisting of the time spread of the intensity are measured simultaneously. 2. The spectral analysis method according to claim 1, wherein the average flight optical path length and the spectral characteristics are simultaneously measured by the same optical system.
【請求項5】前記被測定サンプルと前記分光して被測定
サンプルに照射する光との相対位置を移動させることに
より、光を照射している被測定サンプルの測定部位を設
定できるようにしたことを特徴とする請求項1に記載の
分光分析方法。
5. A measurement site of a sample to be irradiated with light can be set by moving a relative position between the sample to be measured and the light to be radiated to the sample to be measured. The spectroscopic analysis method according to claim 1, wherein:
【請求項6】光を発生させる分光光源部と、該光を所定
の波長域に分光する分光手段と、該分光手段により分光
された光線を被測定サンプルに照射し、その反射光を検
出する光検出手段と、該光検出手段により検出した光強
度からスペクトラムを演算する分光測定手段と、該分光
測定手段により得られた分光信号から濃度等の性状を演
算する演算手段と、短パルス光線を被測定サンプルに照
射する短パルス光源手段と、被測定サンプルに照射した
短パルス光線の短パルス反射光を前記光検出手段により
検出し、該検出した短パルス反射光強度の時間的広がり
から被測定サンプルの飛行光路長を測定して平均飛行光
路長を生成する飛行光路測定手段とからなり、前記吸光
度や濃度等の性状の演算手段は、前記飛行光路測定手段
により算出された平均飛行光路長と前記分光信号の吸光
度特性を用いて濃度等の性状を演算することを特徴とす
る分光分析計。
6. A spectral light source section for generating light, a spectral means for spectrally splitting the light into a predetermined wavelength range, and irradiating the sample to be measured with a light beam spectrally separated by the spectral means, and detecting the reflected light. Light detecting means, spectral measuring means for calculating a spectrum from light intensity detected by the light detecting means, calculating means for calculating properties such as density from a spectral signal obtained by the spectral measuring means, and a short pulse light beam. A short pulse light source means for irradiating the sample to be measured and a short pulse reflected light of the short pulse light irradiated to the sample to be measured are detected by the light detecting means, and the measured light is measured from the temporal spread of the detected short pulse reflected light intensity. Flight optical path measurement means for measuring the flight optical path length of the sample to generate an average flight optical path length, and the calculation means for the properties such as the absorbance and the concentration were calculated by the flight optical path measurement means Spectrometer, characterized in that for calculating the properties of such concentration using the absorbance characteristics of the spectral signal and equalizing the flight path length.
【請求項7】前記短パルス光線の短パルス反射光の時間
的広がりの飛行光路長のプロファイルを見ることによ
り、前記被測定サンプルの反射光と、該被測定サンプル
を搭載するトレイからの反射光を区別することにより、
測定系の適正化を判断するようにしたことを特徴とする
請求項6に記載の分光分析計。
7. A reflected light of the sample to be measured and a reflected light from a tray on which the sample to be measured is mounted by observing a profile of a flight optical path length of a temporal spread of the short pulse reflected light of the short pulse light beam. By distinguishing
The spectrometer according to claim 6, wherein the determination of the appropriateness of the measurement system is made.
【請求項8】前記短パルス光線は、波長が可変なレーザ
光線であることを特徴とする請求項6に記載の分光分析
計。
8. The spectrometer according to claim 6, wherein the short pulse light beam is a laser beam having a variable wavelength.
【請求項9】前記短パルス光線は、その波長を可変しな
がら、前記被測定サンプルに照射し、その反射光強度と
その強度の時間的広がりの飛行光路長を同時に計測する
ようにして、平均飛行光路長と分光特性とを同時に計測
するようにしたことを特徴とする請求項6に記載の分光
分析計。
9. The short pulse light beam is irradiated on the sample to be measured while changing its wavelength, and the reflected light intensity and the flight optical path length of the time spread of the intensity are simultaneously measured to obtain an average. 7. The spectrometer according to claim 6, wherein the flight optical path length and the spectral characteristics are simultaneously measured.
【請求項10】前記被測定サンプルと前記分光して被測
定サンプルに照射する近赤外光線との相対位置を移動さ
せることにより、近赤外光線を照射している被測定サン
プルの測定部位を設定できるようにしたことを特徴とす
る請求項6に記載の分光分析計。
10. The measurement site of the sample to be irradiated with the near-infrared ray is moved by moving the relative position between the sample to be measured and the near-infrared ray to be irradiated with the spectrally-irradiated sample. The spectrometer according to claim 6, wherein the spectrometer can be set.
