JP2002114501A - Hydrogen manufacturing apparatus - Google Patents

Hydrogen manufacturing apparatus

Info

Publication number
JP2002114501A
JP2002114501A JP2000303080A JP2000303080A JP2002114501A JP 2002114501 A JP2002114501 A JP 2002114501A JP 2000303080 A JP2000303080 A JP 2000303080A JP 2000303080 A JP2000303080 A JP 2000303080A JP 2002114501 A JP2002114501 A JP 2002114501A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
reformer
chamber
recycling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000303080A
Other languages
Japanese (ja)
Inventor
Yasuaki Yamanaka
康朗 山中
Akira Suzuki
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000303080A priority Critical patent/JP2002114501A/en
Publication of JP2002114501A publication Critical patent/JP2002114501A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen manufacturing apparatus in which a reformation rate at a substantial reformer can be increased by recycling a part of steam contained in still not-permeating gas passing through a shift chamber S to the inlet of the reformer, and the system efficiency can be enhanced, the required power of a liquid pump can be reduced and an indirect vaporizer can be miniaturized by recycling a part of steam required for reformation reaction to reduce the amount of steam to be supplied from the outside. SOLUTION: This hydrogen manufacturing apparatus is provided with a recycle line 12 for recycling a part of the still not-permeating gas from a hydrogen separating unit 5 to the upstream side of a reforming chamber Re while bypassing a burner 6, an injector 14 which is disposed between the chamber Re of the reformer 4 and the indirect vaporizer 2, driven by high pressure steam generated in the vaporizer 2 and used for sucking the gas in the line 12, a direct vaporizer 16 disposed in the middle of the line 12, and a mixed liquid branching line 18 for introducing a part of the mixed liquid pressurized by the liquid pump 1 into the vaporizer 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体燃料を改質し
て水素を製造する水素製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen by reforming liquid fuel.

【0002】[0002]

【従来の技術】図8は、ナフサ、メタノール等の液体燃
料を改質して水素を製造する従来の水素製造装置の全体
構成図である。この図において、1は液体ポンプ、2は
間接蒸発器、3は熱交換器、4は改質器、5は水素分離
装置、6は燃焼器、7は空気ブロアである。改質器4
は、改質触媒が充填された改質室Reと高温ガスが通る
加熱室Hとからなる。水素分離装置5は、シフト反応触
媒が充填されたシフト室Sと水素分離膜で分離された透
過室H2とからなる。
2. Description of the Related Art FIG. 8 is an overall configuration diagram of a conventional hydrogen production apparatus for producing hydrogen by reforming a liquid fuel such as naphtha or methanol. In this figure, 1 is a liquid pump, 2 is an indirect evaporator, 3 is a heat exchanger, 4 is a reformer, 5 is a hydrogen separator, 6 is a combustor, and 7 is an air blower. Reformer 4
Consists of a reforming chamber Re filled with a reforming catalyst and a heating chamber H through which a high-temperature gas passes. The hydrogen separation device 5 includes a shift chamber S filled with a shift reaction catalyst and a permeation chamber H2 separated by a hydrogen separation membrane.

【0003】上述した従来の水素製造装置において、ナ
フサ、メタノール等の液体燃料と水との混合液は、液体
ポンプ1で間接蒸発器2に供給されて蒸発し、熱交換器
3で予熱され、改質器4の改質室Reに供給される。改
質室Reでは、加熱室Hからの加熱と改質触媒により燃
料が下記の式(1)の改質反応により、水素を含む改質
ガスに改質される。 CmHn+mH2O→mCO+(m+0.5n)H2...(1)
In the above-described conventional hydrogen production apparatus, a liquid mixture of liquid fuel such as naphtha and methanol and water is supplied to an indirect evaporator 2 by a liquid pump 1 and evaporated, and is preheated by a heat exchanger 3. It is supplied to the reforming chamber Re of the reformer 4. In the reforming chamber Re, the fuel is reformed into a reformed gas containing hydrogen by heating from the heating chamber H and a reforming reaction of the following formula (1) by the reforming catalyst. CmHn + mH 2 O → mCO + (m + 0.5n) H 2. . . (1)

【0004】改質室Reを出た改質ガスには、CmHn
(液体燃料)、H2O(水蒸気)、CO(一酸化炭
素)、H2(水素)が含まれる。この改質ガスは、水素
分離装置5のシフト室Sに供給され、ここでシフト反応
触媒により以下の式(2)によりCOがH2に転換され
る。 CO+H2O→CO2+H2...(2)
[0004] The reformed gas leaving the reforming chamber Re includes CmHn.
(Liquid fuel), H 2 O (steam), CO (carbon monoxide), and H 2 (hydrogen). This reformed gas is supplied to the shift chamber S of the hydrogen separator 5, where CO is converted to H 2 by the shift reaction catalyst according to the following equation (2). CO + H 2 O → CO 2 + H 2 . . . (2)

