JP2002105101A - Method for producing water-soluble polymer - Google Patents

Method for producing water-soluble polymer

Info

Publication number
JP2002105101A
JP2002105101A JP2000304013A JP2000304013A JP2002105101A JP 2002105101 A JP2002105101 A JP 2002105101A JP 2000304013 A JP2000304013 A JP 2000304013A JP 2000304013 A JP2000304013 A JP 2000304013A JP 2002105101 A JP2002105101 A JP 2002105101A
Authority
JP
Japan
Prior art keywords
water
polymer
pressure
temperature
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000304013A
Other languages
Japanese (ja)
Inventor
Yuichi Suzuki
雄一 鈴木
Yoshimichi Yamaguchi
義道 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2000304013A priority Critical patent/JP2002105101A/en
Publication of JP2002105101A publication Critical patent/JP2002105101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Cereal-Derived Products (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a water-soluble polymer having a wide range of uses from a water-insoluble natural polymer. SOLUTION: This method for producing the water-soluble polymer derived from the water-insoluble natural high polymer is characterized by bringing the water-insoluble natural high polymer into contact with water at a high temperature under a high pressure in which the temperature is within the range exceeding 100 deg.C to 300 deg.C and the pressure is in a higher pressure state than the vapor pressure of water at the temperature and partially hydrolyzing the water-insoluble natural polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水不溶性天然高分
子物質を部分分解処理して水溶性高分子物質を得るため
の方法に関する。特に、本発明は、利用価値の乏しい水
不溶性の天然高分子物質を、食品、医薬・健康栄養素
材、微生物培地等の幅広い分野において利用できる水溶
性高分子物質に転化する方法に関する。
TECHNICAL FIELD The present invention relates to a method for obtaining a water-soluble polymer by partially decomposing a water-insoluble natural polymer. In particular, the present invention relates to a method of converting a water-insoluble natural polymer substance having a low utility value into a water-soluble polymer substance that can be used in a wide range of fields such as foods, medicines / health nutrition materials, and microbial media.

【0002】[0002]

【従来の技術】天然の水溶性高分子物質は、食品用素
材、医薬用・健康栄養剤用の素材、微生物培地等の幅広
い分野において多量に利用されている。このような水溶
性天然高分子物質と同等の特性を備えた水溶性高分子物
質を水不溶性天然高分子物質から得る試みも従来からな
されてきており、たとえば、水不溶性の天然高分子物質
を酸触媒や酵素等を利用して加水分解するというような
方法も行われている。
2. Description of the Related Art Natural water-soluble polymer substances are widely used in a wide range of fields such as food materials, materials for medicines and health and nutritional supplements, and microorganism culture media. Attempts have been made to obtain a water-soluble polymer having characteristics equivalent to those of the water-soluble natural polymer from a water-insoluble natural polymer. A method of performing hydrolysis using a catalyst, an enzyme, or the like is also performed.

【0003】しかし、酸触媒を用いた場合、製造工程か
ら得られる水溶性高分子物質を利用する際に使用酸触媒
を水溶性高分子物質中より完全に除く操作が必要である
し、また、酸による製造設備の腐食防止手段を講じなけ
ればならない等、解決しなければならない問題が多い。
また、酵素を利用する場合、一般に使用する酵素は高価
であり、しかもその反応速度が遅いため、分解率を向上
させるために多量の酵素を使用する必要があってコスト
高となることが避けられない。
However, when an acid catalyst is used, it is necessary to completely remove the used acid catalyst from the water-soluble polymer when using the water-soluble polymer obtained from the production process. There are many problems that need to be solved, such as the need to take measures to prevent corrosion of manufacturing equipment by acids.
In addition, when enzymes are used, generally used enzymes are expensive and the reaction rate is slow, so that it is necessary to use a large amount of enzymes in order to improve the decomposition rate, thereby avoiding high costs. Absent.