【請求項11】拡散された光を発生させる分光光源部
と、該拡散された光を平行光線にする第1の集光手段
と、該第1の集光手段からの光を所定の波長域に分光す
る分光手段と、該分光手段により分光された光線を集光
する第2の集光手段と、該第2の集光手段により集光さ
れた光線を被測定サンプルに照射し、その反射光を集光
する第3の集光手段と、該第3の集光手段により集光さ
れた反射光を検出する第1の光検出手段と、該第1の光
検出手段により検出した吸光度を測定する分光測定手段
と、該分光測定手段により得られた分光信号から濃度な
どの性状を演算する濃度演算手段と、短パルス光線を被
測定サンプルに照射する短パルス光源手段と、被測定サ
ンプルに照射した短パルス光線の反射光を集光する第4
の集光手段と、該第4の集光手段により集光された短パ
ルス反射光を検出する第2の光検出手段と、該第2の光
検出手段により検出された短パルス反射光強度の時間的
広がりから被測定サンプルの平均飛行光路長を測定する
飛行光路測定手段とからなり、前記濃度計算手段は、前
記飛行光路測定手段により算出された平均飛行光路長と
前記分光信号の吸光度から濃度等の性状を演算すること
を特徴とする分光分析計。
11. A spectral light source section for generating diffused light, first condensing means for converting the diffused light into parallel rays, and light from the first condensing means in a predetermined wavelength range. A spectroscopic means for separating the light into light, a second light condensing means for condensing the light beam dispersed by the light dispersing means, and irradiating the sample to be measured with the light beam condensed by the second light condensing means and reflecting the light. A third light condensing means for condensing light, a first light detecting means for detecting reflected light condensed by the third light condensing means, and an absorbance detected by the first light detecting means. A spectrometer for measuring, a density calculator for calculating properties such as density from a spectral signal obtained by the spectrometer, a short pulse light source for irradiating a short pulse beam to the sample to be measured, and a 4th for condensing reflected light of irradiated short pulse light
Condensing means, second light detecting means for detecting the short pulse reflected light condensed by the fourth light condensing means, and intensity of the short pulse reflected light detected by the second light detecting means. Flight optical path measurement means for measuring the average flight optical path length of the sample to be measured from the time spread, and the density calculation means calculates the concentration based on the average flight optical path length calculated by the flight light path measurement means and the absorbance of the spectral signal. A spectrometer characterized by calculating properties such as
【請求項12】前記第3の集光手段と第4の集光手段及
び第1の光検出手段と第2の光検出手段は、同一の光学
系であることを特徴とする請求項11に記載の分光分析
計。
12. The apparatus according to claim 11, wherein said third light collecting means and fourth light collecting means and the first light detecting means and the second light detecting means are the same optical system. The spectrophotometer described.
【請求項13】前記短パルス光線の短パルス反射光の時
間的広がりである飛行光路長のプロファイルを見ること
により、前記被測定サンプルの反射光と、該被測定サン
プルを搭載するトレイからの反射光を区別することによ
り、測定系の適正化を判断するようにしたことを特徴と
する請求項11に記載の分光分析計。
13. A reflected light of the sample to be measured and a reflection from a tray on which the sample to be measured is mounted, by observing a profile of a flight optical path length which is a temporal spread of the short pulse reflected light of the short pulse light. The spectrometer according to claim 11, wherein the determination of the appropriateness of the measurement system is performed by distinguishing the light.
【請求項14】前記短パルス光線は、波長が可変なレー
ザ光線であることを特徴とする請求項11に記載の分光
分析計。
14. The spectrometer according to claim 11, wherein the short pulse light beam is a laser beam having a variable wavelength.
【請求項15】前記短パルス光線は、その波長を可変し
ながら、前記被測定サンプルに照射し、その反射光強度
とその強度の時間的広がりの飛行光路長を同時に計測す
るようにして、平均飛行光路長と分光特性とを同時に計
測するようにしたことを特徴とする請求項11に記載の
分光分析計。
15. The short pulse light beam is irradiated on the sample to be measured while changing its wavelength, and the reflected light intensity and the flight optical path length of the time spread of the intensity are simultaneously measured, so that the average is obtained. The spectrometer according to claim 11, wherein the flight optical path length and the spectral characteristics are simultaneously measured.