【0005】従って、このシフト反応により、改質ガス
中の水素濃度が上昇する。更に、水素分離装置5は、水
素分離膜で分離された透過室H2を有するので、水素ガ
スのみが水素分離膜を透って透過室H2より、外部に純
粋な水素ガスが取り出される。
[0005] Accordingly, the hydrogen concentration in the reformed gas increases due to the shift reaction. Furthermore, since the hydrogen separation device 5 has the permeation chamber H2 separated by the hydrogen separation membrane, only hydrogen gas passes through the hydrogen separation membrane, and pure hydrogen gas is extracted from the permeation chamber H2 to the outside.

【0006】水素の一部が分離された改質ガス(未透過
ガス)には、残存する水素の他、可燃成分であるCmH
n(燃料)、CO2及びCOが含まれている。この未透
過ガスは、燃焼器6で空気ブロア7から供給される空気
で燃焼して高温の燃焼ガスとなり、改質器4の加熱室H
に供給され、ここで改質反応に必要な熱を改質室Reに
供給し、更に、間接蒸発器2で液体燃料と水の混合液を
蒸発させ、排気ガスとして排気される。
[0006] The reformed gas (unpermeated gas) from which part of the hydrogen has been separated contains, in addition to the remaining hydrogen, CmH which is a combustible component.
n (fuel), CO 2 and CO. The unpermeated gas is burned by the air supplied from the air blower 7 in the combustor 6 to become a high-temperature combustion gas.
The heat required for the reforming reaction is supplied to the reforming chamber Re, and the liquid fuel and water mixture is evaporated by the indirect evaporator 2 and exhausted as exhaust gas.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の水素製
造装置には、以下の問題点があった。 (1)シフト室Sを通過した未透過ガス中には、大量の
水素ガスが残存している。 (2)上記(1)式で示す改質反応に必要な水蒸気の全
量を外部から供給するため、供給水蒸気量が多く、シス
テム効率が高めれられない。 (3)液体燃料と水との混合液を加圧する液体ポンプ1
の必要動力が大きい。 (4)液体燃料と水との混合液を蒸発させる間接蒸発器
2が大型となる。
The above-described conventional hydrogen production apparatus has the following problems. (1) A large amount of hydrogen gas remains in the unpermeated gas that has passed through the shift chamber S. (2) Since the entire amount of steam required for the reforming reaction represented by the above formula (1) is supplied from the outside, the amount of steam supplied is large, and the system efficiency cannot be improved. (3) Liquid pump 1 for pressurizing a liquid mixture of liquid fuel and water
The required power is large. (4) The indirect evaporator 2 for evaporating the liquid mixture of the liquid fuel and water becomes large.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、
(1)シフト室Sを通過した未透過ガス中の水蒸気の一
部を改質器入口にリサイクルすることで、実質的な改質
器での改質率を高めることができ、(2)改質反応に必
要な水蒸気の一部をリサイクルして、外部からの供給水
蒸気量を低減してシステム効率を高めることができ、
(3)液体ポンプの必要動力を低減し、(4)間接蒸発
器を小型化できる水素製造装置を提供することにある。
The present invention has been made to solve such a problem. That is, the object of the present invention is:
(1) By recycling part of the steam in the unpermeated gas that has passed through the shift chamber S to the inlet of the reformer, it is possible to increase the substantial reforming rate in the reformer, and (2) improve the reforming rate. Recycling part of the steam necessary for the quality reaction, reducing the amount of steam supplied from the outside, and improving the system efficiency,
(3) To provide a hydrogen production apparatus capable of reducing the required power of a liquid pump and (4) miniaturizing an indirect evaporator.

【0009】[0009]