【0004】ところで、特許3042076号公報に
は、天然又は合成高分子化合物の選択的加水分解方法と
して、超臨界状態あるいは亜臨界状態の水を溶媒として
用いて天然又は合成高分子化合物の加水分解を行うこと
によって、原料である天然又は合成高分子の構成単位程
度の低分子まで加水分解された反応生成物が得られるこ
とが記載されている。また、特開平9−268166号
公報には、超臨界水によって蛋白質が構成アミノ酸にま
で加水分解されること、その生成した遊離アミノ酸が再
結合によってペプチドとなることが記載されている。
Japanese Patent No. 3042076 discloses a method for selectively hydrolyzing a natural or synthetic polymer compound using water in a supercritical or subcritical state as a solvent. It is described that by performing the reaction, a reaction product hydrolyzed to a low molecular weight of about the structural unit of a natural or synthetic polymer as a raw material is obtained. Japanese Patent Application Laid-Open No. 9-268166 describes that proteins are hydrolyzed to constituent amino acids by supercritical water, and that the free amino acids formed into peptides by recombination.

【0005】しかしながら、特許3042076号や特
開平9−268166号の方法では、原料である天然の
水不溶性高分子物質の多くを占めるセルロースや蛋白質
が超臨界水又は亜臨界水によって分解反応に付される
と、構成単量体又はオリゴマー程度まで低分子化され数
百程度の質量(分子量)となってしまうものであり、天
然物由来の高分子物質として幅広い用途を有する、平均
質量が10kDa(キロダルトン)〜10000kDa
である水溶性高分子を得る方法についての開示はない。
However, in the methods disclosed in Japanese Patent No. 3042076 and Japanese Patent Application Laid-Open No. 9-268166, cellulose or protein, which is a raw material of the majority of natural water-insoluble polymer, is subjected to a decomposition reaction by supercritical water or subcritical water. Then, the molecular weight is reduced to the order of the constituent monomers or oligomers, resulting in a mass (molecular weight) of about several hundreds. The polymer has a wide range of uses as a polymer derived from natural products, and has an average mass of 10 kDa (kg). Dalton) to 10000 kDa
There is no disclosure of a method for obtaining a water-soluble polymer.

【0006】また、蛋白質の低分子化方法としては、特
開昭63−32467号公報には、温度50℃〜350
℃、圧力250〜5000kg/cm2 の条件下に、5
〜60分間、蛋白質を保持すると分子量10000以下
の低分子化物が製造できることが記載されている。しか
し、この方法の場合、圧力が250kg/cm2 以上と
いう高圧条件が必須であり、より低圧条件下での低分子
化方法及びその結果についてはなんら触れられていな
い。
As a method for reducing the molecular weight of a protein, Japanese Patent Application Laid-Open No. 63-32467 discloses a method for reducing the temperature from 50 ° C. to 350 ° C.
5 ° C. and a pressure of 250 to 5000 kg / cm 2.
It is described that a low molecular weight product having a molecular weight of 10,000 or less can be produced by holding the protein for 、 60 minutes. However, in the case of this method, a high pressure condition of a pressure of 250 kg / cm 2 or more is essential, and there is no mention of a method for depolymerizing under a lower pressure condition and the result thereof.

【0007】[0007]

【発明が解決しようとする課題】本発明は、水不溶性の
天然高分子物質から、精製手段にコストがかからない水
のみを使用することにより、幅広い用途にそのまま適用
することができる安全性を備えた天然物由来の水溶性高
分子物質を安価に製造することができる方法を提供する
ことを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has a safety that can be directly applied to a wide range of applications by using only inexpensive water as a purification means from a water-insoluble natural polymer substance. It is an object of the present invention to provide a method for inexpensively producing a water-soluble polymer derived from a natural product.

【0008】[0008]

【課題を解決するための手段】本発明者らは前項記載の
目的を達成すべく鋭意研究を重ねた結果、天然の水不溶
性高分子物質を高温高圧水と接触処理せしめることによ
り幅広い用途を有する質量10kDa〜10000kD
aの天然物由来の水溶性高分子を得ることができること
を見出し、これらの知見に基づいて本発明を完成するに
至った。本発明は、以下の各発明を包含する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, have a wide range of applications by subjecting a natural water-insoluble polymer substance to contact treatment with high-temperature and high-pressure water. Mass 10kDa-10000kD
The present inventors have found that a water-soluble polymer derived from the natural product a can be obtained, and have completed the present invention based on these findings. The present invention includes the following inventions.

【0009】(1) 水不溶性天然高分子物質からなる原
料物質と、100℃を超える300℃までの範囲の温度
でかつ圧力がその温度における水の蒸気圧よりも高い圧
力状態にある高温高圧水とを、該原料物質がより低分子
量の高分子物質に部分分解される時間接触せしめること
を特徴とする、水溶性高分子物質の製造方法。
(1) A raw material composed of a water-insoluble natural polymer substance, and high-temperature high-pressure water at a temperature in the range of more than 100 ° C. to 300 ° C. and a pressure higher than the vapor pressure of water at that temperature. Wherein the raw material is contacted for a period of time when the raw material is partially decomposed into a polymer having a lower molecular weight.

