JP2002110010A - Protective element - Google Patents

Protective element

Info

Publication number
JP2002110010A
JP2002110010A JP2000293837A JP2000293837A JP2002110010A JP 2002110010 A JP2002110010 A JP 2002110010A JP 2000293837 A JP2000293837 A JP 2000293837A JP 2000293837 A JP2000293837 A JP 2000293837A JP 2002110010 A JP2002110010 A JP 2002110010A
Authority
JP
Japan
Prior art keywords
melting point
temperature
alloy
point alloy
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000293837A
Other languages
Japanese (ja)
Inventor
Susumu Nishiwaki
進 西脇
Kiyotomo Terasawa
精朋 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2000293837A priority Critical patent/JP2002110010A/en
Publication of JP2002110010A publication Critical patent/JP2002110010A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Abstract

PROBLEM TO BE SOLVED: To extend a selective area of a low melting point alloy on a protective element to use the low melting point alloy. SOLUTION: Both opening parts of an insulating case 6 and leads 1, 2 are fastened and sealed by sealing resin 7, 8 by connecting the low melting point alloy 3 with a difference of solidus temperature and liquidus temperature of at least 10 deg. and having a small cross sectional area 4 as a fusion promoting means to inner ends of the leads 1, 2 and inserting the low melting point alloy 3 into the insulating case 6 by applying flux 5 on it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、保護素子に関し、
より詳細には、感温素子として特定温度で溶融する低融
点合金を用いた保護素子に関する。
TECHNICAL FIELD The present invention relates to a protection element,
More specifically, the present invention relates to a protective element using a low-melting alloy that melts at a specific temperature as a temperature-sensitive element.

【0002】[0002]

【従来の技術】電子機器等を過熱損傷から保護する保護
素子として、特定温度で動作して回路を遮断する温度ヒ
ューズが用いられている。この種の温度ヒューズには、
感温材として特定温度で溶融する絶縁性の化学物質から
なる感温ペレットを用いて、感温ペレットの溶融時に圧
縮ばねの伸長により可動接点を固定接点から開離する感
温ペレットタイプのもの(a)と、感温材として特定温
度で溶融する低融点合金を用いて、この低融点合金に通
電し、周囲温度の過昇により低融点合金が溶融して回路
を遮断する低融点合金タイプ(b)とがある。また、低
融点合金と抵抗体とを具備し、抵抗体の通電加熱により
低融点合金を強制的に溶断させる抵抗付きヒューズと称
される保護素子(c)もある。また、過電流で溶断する
電流ヒユーズ(d)もある。さらに、周囲温度の過昇に
対しては温度ヒューズとして機能するとともに、過電流
に対しては電流ヒューズとして機能する温度ヒューズ兼
電流ヒューズと称される保護素子(e)もある。
2. Description of the Related Art As a protection element for protecting electronic equipment from overheat damage, a thermal fuse which operates at a specific temperature and cuts off a circuit is used. For this type of thermal fuse,
A temperature-sensitive pellet type in which a movable contact is separated from a fixed contact by the expansion of a compression spring when the temperature-sensitive pellet is melted by using a temperature-sensitive pellet made of an insulating chemical substance that melts at a specific temperature as a temperature-sensitive material (a ) And a low-melting alloy that melts at a specific temperature as a temperature-sensitive material, and a current is applied to the low-melting alloy. ). There is also a protection element (c) called a fuse with resistance, which includes a low melting point alloy and a resistor, and forcibly blows the low melting point alloy by energizing and heating the resistor. There is also a current fuse (d) that blows due to overcurrent. Further, there is a protection element (e) called a temperature fuse and a current fuse that functions as a temperature fuse for an excessive rise in ambient temperature and functions as a current fuse for an overcurrent.

【0003】しかしながら、上記(a)の感温ペレット
タイプの温度ヒューズは、部品点数が多く構造が複雑で
高価である。また、低融点合金を用いる(b)の低融点
合金タイプの温度ヒューズないし温度ヒューズ兼電流ヒ
ューズと称される保護素子(e)は、いずれも所定の温
度で低融点合金を溶融させるために、共晶合金を用いる
ものであった。しかしながら、所望の動作温度の共晶合
金は、入手が容易でなかった。
However, the temperature-sensitive pellet type thermal fuse (a) has a large number of parts, has a complicated structure, and is expensive. Further, the protection element (e) called a low-melting alloy type thermal fuse or a thermal fuse and current fuse using the low-melting alloy (b) using the low-melting alloy is used for melting the low-melting alloy at a predetermined temperature. A eutectic alloy was used. However, eutectic alloys with desired operating temperatures have not been readily available.

【0004】[0004]

【発明が解決しようとする課題】そこで、特公平2−3
9056号公報には、固相線温度と液相線温度との差が
10℃以内の低融点合金を用いて、所望の動作温度を得
ることが提案されている。この提案は、低融点合金の選
択範囲を飛躍的に広げる画期的なものであるが、それで
もなお、固相線温度と液相線温度との差が10℃以内の
低融点合金を用いるという制約条件の下では、選択範囲
内から所望の動作温度を得ることができない場合があっ
た。
SUMMARY OF THE INVENTION Therefore, Japanese Patent Publication No.
No. 9056 proposes to obtain a desired operating temperature by using a low melting point alloy having a difference between a solidus temperature and a liquidus temperature of 10 ° C. or less. This proposal is a breakthrough that dramatically expands the selection range of low-melting alloys, but nevertheless uses low-melting alloys with a difference between the solidus temperature and the liquidus temperature of within 10 ° C. Under the constraint conditions, a desired operating temperature cannot be obtained from within the selected range in some cases.