【請求項16】前記被測定サンプルと前記分光して被測
定サンプルに照射する光との相対位置を移動させること
により、光を照射している被測定サンプルの測定部位を
設定できるようにしたことを特徴とする請求項11に記
載の分光分析計。
16. A measurement site of a sample to be irradiated with light can be set by moving a relative position between the sample to be measured and the light for irradiating the sample to be measured by the spectroscopy. The spectrometer according to claim 11, wherein:
JP2000307204A 2000-10-06 2000-10-06 Method for spectroscopic analysis and spectroscopic analyzer Withdrawn JP2002116140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307204A JP2002116140A (en) 2000-10-06 2000-10-06 Method for spectroscopic analysis and spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307204A JP2002116140A (en) 2000-10-06 2000-10-06 Method for spectroscopic analysis and spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JP2002116140A true JP2002116140A (en) 2002-04-19

Family

ID=18787754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307204A Withdrawn JP2002116140A (en) 2000-10-06 2000-10-06 Method for spectroscopic analysis and spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP2002116140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165888A3 (en) * 2012-04-30 2013-12-27 Mayo Foundation For Medical Education And Research Spectrometric apparatus and methods for improved focus localization of time-iand space-varying measurements
US10085679B2 (en) 2011-06-23 2018-10-02 Mayo Foundation For Medical Education And Research System and method for detecting vascular contamination by surgical anesthetic using non-invasive IR spectrophotometry
CN113063752A (en) * 2019-12-30 2021-07-02 北京普析通用仪器有限责任公司 Double-beam near-infrared spectrometer based on super-continuum spectrum laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10085679B2 (en) 2011-06-23 2018-10-02 Mayo Foundation For Medical Education And Research System and method for detecting vascular contamination by surgical anesthetic using non-invasive IR spectrophotometry
WO2013165888A3 (en) * 2012-04-30 2013-12-27 Mayo Foundation For Medical Education And Research Spectrometric apparatus and methods for improved focus localization of time-iand space-varying measurements
CN113063752A (en) * 2019-12-30 2021-07-02 北京普析通用仪器有限责任公司 Double-beam near-infrared spectrometer based on super-continuum spectrum laser
CN113063752B (en) * 2019-12-30 2023-09-29 北京普析通用仪器有限责任公司 Double-beam-splitting near infrared spectrometer based on supercontinuum laser

Similar Documents

Publication Publication Date Title
US7903252B2 (en) Noise cancellation in fourier transform spectrophotometry
Gayet et al. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design
JP3406640B2 (en) Portable spectrophotometer
CN104483104B (en) A kind of photo detector spectral response analysis system
CN101324468B (en) Low stray light rapid spectrometer and measurement method thereof
JP2003513236A (en) Built-in optical probe for spectroscopic analysis
CN101201319A (en) Near-infrared spectrometer
CN111751328B (en) Method for rapidly measuring high-light-reflection space target material
JP3056037B2 (en) Optical measurement method and device
US6801309B1 (en) Detector array with scattered light correction
CN208125613U (en) A kind of apparatus for measuring reflectance
US20100253942A1 (en) Method and device for characterizing silicon layer on translucent substrate
JPH04104041A (en) Method and apparatus for measuring quality of vegetable and fruit
CN106092968A (en) Optical detection apparatus and method
CN109187393A (en) A kind of spectrum detection instrument and detection method
US20060093085A1 (en) Fluorescent X-ray analysis apparatus
JP2002116140A (en) Method for spectroscopic analysis and spectroscopic analyzer
Peest et al. Instrumentation-related uncertainty of reflectance and transmittance measurements with a two-channel spectrophotometer
JPH1164217A (en) Component quantity detecting device for spectral analyzer
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
US3211051A (en) Optical measuring device for obtaining a first derivative of intensity with respect to wavelength
JP6260971B2 (en) Non-destructive sugar acidity meter for fruits and vegetables and method of using the same
JPH03160344A (en) Device for measuring constitutions of vegetable and fruit
US20040227941A1 (en) Particle size distribution analyzer
CN106092321B (en) A kind of measuring method of the THz wave frequency measuring equipment based on CARS effects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080407