【0010】(2) 前記のより低分子量の高分子物質
が、質量10kDa〜10000kDaに相当する分子
量を有する高分子物質であることを特徴とする(1)項記
載の水溶性高分子物質の製造方法。
(2) The production of a water-soluble polymer according to (1), wherein the lower molecular weight polymer is a polymer having a molecular weight corresponding to a mass of 10 kDa to 10,000 kDa. Method.

【0011】(3)前記(1)項又は(2)項に記載の方法に
よって製造されている水不溶性天然高分子物質由来の水
溶性高分子物質、特に質量10kDa〜10000kD
aである水不溶性天然高分子由来の水溶性高分子物質。
(3) A water-soluble polymer derived from a water-insoluble natural polymer produced by the method described in the above item (1) or (2), particularly, a mass of 10 kDa to 10,000 kD.
a) a water-soluble polymer derived from a water-insoluble natural polymer.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0012】本発明において、水不溶性天然高分子物質
を高温高圧水で処理する手段は、具体的には、水不溶性
の天然高分子物質を高温高圧水と接触状態に置くことで
ある。
In the present invention, the means for treating the water-insoluble natural high-molecular substance with high-temperature and high-pressure water is, specifically, to put the water-insoluble natural high-molecular substance in contact with high-temperature and high-pressure water.

【0013】そして、本発明でいう高温高圧水とは、1
00℃を超える300℃までの範囲の温度でかつ圧力が
その温度における水の蒸気圧よりも高い圧力状態にある
水を意味している。上記の高温高圧水は、少なくても前
記温度及び圧力の範囲に調整されていればよいが、好ま
しくは温度100℃を超えて300℃までの範囲、圧力
0.1MPaを超えて25MPa以内までの範囲、より
好ましくは温度150℃〜200℃及び圧力0.5MP
a〜10MPaの範囲のものである。
The high-temperature and high-pressure water referred to in the present invention is 1
Water at a temperature in the range of greater than 00 ° C. to 300 ° C. and at a pressure greater than the vapor pressure of water at that temperature is meant. The above high-temperature and high-pressure water may be adjusted to at least the temperature and pressure ranges described above, but preferably, the temperature ranges from more than 100 ° C. to 300 ° C., and the pressure exceeds 0.1 MPa to 25 MPa or less. Range, more preferably temperature 150 ° C to 200 ° C and pressure 0.5MP
a to 10 MPa.

【0014】原料として使用する水不溶性の天然高分子
物質としては、セルロース系、でんぷん系及び蛋白質系
の高分子物質が好適な材料であるが、これらに限定され
ない。水不溶性の天然高分子物質はそれらの混合物であ
ってもよい。具体的には、各種でんぷん類、穀物類、バ
イオマス等が挙げられる。
As the water-insoluble natural polymer used as a raw material, cellulose-based, starch-based and protein-based polymer substances are suitable, but not limited thereto. The water-insoluble natural macromolecular substance may be a mixture thereof. Specifically, various starches, cereals, biomass and the like can be mentioned.

【0015】水不溶性の天然高分子物質と前記高温高圧
水との接触は、水不溶性の天然高分子物質が水に分散し
ているスラリー状態やペースト状態のように、水不溶性
の天然高分子物質と水とが均一に混合され、又は分散し
ている状態であれば特に制限はない。水不溶性の天然高
分子物質と水の混合割合は、水不溶性の天然高分子物質
乾燥物としての含有量が0.1〜50重量%の範囲とな
る割合が好ましい。
The contact between the water-insoluble natural polymer substance and the high-temperature and high-pressure water is carried out in a water-insoluble natural polymer substance such as a slurry state or a paste state in which the water-insoluble natural polymer substance is dispersed in water. There is no particular limitation as long as water and water are uniformly mixed or dispersed. The mixing ratio of the water-insoluble natural polymer substance and water is preferably such that the content of the water-insoluble dried natural polymer substance is in the range of 0.1 to 50% by weight.