【0005】そこで、本発明は、低融点合金を用いる保
護素子において、より広範囲に低融点合金を選択できる
保護素子を提供することを目的とする。
Accordingly, an object of the present invention is to provide a protective element using a low melting point alloy, which can select a low melting point alloy in a wider range.

【0006】[0006]

【課題を解決するための手段】本発明は、第1に固相線
温度と液相線温度との差が10℃以上の低融点合金を用
いることであり、第2に低融点合金の溶断促進手段を設
けることによって、低融点合金を固相線温度から固相線
温度+5℃の範囲内で溶断するようにしたものである。
According to the present invention, first, a low melting point alloy having a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more is used. By providing the accelerating means, the low melting point alloy is melted within the range from the solidus temperature to the solidus temperature + 5 ° C.

【0007】以下、本発明の各種構成と、作用効果につ
いて説明する。本発明の請求項1に記載の発明は、固相
線温度と液相線温度との差が10℃以上ある合金を低融
点合金として用い、前記低融点合金の溶断促進手段を設
けて、前記低融点合金の溶断温度を固相線温度から固相
線温度+5℃までの範囲内に設定したことを特徴とする
保護素子である。このような低融点合金および溶断促進
手段を用いると、低融点合金の選択範囲が飛躍的に広範
囲になり、所望の動作温度の保護素子が容易に得られる
ようになる。
Hereinafter, various configurations of the present invention and the effects thereof will be described. The invention according to claim 1 of the present invention uses an alloy having a difference between a solidus temperature and a liquidus temperature of 10 ° C. or more as a low melting point alloy, and provides a means for promoting fusing of the low melting point alloy, A protection element characterized in that the fusing temperature of the low melting point alloy is set in a range from a solidus temperature to a solidus temperature + 5 ° C. When such a low melting point alloy and the fusing promoting means are used, the selection range of the low melting point alloy is greatly widened, and a protection element having a desired operating temperature can be easily obtained.

【0008】本発明の請求項2に記載の発明は、前記溶
断促進手段が、低融点合金の一部に形成した小断面積部
であることを特徴とする請求項1に記載の保護素子であ
る。このように、低融点合金の一部に小断面積部を設け
ると、その小断面積部から溶断しやすくなって、溶断温
度を固相線温度から固相線温度+5℃の範囲内に設定で
きる。
According to a second aspect of the present invention, in the protection element according to the first aspect, the fusing promoting means is a small cross-sectional area formed in a part of the low melting point alloy. is there. As described above, when a small cross-sectional area is provided in a part of the low melting point alloy, fusing is easily performed from the small cross-sectional area, and the fusing temperature is set within a range from the solidus temperature to the solidus temperature + 5 ° C. it can.

【0009】本発明の請求項3に記載の発明は、前記溶
断促進手段が、低融点合金の断面形状を矩形状にしたも
のであることを特徴とする請求項1または2のいずれか
に記載の保護素子である。このように、低融点合金の断
面形状を矩形状にすると、低融点合金が溶融した際の低
融点合金の球状化しようとする応力が、断面形状が円形
や楕円形の場合に比較して大きくなり、溶断温度を固相
線温度から固相線温度+5℃の範囲内に設定できる。
The invention according to claim 3 of the present invention is characterized in that the fusing-promoting means is a low-melting-point alloy having a rectangular cross-sectional shape. Of the protection element. Thus, when the cross-sectional shape of the low-melting alloy is rectangular, the stress that tends to make the low-melting alloy spherical when the low-melting alloy is melted is larger than when the cross-sectional shape is circular or elliptical. Thus, the fusing temperature can be set within a range from the solidus temperature to the solidus temperature + 5 ° C.

【0010】本発明の請求項4に記載の発明は、前記溶
断促進手段が、低融点合金を包囲する界面張力の大きな
オイルまたはワックスであることを特徴とする請求項1
ないし3のいずれかに記載の保護素子である。このよう
に、低融点合金を界面張力の大きなオイルまたはワック
スで包囲すると、低融点合金の溶融時にオイルの大きな
界面張力によって低融点合金が溶断しやすくなり、溶断
温度を固相線温度から固相線温度+5℃の範囲内に設定
できる。
The invention according to claim 4 of the present invention is characterized in that the fusing promoting means is oil or wax having a large interfacial tension surrounding the low melting point alloy.
4. The protection element according to any one of claims 1 to 3. When the low-melting alloy is surrounded by oil or wax having a high interfacial tension, the low-melting alloy is easily melted due to the high interfacial tension of the oil when the low-melting alloy is melted. It can be set within the range of linear temperature + 5 ° C.

【0011】本発明の請求項5に記載の発明は、前記低
融点合金が、Bi−In−Snの三元合金であることを
特徴とする請求項1ないし4のいずれかに記載の保護素
子である。このような三元系合金を用いると、溶融温度
の選択範囲が比較的自由になる。
According to a fifth aspect of the present invention, in the protective device according to any one of the first to fourth aspects, the low melting point alloy is a ternary alloy of Bi-In-Sn. It is. When such a ternary alloy is used, the selection range of the melting temperature is relatively free.

