JP2002107296A - Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn - Google Patents

Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn

Info

Publication number
JP2002107296A
JP2002107296A JP2000303632A JP2000303632A JP2002107296A JP 2002107296 A JP2002107296 A JP 2002107296A JP 2000303632 A JP2000303632 A JP 2000303632A JP 2000303632 A JP2000303632 A JP 2000303632A JP 2002107296 A JP2002107296 A JP 2002107296A
Authority
JP
Japan
Prior art keywords
turfgrass
analyzing
leaves
inorganic
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000303632A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Miyagawa
智喜 宮川
Junko Sugiura
純子 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J 2 KK
Taisei Corp
Original Assignee
J 2 KK
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J 2 KK, Taisei Corp filed Critical J 2 KK
Priority to JP2000303632A priority Critical patent/JP2002107296A/en
Publication of JP2002107296A publication Critical patent/JP2002107296A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Cultivation Of Plants (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method allowing even a person not an expert to easily analyze inorganic components necessary for growth of lawn in a short time, a method for diagnosing excessive or insufficient organic components by use of this analyzing method, and a method for growing lawn by fertilization based on the diagnostic data. SOLUTION: Cut lawn leaves are washed and dried to form a sample S, and the sample is analyzed for the inorganic components necessary for growth of lawn by the near infrared ray 6 of a near infrared spectral analyzer 1. The quantities of the inorganic components of the analyzed lawn leaves are compared with the quantities of the inorganic components necessary for sound growth of lawn and diagnosed, and the excessive or insufficient inorganic components are adjusted by fertilization to grow the lawn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、芝草葉に含まれる
各種化学成分について分析する方法に係り、特に、近赤
外分析装置を用いて効率的、簡易的に無機成分を定量分
析できる方法、およびこの分析方法によって得られたデ
ータに基づいて芝草の無機成分量を診断する方法と芝草
を健全に育成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing various chemical components contained in turfgrass leaves, and more particularly to a method for efficiently and easily quantitatively analyzing inorganic components using a near-infrared analyzer. Also, the present invention relates to a method for diagnosing the amount of inorganic components in turfgrass based on data obtained by this analysis method and a method for healthy turfgrass growth.

【0002】[0002]

【従来の技術】従来、牧草、芝草等の植物体に含まれる
成分の分析方法としては、CNSコーダー、誘導結合型
高周波プラズマ分光分析装置(以下、ICPという)を
用いた分析方法が主流である。CNSコーダーを用いる
分析は、例えば植物体の成分分析をする場合、植物体を
蒸留水で洗浄し、乾燥機により通風乾燥し、専用粉砕機
により微粉砕してサンプルを作製する。そして、CNS
コーダーを起動させ、安定するのを待ってサンプルの分
析を行っている。
2. Description of the Related Art Conventionally, as a method of analyzing components contained in plants such as grass and turfgrass, an analysis method using a CNS coder and an inductively coupled high-frequency plasma spectrometer (hereinafter referred to as ICP) has been mainly used. . In the analysis using a CNS coder, for example, when analyzing the components of a plant, the plant is washed with distilled water, air-dried with a drier, and finely pulverized with a dedicated grinder to prepare a sample. And the CNS
We start the coder and wait for it to stabilize before analyzing the sample.

【0003】また、ICPによる分析は、例えば同様に
して、植物体の成分分析をする場合、図5に示すよう
に、植物体を蒸留水にて洗浄(S11)し、乾燥機によ
り70℃で通風乾燥(S12)し、専用粉砕機により微
粉砕(S13)し、電気炉500℃にて灰化(S14)
し、熔解および濾過(S15)してサンプルを作製す
る。その後、ICPを起動し、安定(S16)後にサン
プルの分析(S17)を行っている。
In the analysis by ICP, for example, when analyzing the components of a plant in the same manner, the plant is washed with distilled water (S11) as shown in FIG. Ventilated and dried (S12), finely crushed by a dedicated crusher (S13), and incinerated at 500 ° C. in an electric furnace (S14).
Then, it is melted and filtered (S15) to prepare a sample. Thereafter, the ICP is activated, and after the stability (S16), the sample is analyzed (S17).

【0004】[0004]