【課題を解決するための手段】本発明によれば、液体ポ
ンプ(1)、間接蒸発器(2)、改質器(4)、水素分
離装置(5)、燃焼器(6)を備え、液体燃料と水との
混合液を液体ポンプで加圧し、これを間接蒸発器で蒸発
し、これを改質器の改質室(Re)で水素を含む改質ガ
スに改質し、更に水素分離装置のシフト室(S)でシフ
ト反応させ、同時に水素分離膜を透して水素ガスを取り
出し、水素分離膜を透らない未透過ガスを燃焼器で燃焼
し、その燃焼ガスを改質器(4)の加熱室(H)に供給
し、更に間接蒸発器で熱交換して排気する水素製造装置
において、前記未透過ガスの一部を燃焼器(6)をバイ
パスして改質室(Re)の上流側にリサイクルするリサ
イクルライン(12)を備える、ことを特徴とする水素
製造装置が提供される。
According to the present invention, there is provided a liquid pump (1), an indirect evaporator (2), a reformer (4), a hydrogen separator (5), and a combustor (6). A mixture of liquid fuel and water is pressurized by a liquid pump, evaporated by an indirect evaporator, and reformed into a reformed gas containing hydrogen in a reforming chamber (Re) of the reformer. A shift reaction is performed in the shift chamber (S) of the separation device, and at the same time, hydrogen gas is extracted through a hydrogen separation membrane, and an unpermeated gas that does not pass through the hydrogen separation membrane is burned in a combustor. (4) In the hydrogen production apparatus in which the gas is supplied to the heating chamber (H) and further heat-exchanged and exhausted by the indirect evaporator, a part of the unpermeated gas is bypassed through the combustor (6) and reformed in the reforming chamber ( Re) is provided with a recycling line (12) for recycling upstream of the hydrogen production apparatus. That.

【0010】上記本発明の構成によれば、リサイクルラ
イン(12)を介して未透過ガスの一部を燃焼器(6)
をバイパスして改質室(Re)の上流側にリサイクルす
ることができ、シフト室(S)を通過した未透過ガス中
の水素ガスの一部を燃焼させることなく改質室を介して
シフト室(S)に再循環して再利用でき、これにより実
質的な改質器での改質率を高めることができる。また、
未透過ガス中には改質反応及びシフト反応に用いられな
かった余剰の水蒸気が含まれており、実質的に大量の水
蒸気を含有する。従って、この未透過ガスを改質室(R
e)の上流側にリサイクルすることにより、改質反応に
必要な水蒸気として用いることができ、外部からの供給
水蒸気量を低減してシステム効率を高めることができ
る。
According to the configuration of the present invention, a part of the unpermeated gas is transferred to the combustor (6) through the recycle line (12).
Can be recycled to the upstream side of the reforming chamber (Re) by bypassing, and a portion of the hydrogen gas in the non-permeated gas that has passed through the shift chamber (S) is shifted through the reforming chamber without burning. It can be recycled and reused in the chamber (S), thereby increasing the substantial reforming rate in the reformer. Also,
The unpermeated gas contains excess steam that has not been used in the reforming reaction and the shift reaction, and contains a substantially large amount of steam. Therefore, this unpermeated gas is transferred to the reforming chamber (R
By recycling to the upstream side of e), it can be used as steam required for the reforming reaction, and the amount of steam supplied from the outside can be reduced to increase the system efficiency.

【0011】本発明の好ましい実施形態によれば、更
に、間接蒸発器(2)と改質器(4)の改質室(Re)
との間に設置され、間接蒸発器で発生した高圧蒸気で駆
動し、前記リサイクルライン(12)のガスを吸引する
イジェクタ(14)を備える。この構成により、イジェ
クタ(14)でリサイクルライン(12)のガスを吸引
し、リサイクルさせることができるので、特別な駆動装
置(高温ブロア等)が不要であり、かつ液体ポンプの必
要動力を低減することができる。
According to a preferred embodiment of the present invention, the reforming chamber (Re) of the indirect evaporator (2) and the reformer (4) is further provided.
And an ejector (14) driven by the high-pressure steam generated by the indirect evaporator to suck the gas in the recycle line (12). With this configuration, the gas in the recycling line (12) can be sucked and recycled by the ejector (14), so that a special driving device (such as a high-temperature blower) is not required, and the required power of the liquid pump is reduced. be able to.

【0012】また、リサイクルライン(12)の途中に
設けられた直接蒸発器(16)と、前記液体ポンプ
(1)で加圧した混合液の一部を直接蒸発器に導く混合
液分岐ライン(18)とを備える、ことが好ましい。こ
の構成により、間接蒸発器での蒸発量を低減し、間接蒸
発器を小型化できる。
Further, a direct evaporator (16) provided in the middle of the recycle line (12) and a mixed liquid branch line (1) for guiding a part of the mixed liquid pressurized by the liquid pump (1) to the direct evaporator. 18). With this configuration, the amount of evaporation in the indirect evaporator can be reduced, and the indirect evaporator can be downsized.

【0013】[0013]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し、重複した説明を省略す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0014】図1は、本発明の水素製造装置の全体構成
図である。この図において、本発明の水素製造装置10
は、液体ポンプ1、間接蒸発器2、熱交換器3、改質器
4、水素分離装置5及び燃焼器6を備える。
FIG. 1 is an overall configuration diagram of the hydrogen production apparatus of the present invention. In this figure, the hydrogen production apparatus 10 of the present invention is shown.
Comprises a liquid pump 1, an indirect evaporator 2, a heat exchanger 3, a reformer 4, a hydrogen separator 5 and a combustor 6.