【0016】本発明の水溶性天然高分子物質の製造方法
において、水不溶性の天然高分子物質と水との接触時間
は重要であるが、該接触時間は、被処理原料の種類に応
じて設定されるべきであり、各種原料に対応する好適接
触時間は、各種原料それぞれについて、前記高温高圧水
との接触時間と生成物との関係を事前の予備実験により
測定して把握しておくことで容易に設定することができ
る。一般的には、水不溶性の天然高分子物質と水との接
触時間が長くなるほど分子量は低下し、最終的に高分子
を構成する単量体やその分解物である揮発性有機物が生
成されるまで分解が進行するので、目的とする平均質量
の分解生成物が得られる接触時間を正確に把握しておく
ことが特に重要である。
In the method for producing a water-soluble natural polymer of the present invention, the contact time between the water-insoluble natural polymer and water is important, and the contact time is set according to the type of the raw material to be treated. It should be performed, the preferred contact time corresponding to the various raw materials, for each of the various raw materials, by measuring the relationship between the contact time with the high-temperature and high-pressure water and the product by preliminary preliminary experiments and grasping. It can be easily set. In general, the longer the contact time between water and a water-insoluble natural polymer substance and water, the lower the molecular weight, eventually producing the monomers that constitute the polymer and the volatile organic substances that are its decomposition products. Since the decomposition proceeds up to this point, it is particularly important to accurately understand the contact time at which the decomposition product having the desired average mass is obtained.

【0017】[0017]

【実施例】以下、本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定するものではな
く、前記及び後記の趣旨に徴して設計変更することは、
いずれも、本発明の技術的範囲に含まれるものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention.
All of them are included in the technical scope of the present invention.

【0018】実施例1:水溶性コーン高分子の製造 10,000rpmで遠心粉砕し、0.5mmメッシュ
スクリーンで篩分けした乾燥コーンに水を加え、コーン
スラリー33重量%を調製した。図1の装置を使用し、
このコーンスラリーを高圧ポンプで送液し、150℃、
又は、200℃に加熱した反応器に導入し、反応を開始
した。反応時間、すなわち、反応器を通過する時間は1
分とした。また、反応器出口に取り付けた二重冷却管に
導入し急冷することで反応を停止させた。反応液はライ
ン出口に設置した背圧弁から回収した。なお、系内の圧
力は背圧弁によって調節し、高圧ポンプの吐出口から背
圧弁までを5MPaに保持した。
Example 1 Production of Water-Soluble Cone Polymer Water was added to a dried corn which was centrifuged and ground at 10,000 rpm and sieved with a 0.5 mm mesh screen to prepare a corn slurry (33% by weight). Using the device of FIG. 1,
This corn slurry is sent by a high pressure pump,
Alternatively, it was introduced into a reactor heated to 200 ° C. to start the reaction. The reaction time, ie the time passing through the reactor, is 1
Minutes. Further, the reaction was stopped by introducing into a double cooling tube attached to the outlet of the reactor and rapidly cooling it. The reaction solution was collected from a back pressure valve installed at the line outlet. The pressure in the system was adjusted by a back pressure valve, and the pressure from the discharge port of the high pressure pump to the back pressure valve was maintained at 5 MPa.

【0019】得られた各反応液を遠心分離(15,00
0rpm、10分)し、その上澄み液を乾燥コーン重量
で0.5重量%濃度となるように水を加え、さらに0.
45μmのフィルターによってろ過を行い、得られた各
液をGPC(カラム:AsahiPAC GS−620
HQ、カラム温度:30℃、溶離液:水、0.5mL
/min、検出:RI)によって分子量分布を調べた。
Each reaction solution obtained was centrifuged (15,000).
0 rpm for 10 minutes), and water was added to the supernatant to a concentration of 0.5% by weight on a dry corn basis.
Filtration was performed with a 45 μm filter, and each obtained liquid was subjected to GPC (column: AsahiPAC GS-620).
HQ, column temperature: 30 ° C., eluent: water, 0.5 mL
/ Min, detection: RI).