【発明が解決しようとする課題】ところで、前記のCN
SコーダーやICPによるサンプルの分析は、サンプル
の調整に要する時間がかかると共に、分析にも多大な時
間がかかるという問題点があった。すなわち、ICPに
よる分析の場合、前記した洗浄工程(S11)は0.5
時間、乾燥工程(S12)に24時間、粉砕工程(S1
3)に0.5時間要すると共に、ICPの灰化工程(S
14)では12時間、熔解濾過工程(S15)に2時間
というように多大な時間を要してしまう。また、CNS
コーダーによる分析は、粉砕工程(S13)からサンプ
ルを分析用セルに詰め込んで直接、分析を行い、灰化工
程(S14)および熔解濾過工程(S15)は行わない
が、起動・安定に1時間、分析に1.5時間要してしま
う。ICPによる分析の場合は、起動・安定(S16)
に1.5時間、分析(S17)に0.5時間を要する。
すなわち、ICPの場合、乾燥工程の後、粉砕工程(S
13)から分析(S17)までに16.5時間もかかっ
てしまう。しかも、機器の取扱が煩雑であり、熟練者が
作業を行う必要があった。
By the way, the above CN
Analysis of a sample using an S coder or ICP has a problem that it takes a long time to prepare the sample and also takes a great deal of time for the analysis. That is, in the case of analysis by ICP, the aforementioned washing step (S11) is performed for 0.5
24 hours for the drying step (S12), and the pulverizing step (S1
3) takes 0.5 hours and the ICP incineration step (S
In the case of 14), a large amount of time is required, such as 12 hours, and 2 hours for the melt filtration step (S15). Also, CNS
In the analysis by the coder, the sample is packed in an analysis cell directly from the pulverizing step (S13), and the analysis is directly performed, and the incineration step (S14) and the melt filtration step (S15) are not performed. The analysis takes 1.5 hours. In the case of analysis by ICP, activation / stabilization (S16)
1.5 hours and 0.5 hours for analysis (S17).
That is, in the case of ICP, after the drying step, the pulverizing step (S
It takes 16.5 hours from 13) to analysis (S17). In addition, the handling of the equipment is complicated, and the skilled worker has to perform the work.

【0005】本発明は、このような問題に鑑みてなされ
たものであって、その目的とするところは、芝草葉の成
分分析にかかる時間を大幅に短縮することによって、リ
アルタイムで芝草の無機成分量をモニターでき、分析機
器の取扱が簡単で、専門家でなくても分析できる方法を
提供することにある。また、低コストで簡易的に芝草が
健全に生育するために必要な無機成分を分析できる方法
を提供することにある。さらに、前記の方法を用いて、
芝草に含まれる無機成分量の過不足を診断する方法、お
よび芝草を健全に育成する方法を提供することにある。
The present invention has been made in view of such a problem, and an object of the present invention is to substantially reduce the time required for analyzing the components of turfgrass leaves, thereby realizing the inorganic components of turfgrass in real time. It is an object of the present invention to provide a method capable of monitoring an amount, easily handling an analytical instrument, and analyzing without a specialist. Another object of the present invention is to provide a method capable of easily analyzing the inorganic components necessary for healthy growth of turfgrass at low cost. Further, using the method described above,
It is an object of the present invention to provide a method of diagnosing excess or deficiency of the amount of inorganic components contained in turfgrass and a method of growing turfgrass healthy.

【0006】[0006]

【課題を解決するための手段】前記目的を達成すべく、
本発明に係る芝草葉の成分分析方法は、芝草の生育に必
要な無機成分を定量分析する方法であって、刈り取った
芝草葉を洗浄し、該芝草葉を乾燥したあと、近赤外分光
分析装置により該芝草葉に含まれる無機成分を定量分析
することを特徴とする。この方法は、予め無機成分量が
異なるように調整された芝草サンプルについて、原子吸
光分析および近赤外分光分析により無機成分量に関する
検量線を作成し、この検量線に基づいて分析される。
In order to achieve the above object,
The method for analyzing the components of turfgrass leaves according to the present invention is a method for quantitatively analyzing the inorganic components required for the growth of turfgrass, washing the cut turfgrass leaves, drying the turfgrass leaves, and performing near-infrared spectroscopy. The apparatus is characterized by quantitatively analyzing inorganic components contained in the turfgrass leaves by the device. According to this method, a calibration curve relating to the amount of inorganic components is created by atomic absorption analysis and near-infrared spectroscopy for a turfgrass sample that has been adjusted so that the amount of inorganic components differs in advance, and analysis is performed based on the calibration curve.

【0007】また、本発明に係る芝草葉の成分分析方法
の好ましい具体的な態様としては、芝草葉を蒸留水にて
洗浄し、70℃で20時間以上通風乾燥したサンプルを
用いて分析すると好適である。さらに、本発明に係る芝
草葉の成分分析方法の好ましい具体的な他の態様として
は、前記無機成分は、窒素、リン、カリウム、カルシウ
ム、鉄、硫黄を含む芝草の生育に必要な無機成分である
ことを特徴としている。
In a preferred specific embodiment of the method for analyzing the components of turfgrass leaves according to the present invention, it is preferable that the turfgrass leaves are washed with distilled water and analyzed using a sample that has been air-dried at 70 ° C. for 20 hours or more. It is. Further, as another preferred and specific embodiment of the method for analyzing the component of turfgrass leaves according to the present invention, the inorganic component is an inorganic component necessary for growth of turfgrass containing nitrogen, phosphorus, potassium, calcium, iron and sulfur. It is characterized by having.