【0015】この構成により、液体燃料(例えばナフ
サ、メタノール等)と水との混合液を液体ポンプ1で加
圧し、これを間接蒸発器2で蒸発し、これを改質器4の
改質室Reで水素を含む改質ガスに改質し、更に水素分
離装置5のシフト室Sでシフト反応させ、同時に水素分
離膜を透して水素ガスを取り出し、水素分離膜を透らな
い未透過ガスを燃焼器6で燃焼し、その燃焼ガスを改質
器4の加熱室Hに供給し、更に間接蒸発器2で熱交換し
て排気する。
With this configuration, a liquid mixture of liquid fuel (for example, naphtha, methanol, etc.) and water is pressurized by a liquid pump 1, evaporated by an indirect evaporator 2, and then evaporated by a reforming chamber of a reformer 4. Reformed into a reformed gas containing hydrogen with Re, and further subjected to a shift reaction in the shift chamber S of the hydrogen separation device 5, and at the same time, hydrogen gas is taken out through the hydrogen separation membrane, and unpermeated gas that does not pass through the hydrogen separation membrane. Is burned in the combustor 6, the combustion gas is supplied to the heating chamber H of the reformer 4, and the heat is exchanged in the indirect evaporator 2 and exhausted.

【0016】本発明の水素製造装置10は、更に、リサ
イクルライン12、イジェクタ14、直接蒸発器16及
び混合液分岐ライン18を備える。リサイクルライン1
2は、シフト室Sの出口と改質室Reの上流側とを燃焼
器6をバイパスして連通し、シフト室Sで水素分離膜を
透らない未透過ガスの一部を燃焼器6をバイパスして改
質室Reの上流側にリサイクルするようになっている。
また、イジェクタ14は、間接蒸発器2と改質器4の改
質室Reとの間に設置され、間接蒸発器2で発生した高
圧蒸気でこれを駆動し、リサイクルライン12のガスを
吸引して蒸発ガスと共に改質室Reに供給するようにな
っている。
The hydrogen production apparatus 10 of the present invention further includes a recycle line 12, an ejector 14, a direct evaporator 16, and a mixed liquid branch line 18. Recycle line 1
2 communicates the outlet of the shift chamber S with the upstream side of the reforming chamber Re by bypassing the combustor 6, and transfers a part of the unpermeated gas that does not pass through the hydrogen separation membrane in the shift chamber S to the combustor 6. The gas is bypassed and recycled to the upstream side of the reforming chamber Re.
The ejector 14 is provided between the indirect evaporator 2 and the reforming chamber Re of the reformer 4, and is driven by the high-pressure steam generated in the indirect evaporator 2 to suck the gas in the recycle line 12. The gas is supplied to the reforming chamber Re together with the evaporative gas.

【0017】直接蒸発器16は、リサイクルライン12
の途中に設けられている。この直接蒸発器16は単なる
中空容器、またはこれに混合促進部材を充填したもので
ある。また、混合液分岐ライン18は、液体ポンプ1で
加圧した混合液の一部を直接蒸発器16に導き、内部で
混合液を高温の未透過ガスと接触させて蒸発させるよう
になっている。
The direct evaporator 16 is connected to the recycle line 12
Is provided on the way. The direct evaporator 16 is a simple hollow container or a container filled with a mixing promoting member. In addition, the mixed liquid branch line 18 directly guides a part of the mixed liquid pressurized by the liquid pump 1 to the evaporator 16 so that the mixed liquid is brought into contact with a high-temperature non-permeated gas to evaporate the mixed liquid. .

【0018】上述した本発明の構成によれば、リサイク
ルライン12を介して未透過ガスの一部を燃焼器6をバ
イパスして改質室Reの上流側にリサイクルすることが
でき、シフト室Sを通過した未透過ガス中の水素ガスの
一部を燃焼させることなく改質室を介してシフト室Sに
再循環して再利用でき、これにより実質的な改質器での
改質率を高めることができる。また、未透過ガス中には
改質反応及びシフト反応に用いられなかった余剰の水蒸
気と燃焼反応で発生した水蒸気が含まれており、実質的
に大量の水蒸気を含有する。従って、この未透過ガスを
改質室Reの上流側にリサイクルするこのにより、改質
反応に必要な水蒸気として用いることができ、外部から
の供給水蒸気量を低減してシステム効率を高めることが
できる。
According to the configuration of the present invention described above, a part of the unpermeated gas can be recycled to the upstream side of the reforming chamber Re by bypassing the combustor 6 through the recycling line 12, and the shift chamber S A part of the hydrogen gas in the unpermeated gas that has passed through can be recycled to the shift chamber S through the reforming chamber without being burned, and the substantial reforming rate in the reformer can be reduced. Can be enhanced. Further, the non-permeated gas contains surplus steam not used for the reforming reaction and the shift reaction and steam generated by the combustion reaction, and substantially contains a large amount of steam. Therefore, by recycling this unpermeated gas to the upstream side of the reforming chamber Re, it can be used as steam required for the reforming reaction, and the amount of steam supplied from the outside can be reduced to increase the system efficiency. .