【0012】本発明の実施態様について、以下、図面を
参照して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【実施態様1】図1は本発明の請求項1および2に対応
する第1実施態様の保護素子Aの断面図である。図1に
おいて、1,2は銅等の良導電性材料よりなりはんだめ
っき等を施したリードで、その一端間に例えばBi−I
n−Snの三元系合金よりなり固相線温度と液相線温度
との差が10℃以上ある低融点合金3が溶接等により接
続されている。この低融点合金3は、その長さ方向の中
途部に小断面積部4が形成されている。また、低融点合
金3の全面およびリード1,2の低融点合金3との接続
部近傍にフラックス5を塗付してある。そして、前記リ
ード1,2と低融点合金3との接続構体は、セラミック
や耐熱樹脂等よりなる円筒状の絶縁ケース6内に収容さ
れ、絶縁ケース6の両開口部がエポキシ樹脂等の封止樹
脂7,8で封止されている。
FIG. 1 is a sectional view of a protection element A according to a first embodiment of the present invention. In FIG. 1, reference numerals 1 and 2 denote leads made of a good conductive material such as copper and subjected to solder plating or the like.
A low melting point alloy 3 made of an n-Sn ternary alloy and having a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more is connected by welding or the like. The low-melting point alloy 3 has a small cross-sectional area 4 formed in the middle part in the longitudinal direction. The flux 5 is applied to the entire surface of the low melting point alloy 3 and the vicinity of the connection between the leads 1 and 2 and the low melting point alloy 3. The connection structure between the leads 1 and 2 and the low melting point alloy 3 is housed in a cylindrical insulating case 6 made of ceramic, heat-resistant resin, or the like, and both openings of the insulating case 6 are sealed with epoxy resin or the like. It is sealed with resins 7 and 8.

【0013】上記の保護素子Aにおいて、リード1,2
を電子機器に直列に接続するとともに、絶縁ケース6を
電子機器の異常時に温度が上昇する個所に取り付けてお
く。すると、リード1−低融点合金3−リード2の経路
で電流が流れて、電子機器に通電できる。
In the protection element A, the leads 1, 2
Are connected in series to the electronic device, and the insulating case 6 is attached to a location where the temperature rises when the electronic device is abnormal. Then, a current flows through the path of the lead 1-the low-melting-point alloy 3-the lead 2, and the electronic device can be energized.

【0014】電子機器の異常等に起因して、周囲温度が
上昇してフラックス5の融点を超えると、まずフラック
ス5が溶融して低融点合金3の表面を清浄化および活性
化して、低融点合金3の溶融の準備状態となる。さらに
周囲温度が上昇すると、低融点合金3が固相線温度と液
相線温度との間の温度で溶融を開始するが、このとき、
低融点合金3の中途部に小断面積部4が形成されている
ので、この小断面積部4の抵抗値が他の部分の抵抗値よ
りも大きく、したがって、小断面積部4の自己発熱量が
他の部分の発熱量よりも大きいことに起因して、低融点
合金3はその小断面積部4から溶融を開始し、しかも固
相線温度から固相線温度+5℃の範囲内の温度で溶融を
開始する。溶融した低融点合金3は、その表面張力によ
って、リード1,2に引き寄せられて球状化するため、
回路が開放される。それによって周囲温度が低下して
も、一旦球状化した低融点合金3は、再び時1に示す元
の線状にはならないため、非復帰型の保護素子として機
能する。
When the ambient temperature rises and exceeds the melting point of the flux 5 due to an abnormality of the electronic equipment, the flux 5 is first melted to clean and activate the surface of the low melting point alloy 3, so that the low melting point alloy 3 is activated. The alloy 3 is ready for melting. When the ambient temperature further rises, the low melting point alloy 3 starts melting at a temperature between the solidus temperature and the liquidus temperature.
Since the small cross-sectional area 4 is formed in the middle of the low melting point alloy 3, the resistance of the small cross-sectional area 4 is larger than the resistance of the other parts. The low melting point alloy 3 starts melting from the small cross-sectional area 4 due to the amount being larger than the heat generation amount of the other parts, and is in the range of the solidus temperature to the solidus temperature + 5 ° C. Start melting at temperature. The molten low melting point alloy 3 is attracted to the leads 1 and 2 due to its surface tension and becomes spherical,
The circuit is opened. As a result, even if the ambient temperature is lowered, the low-melting point alloy 3 once sphericalized does not return to the original linear shape shown at 1 again, and thus functions as a non-return type protection element.

【0015】ここで、低融点合金3の溶断促進手段であ
る小断面積部4の残余部分に対する断面積減少率を大き
くするほど、低融点合金3の溶断温度は固相線温度に近
付くが、断面積減少率を余り大きくすると、通電電流に
よる発熱量が増大するため、定格電流値が小さくしなけ
ればならなくなるので、低融点合金3の溶断温度と定格
電流値とを勘案して適宜決定すればよい。
Here, as the rate of decrease in the cross-sectional area of the low-melting alloy 3 relative to the remaining portion of the small-cross-sectional area 4 as the means for promoting fusing of the low-melting alloy 3 increases, the fusing temperature of the low-melting alloy 3 approaches the solidus temperature. If the cross-sectional area reduction rate is too large, the amount of heat generated by the flowing current increases, and the rated current value must be reduced. Therefore, the rated current value must be appropriately determined in consideration of the fusing temperature of the low melting point alloy 3 and the rated current value. I just need.

【0016】上記の保護素子Aは、図1に示すように、
リード1,2、低融点合金3、フラックス5、絶縁ケー
ス6および封止樹脂7,8で構成されているので、部品
点数が少なく、構造が簡単で安価である。また、低融点
合金3の選択範囲が、従来一般の共晶合金や、特公平2
−39056号公報に示す固相線温度と液相線温度との
差が10℃以内のものに比較して飛躍的に広範囲とな
り、所望の動作温度の保護素子が容易に得られるという
特長がある。
As shown in FIG. 1, the protection element A is
Since it is composed of the leads 1 and 2, the low melting point alloy 3, the flux 5, the insulating case 6 and the sealing resins 7 and 8, the number of parts is small, the structure is simple and inexpensive. In addition, the selection range of the low melting point alloy 3 can be selected from conventional eutectic alloys and
The difference between the solidus temperature and the liquidus temperature described in JP-A-39056 is significantly wider than that in the case where the temperature is within 10 ° C., and a protection element having a desired operating temperature can be easily obtained. .