【0008】本発明に係る芝草の診断方法は、前記した
芝草葉の成分分析方法により分析した芝草葉の無機成分
の量を、芝草が健全に生育するために必要な無機成分の
量と比較して、分析された無機成分量が過剰であるか不
足しているかを診断することを特徴とする。また、本発
明に係る芝草の育成方法は、前記した芝草の診断方法に
より芝草の無機成分量を診断し、過不足している無機成
分を施肥によって調整することを特徴とする。
The method of diagnosing turfgrass according to the present invention compares the amount of inorganic components of turfgrass leaves analyzed by the above-described method of analyzing turfgrass leaves with the amount of inorganic components necessary for turfgrass to grow healthy. Diagnosing whether the analyzed inorganic component amount is excessive or insufficient. The method for growing turfgrass according to the present invention is characterized in that the amount of inorganic components of turfgrass is diagnosed by the above-described method of diagnosing turfgrass, and the excess or deficiency of inorganic components is adjusted by fertilization.

【0009】このように構成された本発明の芝草葉の成
分分析方法は、専門家でなくても、短時間で芝草の生育
に必要な無機成分を容易に分析できる。本発明に係る芝
草の診断方法は、前記した芝草葉の成分分析より多数の
ゴルフ場、サッカー場等で使われている芝草の無機成分
量の過不足を、迅速にリアルタイムで診断することがで
きる。また、本発明の芝草の育成方法は、前記した芝草
の診断方法により芝草を診断し、その診断データに基づ
いて分析した過不足している無機成分を施肥によって調
整して適切な肥料を与えることによって、健全な芝草を
育成することができる。
[0009] The method for analyzing the constituents of turfgrass leaves according to the present invention thus constituted can easily analyze the inorganic constituents required for the growth of turfgrass in a short time, even without a specialist. The method of diagnosing turfgrass according to the present invention can quickly and in real time diagnose the excess or deficiency of the amount of inorganic components of turfgrass used in a large number of golf courses, soccer fields and the like from the above-described turfgrass leaf component analysis. . The method of growing turfgrass according to the present invention includes diagnosing turfgrass by the above-described turfgrass diagnostic method, and applying an appropriate fertilizer by adjusting the excess or deficient inorganic component analyzed based on the diagnostic data by fertilization. Thus, healthy turfgrass can be grown.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る芝草葉の成分
分析方法の一実施形態を図面に基づき詳細に説明する。
図1は、本発明に係る芝草葉の成分分析を行う近赤外分
光分析装置の概略構成図、図2は、処理手順を示すフロ
ーチャート、図3は、分析結果を示す近赤外吸光スペク
トル特性図、図4は、芝草葉中のカリウム量を示すグラ
フである。先ず、本発明に係る芝草葉の成分分析を実施
する近赤外分光分析装置(以下、分析装置という)1に
ついて、図1を参照して概略説明する。近赤外領域は通
常800nm〜2500nmにわたる領域をいい、可視
光波長側の端と中間赤外域の始まりとの間の電磁波の領
域をいう。分析装置1は、前記の波長域にわたり発光可
能の発光ダイオード等の光源2を有し、光源2から発し
た光をスリット3を通過させてミラー4で反射させ、グ
レーティング手段5により例えば2nm間隔で分光され
スキャンする近赤外光6を発生する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for analyzing the components of turfgrass leaves according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a near-infrared spectroscopy analyzer for analyzing component of turfgrass leaves according to the present invention, FIG. 2 is a flowchart showing a processing procedure, and FIG. 3 is a near-infrared absorption spectrum characteristic showing an analysis result. FIG. 4 is a graph showing the amount of potassium in turfgrass leaves. First, a near-infrared spectroscopic analyzer (hereinafter, referred to as an analyzer) 1 for performing component analysis of turfgrass leaves according to the present invention will be schematically described with reference to FIG. The near-infrared region usually refers to a region extending from 800 nm to 2500 nm, and refers to a region of electromagnetic waves between the end on the visible light wavelength side and the beginning of the mid-infrared region. The analyzer 1 has a light source 2 such as a light-emitting diode capable of emitting light in the above-mentioned wavelength range. The light emitted from the light source 2 passes through the slit 3 and is reflected by the mirror 4. The near-infrared light 6 that is split and scanned is generated.

【0011】分析装置1は、この近赤外光6をサンプル
ケース7に入れられたサンプルSに照射し、その透過光
を透過測定部8で測定するとともに、反射光を反射測定
部9で測定する構成であり、透過測定部8でサンプルの
波長による透過率もしくは吸収率を測定し、反射測定部
9でサンプルからの波長による反射率を測定するもので
ある。近赤外光6の照射部近傍には、オーダソータ10
および波長標準11が設置されている。分析装置1内に
は、電源12および冷却用のファン13が設置されてい
る。サンプルSは所定の前処理を施され、サンプルケー
ス7に入れられて分析装置1の透過測定部8と反射測定
部9との間にセットされる。サンプルケース7は上下方
向に移動することができ、サンプルSの広い面積に近赤
外光6を照射することができ、精度の高い測定が可能で
ある。
The analyzer 1 irradiates the sample S placed in the sample case 7 with the near-infrared light 6, measures the transmitted light with the transmission measuring unit 8, and measures the reflected light with the reflection measuring unit 9. The transmission measuring unit 8 measures the transmittance or absorptance of the sample according to the wavelength, and the reflection measuring unit 9 measures the reflectance of the sample according to the wavelength. An order sorter 10 is provided near the irradiation part of the near infrared light 6.
And a wavelength standard 11 are provided. In the analyzer 1, a power supply 12 and a cooling fan 13 are provided. The sample S is subjected to a predetermined pretreatment, placed in a sample case 7, and set between the transmission measurement unit 8 and the reflection measurement unit 9 of the analyzer 1. The sample case 7 can move up and down, irradiate the near-infrared light 6 to a large area of the sample S, and can perform highly accurate measurement.