【0019】更に、イジェクタ14でリサイクルライン
12のガスを吸引し、リサイクルさせることができるの
で、特別な駆動装置(高温ブロア等)が不要であり、か
つ液体ポンプの必要動力を低減することができる。
Further, since the gas in the recycling line 12 can be sucked and recycled by the ejector 14, a special driving device (such as a high-temperature blower) is not required, and the required power of the liquid pump can be reduced. .

【0020】また、直接蒸発器16内で混合液の一部を
蒸発させるので、間接蒸発器2での蒸発量を低減し、間
接蒸発器を小型化できる。
Further, since a part of the liquid mixture is evaporated in the direct evaporator 16, the amount of evaporation in the indirect evaporator 2 can be reduced, and the indirect evaporator can be downsized.

【0021】[0021]

【実施例】以下、以下本発明の実施例をシミュレーショ
ン結果を基に説明する。図2は、リサイクル割合と改質
率との関係図である。この図において、横軸はリサイク
ルライン12によるリサイクル割合、縦軸は改質率であ
る。この図からリサイクルを実施することで、水蒸気リ
ッチなガス(熱物質収支計算によると約42〜44%)
を改質器に戻すことができ、これにより、リサイクル割
合を増やすことで改質率を向上させることができること
がわかる。
Embodiments of the present invention will be described below based on simulation results. FIG. 2 is a relationship diagram between the recycling rate and the reforming rate. In this figure, the horizontal axis represents the recycling rate by the recycling line 12, and the vertical axis represents the reforming rate. By performing recycling from this figure, a gas rich in steam can be obtained (approximately 42 to 44% according to the thermal mass balance calculation).
Can be returned to the reformer, whereby it can be understood that the reforming rate can be improved by increasing the recycling rate.

【0022】図3は、リサイクル割合と発生水素量との
関係図である。この図において、縦軸は改質器出口の水
素流量基準で、80%を透過できる水素透過装置を組み
合わせた場合の発生水素流量を、改質器に供給した単位
ナフサ流量当たりで表している。この図から、リサイク
ルを増やすと、改質率が向上することから、改質器供給
単位ナフサ流量当たりに発生する水素流量もリサイクル
割合が増えるに従って向上することがわかる。
FIG. 3 is a diagram showing the relationship between the recycling ratio and the amount of generated hydrogen. In this figure, the vertical axis represents the hydrogen flow rate at the outlet of the reformer and the hydrogen flow rate generated when a hydrogen permeable device capable of transmitting 80% is combined per unit naphtha flow rate supplied to the reformer. From this figure, it can be seen that when the recycling rate is increased, the reforming rate is improved. Therefore, the flow rate of hydrogen generated per unit naphtha flow rate in the reformer is also improved as the recycling rate increases.

【0023】図4は、リサイクル割合と発生水素量との
別の関係図である。この図では、発生水素流量を、シス
テムに供給した単位ナフサ流量(改質器供給燃料+追い
炊き燃料流量)当たりで表した。リサイクルを増すとシ
ステムに供給する単位ナフサ当たりから取り出せる製品
水素流量が増加することから、水素製造における効率が
向上することがわかる。
FIG. 4 is another diagram showing the relationship between the recycling ratio and the amount of generated hydrogen. In this figure, the flow rate of the generated hydrogen is represented per unit naphtha flow rate (fuel supplied to the reformer + fuel flow for additional cooking) supplied to the system. As the recycling rate increases, the product hydrogen flow rate per unit naphtha supplied to the system increases, indicating that the efficiency in hydrogen production increases.