【0017】[0017]

【実施態様2】次に、本発明の請求項1および3に対応
する第2実施態様の保護素子Bについて説明する。この
保護素子Bは、低融点合金の溶断促進手段として、低融
点合金の断面形状を矩形状にしたものである。図2は、
本発明の第2実施態様の保護素子Bの断面図を示す。図
2において、11,12はリード、13はリード11,
12の内方端間に溶接等により接続固定された固相線温
度と液相線温度との差が10℃以上の低融点合金、14
は低融点合金13の溶断促進手段としての低融点合金に
おける矩形状の断面形状で、図2の紙面に垂直な断面を
一部拡大して円内に示す。15は低融点合金13の表面
に塗付されたフラックス、16は絶縁ケース、17,1
8は封止樹脂である。
Second Embodiment Next, a protection element B according to a second embodiment of the present invention will be described. The protection element B has a low-melting alloy having a rectangular cross-sectional shape as a means for promoting fusing of the low-melting alloy. FIG.
FIG. 4 shows a sectional view of a protection element B according to a second embodiment of the present invention. In FIG. 2, 11 and 12 are leads, 13 is a lead 11,
A low melting point alloy having a difference between a solidus temperature and a liquidus temperature of 10 ° C. or more, which is connected and fixed between the inner ends of 12 by welding or the like;
2 is a rectangular cross-sectional shape of the low-melting alloy as a means for promoting fusing of the low-melting alloy 13, and a cross section perpendicular to the plane of FIG. 15 is a flux applied to the surface of the low melting point alloy 13, 16 is an insulating case, 17, 1
8 is a sealing resin.

【0018】上記の保護素子Bによれば、リード11,
12を電子機器に直列接続しておき、絶縁ケース16を
電子機器の異常時に温度上昇する個所に取り付けてお
く。すると、リード11−低融点合金13−リード12
の経路で電子機器に通電できる。
According to the protection element B, the leads 11,
12 is connected in series to the electronic device, and the insulating case 16 is attached to a place where the temperature rises when the electronic device is abnormal. Then, lead 11-low melting point alloy 13-lead 12
The electronic device can be energized through the path.

【0019】電子機器の異常時には、まずフラックス1
5が溶融して低融点合金13の溶融の準備状態となる。
周囲温度がさらに上昇すると、低融点合金13が固相線
温度と液相線温度との間の温度で溶融を開始する。する
と、低融点合金13の断面形状が矩形状であるため、断
面形状が円形や楕円形の場合に比較して、表面張力によ
り球状化しようとする応力が大きくなり、低融点合金1
3が固相線温度から固相線温度+5℃の範囲内で溶融を
開始する。低融点合金13が溶融すると、前記同様に回
路が開放されて、電子機器への通電が遮断されるため、
電子機器のそれ以上の温度上昇が防止され、電子機器の
発火による火災発生が未然に防止される。
When an electronic device is abnormal, the flux 1
5 is melted, and the low melting point alloy 13 is ready for melting.
As the ambient temperature further increases, the low melting point alloy 13 starts melting at a temperature between the solidus temperature and the liquidus temperature. Then, since the cross-sectional shape of the low-melting point alloy 13 is rectangular, the stress that tends to be spheroidized by the surface tension is increased as compared with the case where the cross-sectional shape is circular or elliptical.
3 starts melting within the range from the solidus temperature to the solidus temperature + 5 ° C. When the low melting point alloy 13 is melted, the circuit is opened in the same manner as described above, and the power supply to the electronic device is cut off.
Further increase in temperature of the electronic device is prevented, and occurrence of fire due to ignition of the electronic device is prevented.

【0020】なお、低融点合金13の溶断促進手段とし
ての矩形断面形状14は、正方形よりも長方形の方が望
ましく、また、長辺:短辺の比が大きいほど、低融点合
金13の溶断温度が固相線温度に近付くが、その比を余
り大きくすると、リード11,12との接続性が低下し
たり、許容電流値が小さくなるので、低融点合金13の
溶断温度と共用電流値を勘案して決定すればよい。。
It is preferable that the rectangular cross-sectional shape 14 as a means for promoting the fusing of the low melting point alloy 13 is a rectangle rather than a square, and the larger the ratio of the long side to the short side, the higher the fusing temperature of the low melting point alloy 13. Is close to the solidus temperature, but if the ratio is too large, the connectivity with the leads 11 and 12 will decrease or the allowable current value will decrease, so the fusing temperature of the low melting point alloy 13 and the shared current value are taken into account. It should be determined. .

【0021】この実施態様2の保護素子Bにおいても、
固相線温度と液相線温度との差が10℃以上の低融点合
金13を用いているので、低融点合金13の選択範囲が
広範囲となり、所望の動作温度の保護素子が容易に得ら
れる。
In the protection element B according to the second embodiment,
Since the low melting point alloy 13 having a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more is used, the selection range of the low melting point alloy 13 is wide, and a protection element having a desired operating temperature can be easily obtained. .