【0012】前記の如く構成された分析装置1を用いた
芝草葉の成分分析方法について、図2を参照して以下に
説明する。先ず、ゴルフ場、サッカー場等で刈り取った
芝草葉を蒸留水で洗浄(S1)する。この洗浄は、例え
ば芝草葉をイオン交換した蒸留水中に浸漬し、撹拌して
洗い流す操作を繰返し、芝草葉に付着している肥料成分
や農薬、土砂等を除去する。芝草葉の洗浄に要する時間
は、本例では約30分である。この後、洗浄した芝草葉
を乾燥機にて通風乾燥(S2)する。この乾燥は、本例
では70℃にて20時間以上実施しており、芝草葉に残
留している水分が分析に影響を与えない程度に乾燥する
ことが好ましい。
A method for analyzing the components of turfgrass leaves using the analyzer 1 configured as described above will be described below with reference to FIG. First, turfgrass leaves cut at a golf course, a soccer field or the like are washed with distilled water (S1). In this washing, for example, turfgrass leaves are repeatedly immersed in ion-exchanged distilled water, stirred, and washed away to remove fertilizer components, pesticides, earth and sand, etc. attached to the turfgrass leaves. The time required for cleaning the turfgrass leaves is about 30 minutes in this example. Thereafter, the washed turf leaves are air-dried with a dryer (S2). In this example, the drying is performed at 70 ° C. for 20 hours or more, and it is preferable that the drying is performed to such an extent that the moisture remaining in the turfgrass leaves does not affect the analysis.

【0013】このようにして乾燥された芝草葉のサンプ
ルSを、先ず従来の分析方法で定量値を得ておく。すな
わち、従来のCNSコーダーや、ICPにより、芝草の
生育に必要な無機成分の定量値を得る。次に分析装置1
に芝草葉のサンプルSをセットし、近赤外スペクトル吸
光値を求める。このように、ICP等によって分析され
た無機成分の定量値と、2nmごとに分光された近赤外
光に対する吸光値の間で重回帰分析を行い、最も適当な
波長を求めて検量線を作成する。この手順を踏んだ後、
サンプルSとしての芝草葉の成分分析を行うことが可能
となる。検量線は一度作成しておくと、この検量線に基
づいて分析装置1による分析は短時間で効率的に、何度
でも行うことができる。必要に応じて、検量線は更新、
校正する。
The sample S of the turfgrass leaf thus dried is first obtained with a quantitative value by a conventional analysis method. That is, a quantitative value of an inorganic component necessary for the growth of turfgrass is obtained by a conventional CNS coder or ICP. Next, the analyzer 1
Is set to the sample S of turfgrass, and the near-infrared spectrum absorption value is determined. In this way, a multiple regression analysis is performed between the quantitative value of the inorganic component analyzed by ICP and the like and the absorption value for near-infrared light separated every 2 nm, and a calibration curve is created by obtaining the most appropriate wavelength. I do. After following this procedure,
The component analysis of the turf grass leaf as the sample S can be performed. Once the calibration curve is created, the analysis by the analyzer 1 can be efficiently performed in a short time and many times based on the calibration curve. Update the calibration curve if necessary,
Calibrate.

【0014】このようにして乾燥された芝草葉のサンプ
ルSは、分析装置1により測定(S3)が行われる。サ
ンプルをサンプルケース7に入れて分析装置1にセット
し、分析装置1を作動する。近赤外光6がグレーティン
グ手段5により、例えば800nm〜2500nmの範
囲で変化し、この近赤外光6をサンプルSに照射し、そ
の反射光を反射測定部9により検出し、近赤外光6に対
する反射率もしくは吸収率を測定することができる。こ
のようにして前記の検量線に基づき、サンプルSに吸収
された近赤外スペクトル吸光値を測定することができ、
図3は測定した芝草葉のサンプルSの近赤外スペクトル
吸光値の特性曲線(以下、吸光スペクトル特性という)
を示している。この測定は、サンプルである芝草葉のセ
ットに10分程度、スキャンして測定するのに2〜3分
程度かかり、カリブレーションまで含めて15分程度で
分析(S4)まで終了し、迅速な測定が可能である。本
例では、サンプルSをいくつかに分割し、それぞれをサ
ンプルケース7にセットしてスキャン測定を行い、その
平均値を求めて吸光スペクトル特性を求めている。
The turfgrass leaf sample S thus dried is measured (S3) by the analyzer 1. The sample is put in the sample case 7, set on the analyzer 1, and the analyzer 1 is operated. The near-infrared light 6 is changed by the grating means 5 in the range of, for example, 800 nm to 2500 nm, the near-infrared light 6 is irradiated on the sample S, and the reflected light is detected by the reflection measuring unit 9. 6 can be measured for reflectance or absorptance. In this way, based on the calibration curve, the near-infrared spectrum absorption value absorbed by the sample S can be measured,
FIG. 3 shows a characteristic curve of the measured near-infrared spectrum absorption value of the sample S of the turfgrass leaf (hereinafter referred to as absorption spectrum characteristic).
Is shown. This measurement takes about 10 minutes for a set of turfgrass leaves, which is a sample, and about 2 to 3 minutes to scan and measure, and it takes about 15 minutes including calibration to complete the analysis (S4). Is possible. In this example, the sample S is divided into several parts, each is set in the sample case 7, scan measurement is performed, and the average value is obtained to obtain the absorption spectrum characteristic.