【0024】図5と図6は、リサイクル割合とシフト室
S内の水素濃度との関係図である。図5は、改質出口水
素流量基準で80%を透過できる水素透過装置を組み合
わせた場合のリサイクル割合と水素透過装置シフト室側
平均水素濃度との関係を示している。この図において、
リサイクル割合を増やすと、H2、CO2,COの濃度が
上昇することから、水素濃度は下がってくる。水素透過
装置シフト室側平均水素濃度が下がると分離速度が下が
ることから、より大きな水素透過装置が必要となる。こ
のため適切なリサイクル割合が存在し、本計算で用いた
水素透過装置の差圧400kPa程度の条件では50%
以下のリサイクル割合とする必要がある。しかしなが
ら、これらのことはリサイクルによってより多くの水素
を製造しようとしたことによる影響が大きく、発生水素
発生量一定としてリサイクル流量を増やした場合の水素
濃度減少幅は、図6に示すように1%程度である。
FIGS. 5 and 6 are diagrams showing the relationship between the recycling ratio and the hydrogen concentration in the shift chamber S. FIG. FIG. 5 shows the relationship between the recycling rate and the average hydrogen concentration on the shift chamber side of the hydrogen permeable device when a hydrogen permeable device capable of transmitting 80% based on the reforming outlet hydrogen flow rate is combined. In this figure,
When the recycling ratio is increased, the concentration of H 2 , CO 2 , and CO increases, and the concentration of hydrogen decreases. When the average hydrogen concentration on the shift side of the hydrogen permeable device decreases, the separation speed decreases, so a larger hydrogen permeable device is required. For this reason, there is an appropriate recycle rate, and 50% under the condition of a differential pressure of about 400 kPa of the hydrogen permeable device used in this calculation.
It is necessary to set the following recycling rate. However, these are greatly affected by an attempt to produce more hydrogen by recycling, and when the amount of generated hydrogen is constant and the recycling flow rate is increased, the hydrogen concentration decrease width is 1% as shown in FIG. It is about.

【0025】図7は、水蒸気/炭素比と改質率との関係
図である。この図は、改質出口水素流量基準で80%を
透過できる水素透過装置を組み合わせ、リサイクル割合
を50%とした場合である。50%リサイクルを実施す
ることで、水蒸気リッチなガス(熱物質収支計算による
と約42〜44%)を改質器に戻すことができることか
ら、水蒸気/炭素比を2.5まで下げてもリサイクルを
実施しない水蒸気/炭素比=3.0運転の改質率(92
%以下)を上回ることから、リサイクルより供給水蒸気
量を減らすこと(低S/C運転)が可能であることがわ
かる。
FIG. 7 is a graph showing the relationship between the steam / carbon ratio and the reforming rate. This figure shows a case where a hydrogen permeable device capable of transmitting 80% based on the hydrogen flow rate at the reforming outlet is combined, and the recycling ratio is set to 50%. By performing 50% recycling, steam-rich gas (about 42-44% according to the thermal mass balance calculation) can be returned to the reformer. Therefore, even if the steam / carbon ratio is reduced to 2.5, it can be recycled. Steam / carbon ratio not performing = reforming rate of 3.0 operation (92
% Or less), it can be seen that it is possible to reduce the amount of steam supplied (low S / C operation) compared to recycling.

【0026】なお、本発明は、上述した実施例に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】上述したように本発明は、シフトコンバ
ータと一体化した水素分離膜装置を用いて、改質器にて
得られた炭化水素燃料の水蒸気改質ガスから、純水素を
製造する水素製造装置であり、シフト反応器未透過ガス
の一部を改質器の上流側へとリサイクルすることを特徴
とするものである。
As described above, according to the present invention, pure hydrogen is produced from the steam reformed gas of the hydrocarbon fuel obtained in the reformer using the hydrogen separation membrane device integrated with the shift converter. A hydrogen production apparatus characterized in that part of the gas permeated through a shift reactor is recycled to an upstream side of a reformer.

【0028】本発明の構成により、シフトコンバータ出
口の水蒸気リッチなガスを改質器に戻すことにより、
(1)改質器の改質率を向上し、(2)供給水蒸気量を
減らしシステム効率を高めることができる。また、供給
水蒸気もしくは液化燃料の高圧上記を動力源としたイジ
ェクタを用いて、リサイクルを実施した場合、別途動力
源が不要となるため、特に効果的である。更にリサイク
ルラインに直接水、もしくは液化燃料の一部を噴霧する
ことで、直接蒸気もしくは燃料を蒸発させることを行え
ば、蒸発器をコンパクトにすることが可能である。
According to the structure of the present invention, by returning the steam-rich gas at the shift converter outlet to the reformer,
(1) The reforming rate of the reformer can be improved, and (2) the amount of supplied steam can be reduced to increase the system efficiency. In addition, when recycling is performed by using an ejector using a high pressure of steam or liquefied fuel as a power source, a separate power source is not required, which is particularly effective. Further, if the steam or the fuel is directly evaporated by spraying water or a part of the liquefied fuel directly onto the recycling line, the evaporator can be made compact.