【0022】[0022]

【実施態様3】次に、本発明の請求項1および4に対応
する第3実施態様の保護素子Cについて説明する。本第
3実施態様の保護素子Cは、図1および図2の第1,第
2実施態様の保護素子A,Bにおける低融点合金3,1
3の溶断促進手段としての小断面積部4や矩形状断面形
状に代えて、絶縁ケース内に界面張力の大きなオイルま
たはワックスを充填したものである。図3は本第3実施
態様の保護素子Cの断面図を示す。図3において、2
1,22はリード、23は固相線温度と液相線温度との
差が10℃以上の低融点合金、24は低融点合金23の
溶断促進手段としての界面張力が大きいオイルまたはワ
ックス、26は絶縁ケース、27,28は封止樹脂であ
る。前記溶断促進手段としての界面張力が大きいオイル
または24としては、例えば低融点合金23の溶断温度
±30℃において流動性を有するシリコーンまたは変性
シリコーン(カルボキシル変性、アミノ変性等)や、C
10〜C100までの直鎖状および分岐状炭化水素類、
C10〜C100までの直鎖状および分岐状高級アルコ
ール類、ポリエチレングリコール、ポリプロピレングリ
コールおよびポリグリセリン等や、C2〜C5までの多
価アルコール重合物等の単体および混合物から選択され
た1種または2種以上からなる。なお、この実施例で
は、フラックスを省略している。
[Embodiment 3] Next, a protection element C according to a third embodiment of the present invention will be described. The protection element C of the third embodiment is the same as the low melting point alloys 3 and 1 of the protection elements A and B of the first and second embodiments of FIGS.
The insulating case is filled with oil or wax having a large interfacial tension, instead of the small cross-sectional area 4 or the rectangular cross-sectional shape as the means 3 for promoting fusing. FIG. 3 is a sectional view of a protection element C according to the third embodiment. In FIG. 3, 2
Reference numerals 1 and 22 denote leads; 23, a low melting point alloy having a difference between a solidus temperature and a liquidus temperature of 10 ° C. or more; 24, an oil or wax having a large interfacial tension as a means for fusing the low melting point alloy; Is an insulating case, and 27 and 28 are sealing resins. Examples of the oil or 24 having a large interfacial tension as the fusing promoting means include silicone or modified silicone (carboxy-modified, amino-modified or the like) having fluidity at a fusing temperature of ± 30 ° C. of the low melting point alloy 23,
Linear and branched hydrocarbons from 10 to C100,
One or two kinds selected from simple substances and mixtures of linear and branched higher alcohols of C10 to C100, polyethylene glycol, polypropylene glycol and polyglycerin, and polyhydric alcohol polymers of C2 to C5. It consists of the above. In this embodiment, the flux is omitted.

【0023】上記の保護素子Cにおいて、リード21,
22を電子機器と直列に接続するとともに、絶縁ケース
26を電子機器の異常により温度が上昇する個所に取り
付けておく。すると、リード21−低融点合金23−リ
ード22の経路で電子機器に通電できる。
In the protection element C, the leads 21 and
22 is connected in series with the electronic device, and the insulating case 26 is attached to a place where the temperature rises due to an abnormality in the electronic device. Then, the electronic device can be energized through the path of the lead 21-the low melting point alloy 23-the lead 22.

【0024】電子機器の異常等により電子機器の温度が
過昇すると、低融点合金23が固相線温度と液相線温度
との間の温度で溶融を開始する。ところが、低融点合金
23は、界面張力の大きなオイルまたはワックス24で
包囲されているので、低融点合金23が溶融を開始する
と、オイルまたはワックス24の大きな界表面張力によ
って、低融点合金23の溶融を開始した部分をオイルま
たはワックス24が強く押圧することによって、低融点
合金23は固相線温度から固相線温度+5℃間の温度で
溶融する。
When the temperature of the electronic device rises excessively due to an abnormality of the electronic device, the low melting point alloy 23 starts melting at a temperature between the solidus temperature and the liquidus temperature. However, since the low-melting alloy 23 is surrounded by oil or wax 24 having a large interfacial tension, when the low-melting alloy 23 starts melting, the low-melting alloy 23 is melted by the large interfacial surface tension of the oil or wax 24. The low melting point alloy 23 is melted at a temperature between the solidus temperature and the solidus temperature + 5 ° C. when the oil or wax 24 strongly presses the part where the heat treatment has started.

【0025】この第3実施態様の保護素子Cにおいて
も、低融点合金23として固相線温度と液相線温度との
差が10℃以上の低融点合金を用いているので、低融点
合金23の選択範囲を広範囲にすることができる。ま
た、絶縁ケース26内にオイルまたはワックス24を充
填しているので、図1および図2に示す第1,第2実施
態様の保護素子A,Bに比較して、絶縁ケース26から
オイル24を介して低融点合金23への熱伝導特性が改
善されて、熱応答特性が優れた保護素子が得られるとい
う特長がある。
Also in the protection element C of the third embodiment, the low melting point alloy 23 has a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more. Can be widened. Further, since the insulating case 26 is filled with oil or wax 24, the oil 24 is discharged from the insulating case 26 as compared with the protection elements A and B of the first and second embodiments shown in FIGS. This has the advantage that the thermal conductivity to the low melting point alloy 23 is improved through this, and a protective element having excellent thermal response characteristics can be obtained.