【0015】本例では、芝草の生育に必要な無機成分と
して、窒素、リン、カリウム、カルシウム、鉄、硫黄の
6種の成分を分析している。これらの無機成分をモニタ
リングして養分として芝草に適正に与えることにより、
芝草の健全度を維持することができる。前記の6種の無
機成分を分析するとき、近赤外光6の波長は、1100
nm〜2500nmの範囲を2nm間隔でスキャンさせ
て測定することができる。このように短い範囲の波長を
使用することにより測定時間を削減することができる。
図3は、前記の範囲で測定している。
In this example, six kinds of components of nitrogen, phosphorus, potassium, calcium, iron and sulfur are analyzed as inorganic components necessary for the growth of turfgrass. By monitoring these inorganic components and properly giving them to turfgrass as nutrients,
The soundness of turfgrass can be maintained. When analyzing the above six inorganic components, the wavelength of the near infrared light 6 is 1100
It can be measured by scanning the range of nm to 2500 nm at intervals of 2 nm. The use of such a short range of wavelengths can reduce the measurement time.
FIG. 3 shows the measurement in the above range.

【0016】前記のように求めた図3に示される吸光ス
ペクトル特性から、多重の線形回帰分析を行い、芝草葉
に含まれている無機成分量を定量する。すなわち、前記
した窒素、リン、カリウム、カルシウム、鉄、硫黄の6
種の無機成分量を定量し、その量が所定の範囲内にある
かを解析する。本例では、例えば窒素の成分量は3%で
あり、同様にリン、カリウム、カルシウム、鉄、硫黄の
成分量が、それぞれ定量される。このようにして分析さ
れた6種の無機成分量と、芝草が健全に生育するために
必要とされる6種の無機成分量とを比較する。そして、
測定した芝草葉に過剰にある、あるいは不足している無
機成分を診断し、その無機成分を含まない、あるいは余
計に含むように調整した肥料を芝草に与える。
Multiple linear regression analyzes are performed from the absorption spectrum characteristics shown in FIG. 3 obtained as described above to quantify the amount of inorganic components contained in turfgrass leaves. That is, the nitrogen, phosphorus, potassium, calcium, iron, and sulfur 6
The amount of the inorganic component of the species is quantified, and it is analyzed whether the amount is within a predetermined range. In this example, for example, the component amount of nitrogen is 3%, and the component amounts of phosphorus, potassium, calcium, iron, and sulfur are similarly determined. The amounts of the six inorganic components analyzed in this way are compared with the amounts of the six inorganic components required for turfgrass to grow healthy. And
An excess or deficiency of the inorganic component in the measured turfgrass leaf is diagnosed, and the fertilizer adjusted to include the inorganic component or to include the inorganic component is added to the turfgrass.

【0017】図4は、一例として芝草葉中に含まれるカ
リウム成分量を示し、横軸はゴルフ場名、グリーンナン
バー等のサンプルナンバー、縦軸はカリウム成分量を示
している。グラフ中、Aで示す範囲はカリウム含量の適
量範囲を表している。このように、所定の場所における
芝草サンプルのカリウムの定量値から、その場所の芝草
のカリウムの過不足を診断し、これに基づき肥料を調整
して施肥管理を行い、芝草の健全な育成管理をすること
ができる。
FIG. 4 shows the amount of potassium contained in turfgrass leaves as an example, the horizontal axis shows the golf course name, a sample number such as a green number, and the vertical axis shows the amount of potassium. In the graph, the range indicated by A represents an appropriate range of the potassium content. In this way, from the quantitative value of potassium in a turfgrass sample at a predetermined place, it is possible to diagnose the excess or deficiency of potassium in the turfgrass at that place, adjust fertilizer based on this, perform fertilization management, and maintain healthy growth of turfgrass. can do.

【0018】このようにして、一度作成した検量線に基
づき、近赤外分光分析装置により刈り取った芝草葉の無
機成分を短時間で分析できるため、芝草の現時点での状
態を頻繁に分析でき、過不足している無機成分を容易に
迅速に検出することができる。また専門家でなくても分
析でき、分析者により測定値が異なることが少なく、分
析にかかるコストも低廉である。このため、サンプルと
した芝草葉の過不足している無機成分を肥料によって調
整することにより、芝草を健全に育成させることがで
き、芝草の育成管理が迅速に行える。
In this way, the inorganic components of the turfgrass leaves cut by the near-infrared spectroscopic analyzer can be analyzed in a short time based on the calibration curve once prepared, so that the current state of the turfgrass can be frequently analyzed. Excess or deficient inorganic components can be easily and quickly detected. In addition, analysis can be performed by non-experts, and the measured values are less likely to differ depending on the analyst, and the cost of the analysis is low. For this reason, by adjusting the excess or deficiency of the inorganic component of the turfgrass leaf used as a sample with the fertilizer, the turfgrass can be grown healthy, and the turfgrass growth management can be performed quickly.