【0029】従って、本発明の水素製造装置は、(1)
シフト室Sを通過した未透過ガス中の水素ガスの一部を
燃焼させることなく再利用でき、これにより実質的な改
質器での改質率を高めることができ、(2)改質反応に
必要な水蒸気の一部をリサイクルして、外部からの供給
水蒸気量を低減してシステム効率を高めることができ、
(3)液体ポンプの必要動力を低減し、(4)間接蒸発
器を小型化できる、等の優れた効果を有する。
Therefore, the hydrogen production apparatus of the present invention has the following advantages.
A part of the hydrogen gas in the non-permeate gas that has passed through the shift chamber S can be reused without burning, thereby increasing the substantial reforming rate in the reformer. Recycling part of the steam required for the system, reducing the amount of steam supplied from the outside, and improving system efficiency,
(3) It has excellent effects such as reducing the required power of the liquid pump and (4) miniaturizing the indirect evaporator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素製造装置の全体構成図である。FIG. 1 is an overall configuration diagram of a hydrogen production apparatus of the present invention.

【図2】リサイクル割合と改質率との関係図である。FIG. 2 is a relationship diagram between a recycling ratio and a reforming ratio.

【図3】リサイクル割合と発生水素量との関係図であ
る。
FIG. 3 is a relationship diagram between a recycling ratio and an amount of generated hydrogen.

【図4】リサイクル割合と発生水素量との別の関係図で
ある。
FIG. 4 is another relationship diagram between the recycling ratio and the amount of generated hydrogen.

【図5】リサイクル割合とシフト室S内の水素濃度との
関係図である。
FIG. 5 is a diagram illustrating a relationship between a recycling ratio and a hydrogen concentration in a shift chamber S.

【図6】リサイクル割合とシフト室S内の水素濃度との
別の関係図である。
FIG. 6 is another relationship diagram between a recycling ratio and a hydrogen concentration in a shift chamber S.

【図7】水蒸気/炭素比と改質率との関係図である。FIG. 7 is a relationship diagram between a steam / carbon ratio and a reforming rate.

【図8】従来の水素製造装置の全体構成図である。FIG. 8 is an overall configuration diagram of a conventional hydrogen production apparatus.

【符号の説明】[Explanation of symbols]

1 液体ポンプ、2 間接蒸発器、3 熱交換器、4
改質器、5 水素分離装置、6 燃焼器、7 空気ブロ
ア、10 水素製造装置、12 リサイクルライン、1
4 イジェクタ、16 直接蒸発器、18 混合液分岐
ライン
1 liquid pump, 2 indirect evaporator, 3 heat exchanger, 4
Reformer, 5 hydrogen separator, 6 combustor, 7 air blower, 10 hydrogen generator, 12 recycling line, 1
4 Ejector, 16 Direct evaporator, 18 Mixed liquid branch line