【0026】[0026]

【実施例】次に、本発明の実施例について説明する。図
1の第1実施態様の保護素子Aの構成において、以下の
構成を採用した。 リード1,2 はんだめっき銅線、Φ0.6mm×39.0mm 低融点合金3 Bi−In−Sn三元合金、Φ0.6mm×4.0mm 溶断促進手段4 Φ0.4mm×0.2mm フラックス5 変性ロジン 絶縁ケース6 アルミナセラミック、 外径:Φ2.5×9.0mm 内径:Φ1.5×9.0mm 封止樹脂7,8 エポキシ樹脂
Next, an embodiment of the present invention will be described. The following configuration was employed in the configuration of the protection element A of the first embodiment in FIG. Leads 1, 2 Solder plated copper wire, φ0.6mm × 39.0mm Low melting point alloy 3 Bi-In-Sn ternary alloy, φ0.6mm × 4.0mm Fusing promoting means 4 φ0.4mm × 0.2mm Flux 5 Modification Rosin Insulation case 6 Alumina ceramic, Outer diameter: Φ2.5 × 9.0mm Inner diameter: Φ1.5 × 9.0mm Sealing resin 7,8 Epoxy resin

【0027】上記の実施例構造を有し、次のBi−In
−Sn三元合金からなる低融点合金23を具備する5種
類の保護素子A1〜A5を各5個ずつ製作し、それぞれ
の固相線温度、液相線温度および溶断温度を測定した。
Having the structure of the above embodiment, the following Bi-In
Five protective elements A1 to A5 each including the low melting point alloy 23 made of a Sn ternary alloy were manufactured by five each, and the respective solidus temperatures, liquidus temperatures, and fusing temperatures were measured.

【0028】[0028]

【比較例】また、比較例として、上記の溶断促進手段と
しての小断面積部4を有しない点を除いて上記実施例の
保護素子A1〜A5と同一構造の5種類の比較例の保護
素子H1〜H5を各5個ずつ製作し、それぞれの固相線
温度、液相線温度およびオイルバス中で1℃/分の速度
で温度上昇した場合の溶断温度を測定した。
COMPARATIVE EXAMPLES As comparative examples, five kinds of protective elements of the comparative examples having the same structure as the protective elements A1 to A5 of the above embodiment except that the small cross-sectional area 4 as the above-mentioned fusing promoting means is not provided. Five each of H1 to H5 were manufactured, and their solidus temperature, liquidus temperature, and fusing temperature when the temperature was raised at a rate of 1 ° C./min in an oil bath were measured.

【0029】上記の実施例の保護素子A1〜A5および
比較例の保護素子H1〜H5の固相線温度、液相線温度
および溶断温度の測定結果を、図4に示す。なお、実施
例の保護素子Aシリーズおよび比較例の保護素子Hシリ
ーズとの固相線温度、液相線温度は、同一のBi−In
−Sn三元合金を使用しているので、同一である。
FIG. 4 shows the measurement results of the solidus temperature, the liquidus temperature and the fusing temperature of the protection elements A1 to A5 of the above embodiment and the protection elements H1 to H5 of the comparative example. The solidus temperature and the liquidus temperature of the protection element A series of the example and the protection element H series of the comparative example are the same Bi-In.
-Same because a Sn ternary alloy is used.

【0030】上記図4に示す実施例の保護素子A1〜A
5および比較例の保護素子H1〜H5の測定結果から、
本発明の実施例の保護素子A1〜A5が、低融点合金3
そのものの固相線温度と液相線温度との差が10℃以上
あっても、低融点合金3が固相線温度から固相線温度+
5℃までの範囲内の温度で溶断しており、保護素子とし
て十分満足できる機能を有していることが分かる。これ
に対して、比較例の保護素子H1〜H5は、溶断温度の
ばらつきが大きく、保護素子として信頼性が低く、実用
に耐えないものであることが分かる。
The protection elements A1 to A of the embodiment shown in FIG.
5 and the measurement results of the protection elements H1 to H5 of the comparative example,
The protection elements A1 to A5 according to the embodiment of the present invention are made of a low melting point alloy 3
Even if the difference between the solidus temperature and the liquidus temperature of the alloy itself is 10 ° C. or more, the low melting point alloy 3 can be changed from the solidus temperature to the solidus temperature +
Melting was performed at a temperature in the range of up to 5 ° C., indicating that the protective element had a sufficiently satisfactory function. On the other hand, it can be seen that the protection elements H1 to H5 of the comparative example have large fusing temperature variations, have low reliability as protection elements, and are not practical.

【0031】上記各実施例の低融点合金について、図2
に示す矩形状断面14を有する低融点合金13を具備す
る第2実施態様の保護素子Bや、図3に示すオイルまた
はワックス24を具備する第3実施態様の保護素子Cに
ついても、同様に低融点合金13,23が固相線温度か
ら固相線温度+5℃までの範囲内の温度で溶断すること
を確認した。
FIG. 2 shows the low melting point alloy of each of the above embodiments.
The protection element B of the second embodiment having the low melting point alloy 13 having the rectangular cross section 14 shown in FIG. 3 and the protection element C of the third embodiment having the oil or wax 24 shown in FIG. It was confirmed that the melting point alloys 13 and 23 melted at a temperature within a range from the solidus temperature to the solidus temperature + 5 ° C.

【0032】なお、本発明の上記各実施態様および実施
例は、特定の構造のものについて説明したが、本発明は
上記実施例に示した構造に限定されるものではなく、本
発明の精神を逸脱しない範囲で、各種の変形が可能であ
ることはいうまでもない。
Although each of the above embodiments and examples of the present invention has been described with reference to a specific structure, the present invention is not limited to the structure shown in the above examples, and the spirit of the present invention is not limited thereto. It goes without saying that various modifications are possible without departing from the scope of the present invention.