【0019】この近赤外領域を用いた分析は、赤外吸収
と比較して微弱であり、吸収度の測定による成分の定量
分析において、希釈や粉砕せずに主要成分の分析ができ
るという特徴を有する。このため、分析しようとするサ
ンプルは前処理を多く必要とせず、破壊せずに使用でき
るという利点がある。また、多数の倍音や結合音による
吸収が重なり合い複雑な吸光スペクトルを示し、多くの
成分のスペクトル信号の中から目的成分のスペクトルを
数学的に分離測定でき、多数の成分に対する分析を一度
に実施することができる。
The analysis using the near-infrared region is weaker than the infrared absorption. In the quantitative analysis of the component by measuring the absorbance, the main component can be analyzed without dilution or pulverization. Having. Therefore, there is an advantage that the sample to be analyzed does not require much pretreatment and can be used without being destroyed. In addition, the absorption due to many overtones and combined sounds overlaps and shows a complex absorption spectrum, and the spectrum of the target component can be mathematically separated and measured from the spectrum signal of many components, and the analysis for many components is performed at once be able to.

【0020】前記したように、芝草葉を洗浄して乾燥す
るだけの簡単な前処理で、芝草葉のサンプルSを近赤外
分光分析装置1により分析することにより、迅速な分析
が可能となる。この分析には、試薬等が不要であり、サ
ンプルの粉砕等の破壊的な前処理も不要であり、消耗品
を殆んど必要としない。そして、多成分を同時に分析す
ることができ、操作が容易で専門家でなくても誰でも容
易に分析することができる。前記したように粉砕等の前
処理が不要であるため、芝草葉のサンプルSは固体のま
ま分析可能であり、迅速な定量分析が可能である。この
分析装置1は液体の分析も可能である。
As described above, by analyzing the turfgrass leaf sample S by the near-infrared spectroscopy analyzer 1 with a simple pretreatment such as washing and drying the turfgrass leaf, rapid analysis becomes possible. . This analysis does not require reagents and the like, does not require destructive pretreatment such as crushing of a sample, and requires almost no consumables. Then, multiple components can be analyzed at the same time, and the operation is easy and anyone, even if not a specialist, can easily analyze. As described above, since pretreatment such as pulverization is not required, the turfgrass leaf sample S can be analyzed as a solid, and rapid quantitative analysis can be performed. This analyzer 1 can also analyze liquids.

【0021】なお、前記した実施形態においては、近赤
外分光分析装置としてグレーティング手段により波長を
変化させるものを示したが、これに限られるものでな
く、例えばフィルタにより波長を変化させるものでもよ
く、また他の方式により波長を変化させるものでもよい
ことは勿論である。また、近赤外光を集光して半透明板
により拡散させ、この拡散光をサンプルに照射して測定
するものでもよい。さらに、前記の分析は反射による測
定の例を示したが、透過による測定でも可能なことは勿
論である。この場合は、近赤外光6をサンプルに照射
し、その透過光を透過測定部8により測定して行う。
In the above-described embodiment, the near-infrared spectroscopy apparatus in which the wavelength is changed by the grating means is shown. However, the present invention is not limited to this. Needless to say, the wavelength may be changed by another method. Alternatively, the near-infrared light may be condensed and diffused by a translucent plate, and the diffused light may be applied to the sample for measurement. Further, the above analysis shows an example of measurement by reflection, but it goes without saying that measurement by transmission is also possible. In this case, the sample is irradiated with near-infrared light 6 and the transmitted light is measured by the transmission measuring unit 8.

【0022】[0022]

【発明の効果】以上の説明から理解できるように、本発
明の芝草葉の成分分析方法は、誰にでも短時間で迅速
に、しかも容易に芝草の生育に必要な無機成分を分析で
きる。このようにして分析した無機成分から、芝草に過
不足している無機成分を抽出し、芝草に与える肥料を調
整することにより芝草の生育をリアルタイムで管理する
ことができ、多数のゴルフ場やサッカー場等の芝草の生
育状態をモニタリングすることができる。
As can be understood from the above description, the method for analyzing the components of turfgrass leaves according to the present invention allows anyone to quickly and easily analyze the inorganic components necessary for the growth of turfgrass. From the inorganic components analyzed in this way, the inorganic components in excess or deficiency in the turfgrass are extracted, and the growth of the turfgrass can be managed in real time by adjusting the fertilizer given to the turfgrass. It is possible to monitor the growth status of turfgrass in places.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る芝草葉の成分分析を行う近赤外分
光分析装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a near-infrared spectroscopic analyzer for analyzing the components of turfgrass leaves according to the present invention.