フロントページの続き Fターム(参考) 4G040 EA02 EA03 EA06 EB03 EB12 EB31 EB32 EB33 EB42 EB43 EB44 FA02 FC01 FE01 4G140 EA02 EA03 EA06 EB03 EB12 EB31 EB32 EB37 EB42 EB43 EB44 FA02 FC01 FE01 Continued on the front page F term (reference) 4G040 EA02 EA03 EA06 EB03 EB12 EB31 EB32 EB33 EB42 EB43 EB44 FA02 FC01 FE01 4G140 EA02 EA03 EA03 EA06 EB03 EB12 EB31 EB32 EB37 EB42 EB43 EB44 FA02 FC01 FE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液体ポンプ(1)、間接蒸発器(2)、
改質器(4)、水素分離装置(5)、燃焼器(6)を備
え、液体燃料と水との混合液を液体ポンプで加圧し、こ
れを間接蒸発器で蒸発し、これを改質器の改質室(R
e)で水素を含む改質ガスに改質し、更に水素分離装置
のシフト室(S)でシフト反応させ、同時に水素分離膜
を透して水素ガスを取り出し、水素分離膜を透らない未
透過ガスを燃焼器で燃焼し、その燃焼ガスを改質器
(4)の加熱室(H)に供給し、更に間接蒸発器で熱交
換して排気する水素製造装置において、 前記未透過ガスの一部を燃焼器(6)をバイパスして改
質室(Re)の上流側にリサイクルするリサイクルライ
ン(12)を備える、ことを特徴とする水素製造装置。
A liquid pump (1), an indirect evaporator (2),
Equipped with a reformer (4), a hydrogen separator (5), and a combustor (6), a mixture of liquid fuel and water is pressurized by a liquid pump, and the mixture is evaporated by an indirect evaporator and reformed. Reforming chamber (R
e) reforming into a reformed gas containing hydrogen, and further performing a shift reaction in the shift chamber (S) of the hydrogen separator, and simultaneously extracting hydrogen gas through the hydrogen separation membrane, and extracting hydrogen gas through the hydrogen separation membrane. In a hydrogen production apparatus in which a permeated gas is combusted by a combustor, the combustion gas is supplied to a heating chamber (H) of a reformer (4), and heat is exchanged and exhausted by an indirect evaporator. A hydrogen production apparatus, comprising: a recycle line (12) that partially recycles the gas by bypassing a combustor (6) and upstream of a reforming chamber (Re).
【請求項2】 更に、間接蒸発器(2)と改質器(4)
の改質室(Re)との間に設置され、間接蒸発器で発生
した高圧蒸気で駆動し、前記リサイクルライン(12)
のガスを吸引するイジェクタ(14)を備える、ことを
特徴とする請求項1に記載の水素製造装置。
2. An indirect evaporator (2) and a reformer (4).
The recycle line (12) is installed between the recycle line (12) and the high pressure steam generated by the indirect evaporator.
The hydrogen production apparatus according to claim 1, further comprising an ejector (14) for sucking the gas.
【請求項3】 更に、リサイクルライン(12)の途中
に設けられた直接蒸発器(16)と、前記液体ポンプ
(1)で加圧した混合液の一部を直接蒸発器に導く混合
液分岐ライン(18)とを備える、ことを特徴とする請
求項1に記載の水素製造装置。
3. A direct evaporator (16) provided in the middle of the recycling line (12), and a mixed liquid branch for guiding a part of the mixed liquid pressurized by the liquid pump (1) to the direct evaporator. The hydrogen production apparatus according to claim 1, further comprising a line (18).
JP2000303080A 2000-10-03 2000-10-03 Hydrogen manufacturing apparatus Pending JP2002114501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303080A JP2002114501A (en) 2000-10-03 2000-10-03 Hydrogen manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303080A JP2002114501A (en) 2000-10-03 2000-10-03 Hydrogen manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2002114501A true JP2002114501A (en) 2002-04-16

Family

ID=18784332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303080A Pending JP2002114501A (en) 2000-10-03 2000-10-03 Hydrogen manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2002114501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062141A1 (en) * 2002-01-23 2003-07-31 Statoil Asa Process for preparing synthesis gas by autothermal reforming

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065097A1 (en) * 1998-06-09 1999-12-16 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065097A1 (en) * 1998-06-09 1999-12-16 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062141A1 (en) * 2002-01-23 2003-07-31 Statoil Asa Process for preparing synthesis gas by autothermal reforming

Similar Documents

Publication Publication Date Title
JP5011673B2 (en) Fuel cell power generation system
US4865926A (en) Hydrogen fuel reforming in a fog cooled fuel cell power plant assembly
US7634915B2 (en) Systems and methods for power generation and hydrogen production with carbon dioxide isolation
US6838071B1 (en) Process for preparing a H2-rich gas and a CO2-rich gas at high pressure
US8216323B2 (en) System and method for hydrogen production
US20090117024A1 (en) Process for the Production of Hydrogen with Co-Production and Capture of Carbon Dioxide
WO2000003126A1 (en) Process for generating electric energy, steam and carbon dioxide from hydrocarbon feedstock
US20030046867A1 (en) Hydrogen generation
EP1901992A1 (en) Process for production of electric energy and co2 from a hydrocarbon feedstock
RU2001105617A (en) METHOD FOR PRODUCING SYNTHESIS GAS, APPLICABLE FOR SYNTHESIS OF GASOLINE, KEROSIN AND GAS OIL (OPTIONS)
JP2007538184A (en) Reformed gasoline assisted combustion
JP2001223017A (en) Fuel gas generating system for fuel cell
US11565937B2 (en) Process for producing a hydrogen-containing synthesis gas
US6357217B1 (en) Endothermic cooling of guide vanes and/or moving blades in a gas turbine
JP6530123B1 (en) Hydrogen production equipment
GB1567022A (en) Production of deuterium-enriched water and hydrogen
JP3998561B2 (en) Dimethyl ether reformed power generation system and its operation method
JP2662298B2 (en) Power plant with carbon dioxide separator
JP2002114501A (en) Hydrogen manufacturing apparatus
JP2001348204A (en) Fuel reforming method and device
EP4337599A1 (en) Ammonia cracking for green hydrogen
JP4443858B2 (en) Hydrogen production system and hydrogen production method
JP4227801B2 (en) Hydrogen production apparatus and hydrogen production method
JP2003176724A (en) Hydrogen separation reformed gas turbine system
US20040213712A1 (en) Gas generation system having a reformer and a device for the selective separation of hydrogen from the reformate gas stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101014