【0033】例えば、図2に示す第2実施態様の保護素
子Bにおける、低融点合金13の溶断促進手段である低
融点合金の矩形断面形状14は、図1,図3に示す第
1,第3実施態様の保護素子A,Cにおいて、併用する
ことができる。このように、低融点合金の溶断促進手段
である矩形断面形状14と、小断面積部3またはオイル
24とを併用することによって、低融点合金の溶断温度
をより固相線温度に近付けることができる。
For example, in the protection element B according to the second embodiment shown in FIG. 2, the rectangular cross-sectional shape 14 of the low-melting-point alloy, which is a means for promoting the fusing of the low-melting-point alloy 13, is the first and the second shown in FIGS. The protection elements A and C of the three embodiments can be used together. As described above, by using the rectangular cross-sectional shape 14, which is a means for promoting fusing of the low melting point alloy, and the small cross-sectional area 3 or the oil 24, the fusing temperature of the low melting point alloy can be made closer to the solidus temperature. it can.

【0034】また、図3に示す第3実施態様の保護素子
Cにおける、低融点合金23の溶融促進手段24として
のオイルまたはワックス24は、図1に示す第1実施態
様の保護素子Aにおいて併用することができる。このよ
うに、低融点合金の溶断促進手段であるオイルまたはワ
ックス24と小断面積部4とを併用することによって、
低融点合金の溶断温度をより固相線温度に近付けること
ができる。
Further, in the protection element C of the third embodiment shown in FIG. 3, oil or wax 24 as a means for promoting melting of the low melting point alloy 23 is used in combination with the protection element A of the first embodiment shown in FIG. can do. As described above, by using the oil or wax 24, which is a means for promoting fusing of the low melting point alloy, and the small cross-sectional area 4 together,
The fusing temperature of the low melting point alloy can be made closer to the solidus temperature.

【0035】さらに、図1,図2および図3に示す低融
点合金の溶断促進手段,すなわち小断面積部4,矩形断
面形状14およびオイル24をすべて併用することもで
きる。
Further, the means for promoting fusing of the low melting point alloy shown in FIGS. 1, 2 and 3, that is, all of the small sectional area portion 4, the rectangular sectional shape 14 and the oil 24 can be used together.

【0036】また、上記実施例は、低融点合金として、
Bi−In−Sn三元合金における5種類の組成につい
て説明したが、Bi−In−Sn三元合金の他の組成
や、Bi−In−Sn三元合金以外の他の二元または三
元以上の多元合金を採用してもよい。
In the above embodiment, the low melting point alloy is
Although five types of compositions in the Bi-In-Sn ternary alloy have been described, other compositions of the Bi-In-Sn ternary alloy and other binary or ternary elements other than the Bi-In-Sn ternary alloy May be adopted.

【0037】さらにまた、図1ないし図3の第1〜第3
実施態様の保護素子A〜Cは、円筒形の絶縁ケースを用
いるアキシャル型の保護素子について説明したが、矩形
状の絶縁ケースを用いるアキシャル型の保護素子や、矩
形状の絶縁ケースを用いるラジアル型の保護素子におい
て実施することもできる。
Further, the first to third parts shown in FIGS.
Although the protective elements A to C of the embodiment have been described as the axial type protective element using the cylindrical insulating case, the axial type protective element using the rectangular insulating case and the radial type using the rectangular insulating case are used. Of the protection element.

【0038】[0038]

【発明の効果】本発明は以上のように、固相線温度と液
相線温度との差が10℃以上ある合金を低融点合金とし
て用い、前記低融点合金の溶断促進手段を設けて、前記
低融点合金の溶断温度を固相線温度から固相線温度+5
℃までの範囲内に設定したことを特徴とする保護素子で
あるから、部品点数が少なく構造が簡単で安価な保護素
子が得られるのみならず、低融点合金の選択範囲が従来
よりも著しく広範囲になり、所望の動作温度の保護素子
が容易に得られる。
As described above, according to the present invention, an alloy having a difference between the solidus temperature and the liquidus temperature of 10 ° C. or more is used as the low melting point alloy, and the means for promoting fusing of the low melting point alloy is provided. The fusing temperature of the low melting point alloy is changed from the solidus temperature to the solidus temperature +5.
The protection element is set within the range up to ° C, so not only is it possible to obtain an inexpensive protection element with a small number of parts and a simple structure, but also the selection range of the low melting point alloy is significantly wider than before. Thus, a protection element having a desired operating temperature can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施態様の保護素子Aの断面図FIG. 1 is a sectional view of a protection element A according to a first embodiment of the present invention.

【図2】 本発明の第2実施態様の保護素子Bの断面図FIG. 2 is a sectional view of a protection element B according to a second embodiment of the present invention.

【図3】 本発明の第3実施態様の保護素子Cの断面図FIG. 3 is a sectional view of a protection element C according to a third embodiment of the present invention.

【図4】 本発明の第1実施態様の保護素子Aおよび比
較例の保護素子の溶断特性図
FIG. 4 is a fusing characteristic diagram of the protection element A of the first embodiment of the present invention and the protection element of the comparative example.