【図2】処理手順を示すフローチャート。FIG. 2 is a flowchart showing a processing procedure.

【図3】測定結果を示す近赤外吸光スペクトル特性図。FIG. 3 is a near-infrared absorption spectrum characteristic diagram showing measurement results.

【図4】芝草葉中のカリウム量を示すグラフ。FIG. 4 is a graph showing the amount of potassium in turfgrass leaves.

【図5】従来のICPを使用した処理手順を示すフロー
チャート。
FIG. 5 is a flowchart showing a processing procedure using a conventional ICP.

【符号の説明】[Explanation of symbols]

1 近赤外分光分析装置 6 近赤外光 7 サンプルケース 8 透過測定部 9 反射測定部 S 芝草葉のサンプル DESCRIPTION OF SYMBOLS 1 Near-infrared spectrometer 6 Near-infrared light 7 Sample case 8 Transmission measuring part 9 Reflection measuring part S Sample of turf grass

フロントページの続き (72)発明者 杉浦 純子 東京都中央区東日本橋1−1−20 三幸日 本橋プラザビル2階 株式会社ジェイツー 内 Fターム(参考) 2B022 AB02 2G059 AA01 BB20 CC01 CC02 CC03 DD01 DD12 EE01 EE02 FF10 GG02 HH01 JJ02 JJ05 JJ13 JJ26 JJ30 KK01 MM12 NN01Continuing on the front page (72) Inventor Junko Sugiura 1-1-20 Higashi-Nihonbashi, Chuo-ku, Tokyo Miyuki Sun Motobashi Plaza Building 2F J2 Co., Ltd. F-term (reference) 2B022 AB02 2G059 AA01 BB20 CC01 CC02 CC03 DD01 DD12 EE01 EE02 FF10 GG02 HH01 JJ02 JJ05 JJ13 JJ26 JJ30 KK01 MM12 NN01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 芝草の生育に必要な無機成分を定量分析
する方法であって、 刈り取った芝草葉を洗浄し、該芝草葉を乾燥したあと、
近赤外分光分析装置により該芝草葉に含まれる無機成分
を定量分析することを特徴とする芝草葉の成分分析方
法。
1. A method for quantitatively analyzing inorganic components necessary for the growth of turfgrass, comprising: washing turfgrass leaves and drying the turfgrass leaves;
A method for analyzing the components of turfgrass leaves, comprising quantitatively analyzing inorganic components contained in the turfgrass leaves using a near-infrared spectrophotometer.
【請求項2】 予め無機成分量が異なるように調整され
た芝草サンプルについて、原子吸光分析および近赤外分
光分析により無機成分量に関する検量線を作成し、該検
量線に基づいて分析することを特徴とする請求項1記載
の芝草葉の成分分析方法。
2. A method for preparing a calibration curve relating to the amount of inorganic components of a turfgrass sample previously adjusted to have a different amount of inorganic components by atomic absorption analysis and near-infrared spectroscopy, and analyzing based on the calibration curve. The method for analyzing the components of turfgrass leaves according to claim 1, characterized in that:
【請求項3】 前記芝草葉を蒸留水にて洗浄し、70℃
に設定した通風乾燥機内で20時間以上乾燥処理を行っ
て乾燥したサンプルを用いて分析することを特徴とする
請求項1または2記載の芝草葉の成分分析方法。
3. The turfgrass leaves are washed with distilled water and heated to 70 ° C.
The method according to claim 1 or 2, wherein the sample is subjected to a drying treatment for at least 20 hours in a ventilation dryer set as described above and analyzed using a dried sample.
【請求項4】 前記無機成分は、窒素、リン、カリウ
ム、カルシウム、鉄、硫黄を含む芝草の生育に必要な無
機成分であることを特徴とする請求項1乃至3のいずれ
かに記載の芝草葉の成分分析方法。
4. The turfgrass according to claim 1, wherein the inorganic component is an inorganic component necessary for growing turfgrass containing nitrogen, phosphorus, potassium, calcium, iron, and sulfur. A method for analyzing the components of leaves.
【請求項5】 前記請求項1乃至4のいずれかに記載の
芝草葉の成分分析方法により分析した芝草葉の無機成分
の量を、芝草が健全に生育するために必要な無機成分の
量と比較して、分析された無機成分量が過剰であるか不
足しているかを診断する芝草の診断方法。
5. The amount of inorganic component of turfgrass leaf analyzed by the method of analyzing component of turfgrass leaf according to claim 1, the amount of inorganic component necessary for turfgrass to grow healthy. A turfgrass diagnostic method for diagnosing whether the analyzed inorganic component amount is excessive or insufficient.
【請求項6】 前記請求項5に記載の芝草の診断方法に
より芝草の無機成分量を診断し、該診断データに基づい
て過不足している無機成分を施肥によって調整すること
を特徴とする芝草の育成方法。
6. A turfgrass characterized by diagnosing the amount of inorganic components in turfgrass by the method for diagnosing turfgrass according to claim 5, and adjusting the excess or deficiency of inorganic components by fertilizing based on the diagnostic data. Training method.
JP2000303632A 2000-10-03 2000-10-03 Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn Pending JP2002107296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303632A JP2002107296A (en) 2000-10-03 2000-10-03 Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303632A JP2002107296A (en) 2000-10-03 2000-10-03 Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn

Publications (1)

Publication Number Publication Date
JP2002107296A true JP2002107296A (en) 2002-04-10

Family

ID=18784811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303632A Pending JP2002107296A (en) 2000-10-03 2000-10-03 Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn

Country Status (1)

Country Link
JP (1) JP2002107296A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456018C (en) * 2006-01-17 2009-01-28 南京大学 Method for quickly identifying heat tolerance of lawn type tall fescue
JP2011196948A (en) * 2010-03-23 2011-10-06 Yukijirushi Shubyo Kk Method of estimating component amount, method of estimating evaluation value, and program for executing the methods
WO2012118212A1 (en) * 2011-03-03 2012-09-07 メタウォーター株式会社 Method and device for measuring sludge properties to be analyzed
JP2016065777A (en) * 2014-09-24 2016-04-28 浜松ホトニクス株式会社 Method for diagnosing nitrogen deficiency in plant
KR20160057148A (en) * 2014-11-13 2016-05-23 대한민국(농촌진흥청장) Apple tree leaf diagnosing method and apple tree leaf diagnosing apparatus using the method
JP7079314B1 (en) * 2020-12-23 2022-06-01 楽天グループ株式会社 Nutrient amount determination device, nutrient amount determination method, and nutrient amount determination program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456018C (en) * 2006-01-17 2009-01-28 南京大学 Method for quickly identifying heat tolerance of lawn type tall fescue
JP2011196948A (en) * 2010-03-23 2011-10-06 Yukijirushi Shubyo Kk Method of estimating component amount, method of estimating evaluation value, and program for executing the methods
WO2012118212A1 (en) * 2011-03-03 2012-09-07 メタウォーター株式会社 Method and device for measuring sludge properties to be analyzed
JP2016065777A (en) * 2014-09-24 2016-04-28 浜松ホトニクス株式会社 Method for diagnosing nitrogen deficiency in plant
KR20160057148A (en) * 2014-11-13 2016-05-23 대한민국(농촌진흥청장) Apple tree leaf diagnosing method and apple tree leaf diagnosing apparatus using the method
KR101651921B1 (en) 2014-11-13 2016-08-30 대한민국 Apple tree leaf diagnosing method and apple tree leaf diagnosing apparatus using the method
JP7079314B1 (en) * 2020-12-23 2022-06-01 楽天グループ株式会社 Nutrient amount determination device, nutrient amount determination method, and nutrient amount determination program

Similar Documents

Publication Publication Date Title
Sandak et al. Assessing trees, wood and derived products with near infrared spectroscopy: hints and tips
Mouazen et al. Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy
Pierna et al. NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed
Prananto et al. Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues
Xu et al. Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques
Bedin et al. NIR associated to PLS and SVM for fast and non-destructive determination of C, N, P, and K contents in poultry litter
Páscoa et al. Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves
McMurtrey et al. Fluorescence and reflectance of crop residue and soil
Üner et al. Determination of lignin and extractive content of Turkish Pine (Pinus brutia Ten.) trees using near infrared spectroscopy and multivariate calibration
Palmborg et al. Modelling microbial activity and biomass in forest soil with substrate quality measured using near infrared reflectance spectroscopy
Darusman et al. Rapid determination of mixed soil and biochar properties using a shortwave near infrared spectroscopy approach
He et al. A new approach to predict N, P, K and OM content in a loamy mixed soil by using near infrared reflectance spectroscopy
Pullanagari et al. Multi-spectral radiometry to estimate pasture quality components
US20110299085A1 (en) Rapid Tissue Analysis Technique
CN104568887A (en) Method or measuring stress of heavy metals on plants by using plant micro-domain chlorophyll fluorescence method
Moron et al. Preliminary study on the use of near‐infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants
JP2002107296A (en) Analyzing method of component of lawn leaf, and diagnostic method and growing method of lawn
JPH11337484A (en) Soil analyzing method, spectroscopic analyser and agricultural working vehicle loaded with spectroscopic analyser
EP4163620A1 (en) Method for analyzing a crop sample comprising a target plant material with soil tare adhered thereto
Alwi et al. Near infrared spectroscopy of Eucalyptus pellita for foliar nutrients and the potential for real-time monitoring of trees in fertiliser trial plots
Silva et al. Comparison of UV, visible and near-infrared, and mid-infrared spectrometers to estimate maize and sorghum leaf nutrients using dry-intact and ground leaves
KR20000004056A (en) Method and apparatus for measuring a soil component
Karoojee et al. Determination of total nitrogen content in fresh leaves and leaf powder of Dendrobium orchids using near-infrared spectroscopy
KR20060087083A (en) Method of analyzing total nitrogen contents of rice leaf
Sekerli et al. Comparison of a low-cost prototype optical sensor with three commercial systems in predicting water and nutrient contents of Turfgrass: prediction performance of low-cost optical sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921