【符号の説明】[Explanation of symbols]

A、B、C 保護素子 1、2、11、12、21、22 リード 3、13、23 低融点合金 4 溶断促進手段(小断面積部) 5、15 フラックス 6、16、26 絶縁ケース 7、8、17、18、27、28 封止樹脂 14 溶断促進手段(矩形断面形状) 24 溶断促進手段(オイルまたはワックス) A, B, C Protective element 1, 2, 11, 12, 21, 22 Lead 3, 13, 23 Low melting point alloy 4 Fusing promotion means (small cross section) 5, 15 Flux 6, 16, 26 Insulating case 7, 8, 17, 18, 27, 28 Sealing resin 14 Fusing acceleration means (rectangular cross section) 24 Fusing acceleration means (oil or wax)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固相線温度と液相線温度との差が10℃以
上ある合金を低融点合金として用い、前記低融点合金の
溶断促進手段を設けて、前記低融点合金の溶断温度を固
相線温度から固相線温度+5℃までの範囲内に設定した
ことを特徴とする保護素子。
An alloy having a difference between a solidus temperature and a liquidus temperature of 10 ° C. or more is used as a low-melting alloy, and means for promoting fusing of the low-melting alloy is provided. A protection element characterized by being set within a range from a solidus temperature to a solidus temperature + 5 ° C.
【請求項2】前記溶断促進手段が、低融点合金の一部に
形成した小断面積部であることを特徴とする請求項1に
記載の保護素子。
2. The protection element according to claim 1, wherein said fusing promoting means is a small cross-sectional area formed in a part of the low melting point alloy.
【請求項3】前記溶断促進手段が、低融点合金の断面形
状を矩形状にしたものであることを特徴とする請求項1
または2のいずれかに記載の保護素子。
3. The method according to claim 1, wherein said fusing-promoting means comprises a low-melting-point alloy having a rectangular cross section.
Or the protection element according to any one of 2.
【請求項4】前記溶断促進手段が、低融点合金を包囲す
る界面張力の大きなオイルまたはワックスであることを
特徴とする請求項1ないし3のいずれかに記載の保護素
子。
4. The protection element according to claim 1, wherein said fusing-promoting means is an oil or wax surrounding the low melting point alloy and having a high interfacial tension.
【請求項5】前記低融点合金が、Bi−In−Snの三
元合金であることを特徴とする請求項1ないし4のいず
れかに記載の保護素子。
5. The protection element according to claim 1, wherein said low melting point alloy is a ternary alloy of Bi-In-Sn.
JP2000293837A 2000-09-27 2000-09-27 Protective element Withdrawn JP2002110010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293837A JP2002110010A (en) 2000-09-27 2000-09-27 Protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293837A JP2002110010A (en) 2000-09-27 2000-09-27 Protective element

Publications (1)

Publication Number Publication Date
JP2002110010A true JP2002110010A (en) 2002-04-12

Family

ID=18776556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293837A Withdrawn JP2002110010A (en) 2000-09-27 2000-09-27 Protective element

Country Status (1)

Country Link
JP (1) JP2002110010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028092A (en) * 2002-05-31 2004-01-29 General Electric Co <Ge> Automatic engine protection system acted when electronic component of control system is exposed to overheated state
EP1424712A1 (en) * 2002-11-26 2004-06-02 Uchihashi Estec Co., Ltd. Alloy type thermal fuse and material for a thermal fuse element
WO2008010410A1 (en) * 2006-07-20 2008-01-24 Otowa Electric Co., Ltd. Spd with disconnection function and manufacturing method thereof
JP2011243484A (en) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp Current interrupting element and high-voltage device using current interrupting element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028092A (en) * 2002-05-31 2004-01-29 General Electric Co <Ge> Automatic engine protection system acted when electronic component of control system is exposed to overheated state
EP1424712A1 (en) * 2002-11-26 2004-06-02 Uchihashi Estec Co., Ltd. Alloy type thermal fuse and material for a thermal fuse element
US7199697B2 (en) 2002-11-26 2007-04-03 Uchihashi Estec Co., Ltd. Alloy type thermal fuse and material for a thermal fuse element
CN100349242C (en) * 2002-11-26 2007-11-14 内桥艾斯泰克股份有限公司 Alloy type thermal fuse and material for a thermal fuse element
WO2008010410A1 (en) * 2006-07-20 2008-01-24 Otowa Electric Co., Ltd. Spd with disconnection function and manufacturing method thereof
JP2008028089A (en) * 2006-07-20 2008-02-07 Otowa Denki Kogyo Kk Spd having separating mechanism and manufacturing method therefor
JP2011243484A (en) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp Current interrupting element and high-voltage device using current interrupting element

Similar Documents

Publication Publication Date Title
US4652848A (en) Fusible link
JP2872002B2 (en) fuse
US5739741A (en) Method of interrupting current in fuse and fuse structure
US5652562A (en) Thermally fused resistor having a portion of a solder loop thermally connected to an electrically insulated portion of an outer surface of the resistor
JP2002110010A (en) Protective element
JPH05282979A (en) Compact slow fuse
TWI727472B (en) Fuse resistor assembly and method of manufacturing the fuse resistor assembly
JP5346705B2 (en) Current fuse
JP5681389B2 (en) Fusible link
US4736070A (en) Miniaturized lighting or overload protective device and protective device used therein
JP2667188B2 (en) Fuse and manufacturing method thereof
TWI727473B (en) Fuse resistor assembly
JPS6314357Y2 (en)
US6667532B2 (en) Semiconductor power component comprising a safety fuse
JP4230313B2 (en) Cylindrical case type alloy type thermal fuse
JPH11339615A (en) Substrate type resistor thermal fuse
JPS6017775Y2 (en) temperature fuse
JP2004213928A (en) Alloy for thermal fuse
JPS6314356Y2 (en)
JP2004247269A (en) Tubular casing type alloyed thermal fuse
JPS6327410Y2 (en)
JPH10106425A (en) Thin type fuse
CA1247172A (en) Fusible link
JPH0312191Y2 (en)
JP4222055B2 (en) Alloy for thermal fuse

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204