【0020】分子量分布については、分子量既知である
標準品(昭和電工製Pullulan P−82)を予
め測定し、その分子量とGPCの保持時間との相関式を
作成し、分子量計算を行った。分子量と保持時間の関係
を図6に示す。図2にGPCチャートを示すが、温度が
150℃と200℃のいずれも、供給したコーンスラリ
ーと比較して質量500kDa〜3,000kDaに相
当する水溶性コーン高分子の存在が増大していることか
ら、供給したコーンスラリー中の水不溶性物質の一部が
水溶性コーン高分子物質に転化され、溶出していること
が確認された。
Regarding the molecular weight distribution, a standard product having a known molecular weight (Pululan P-82 manufactured by Showa Denko) was measured in advance, and a correlation formula between the molecular weight and the retention time of GPC was prepared to calculate the molecular weight. FIG. 6 shows the relationship between the molecular weight and the retention time. FIG. 2 shows the GPC chart. At both the temperatures of 150 ° C. and 200 ° C., the presence of the water-soluble corn polymer corresponding to the mass of 500 kDa to 3,000 kDa was increased as compared with the supplied corn slurry. From this, it was confirmed that a part of the water-insoluble substance in the supplied corn slurry was converted into a water-soluble corn polymer substance and eluted.

【0021】実施例2:水溶性おから高分子 乾燥おからに水を加え、おからスラリー6重量%を調製
した。図1の装置を使用し、このおからスラリーを高圧
ポンプで送液し、200℃に加熱した反応器に導入し、
実施例1と同様に、反応開始、反応停止、反応液を回収
した。反応時間は44秒とした。また、系内の圧力は5
MPaに保持した。得られた反応液を実施例1と同様な
処理を行い、GPCによって、分子量分布を測定した。
図3にGPCチャートを示すが、供給したおからスラリ
ーと比較して、質量500kDa〜3,000kDaに
相当する水溶性おから高分子の存在が増大していること
から、供給したおからスラリー中の水不溶性物質の一部
が水溶性高分子物質に転化され、溶出していることが確
認された。
Example 2 Water-soluble okara polymer Water was added to dried okara to prepare 6% by weight of okara slurry. Using the apparatus of FIG. 1, this okara slurry was sent by a high-pressure pump and introduced into a reactor heated to 200 ° C.
As in Example 1, the reaction was started, stopped, and the reaction solution was recovered. The reaction time was 44 seconds. The pressure in the system is 5
It was kept at MPa. The obtained reaction solution was subjected to the same treatment as in Example 1, and the molecular weight distribution was measured by GPC.
FIG. 3 shows a GPC chart. Compared with the supplied okara slurry, the presence of a water-soluble okara polymer corresponding to a mass of 500 kDa to 3,000 kDa is increased. It was confirmed that a part of the water-insoluble substance was converted to a water-soluble polymer substance and eluted.

【0022】実施例3:水溶性でんぷん高分子 タピオカでんぷんに水を加え、タピオカでんぷんスラリ
ー2.5重量%を調製した。図1の装置を使用し、この
タピオカでんぷんスラリーを高圧ポンプで送液し、反応
器直前で予め熱していた水と接触させ反応器に導入する
ことで反応開始とし、また実施例1と同様に、反応停
止、反応液を回収した。温度は200℃、又は、250
℃、反応時間はそれぞれ13秒、12秒とした。また、
系内の圧力は5MPaに保持した。得られた反応液を実
施例1と同様な処理を行い、GPCによって、分子量分
布を測定した。図4にGPCチャートを示すが、200
℃条件では質量500kDa〜3,000kDa、25
0℃条件では質量10kDa〜1,000kDaに相当
する供給したスラリー中に存在しなかった水溶性でんぷ
ん高分子の存在が確認された。
Example 3: Water-soluble starch polymer Water was added to tapioca starch to prepare 2.5% by weight of tapioca starch slurry. Using the apparatus of FIG. 1, this tapioca starch slurry is fed by a high-pressure pump, brought into contact with pre-heated water immediately before the reactor, and introduced into the reactor to start the reaction, and in the same manner as in Example 1, The reaction was stopped, and the reaction solution was recovered. Temperature is 200 ° C or 250
C. and the reaction time were 13 seconds and 12 seconds, respectively. Also,
The pressure in the system was maintained at 5 MPa. The obtained reaction solution was subjected to the same treatment as in Example 1, and the molecular weight distribution was measured by GPC. FIG. 4 shows a GPC chart.
Under the condition of ° C, the mass is 500 kDa to 3,000 kDa, 25
Under the condition of 0 ° C., the presence of a water-soluble starch polymer which was not present in the supplied slurry corresponding to a mass of 10 kDa to 1,000 kDa was confirmed.

【0023】実施例4:水溶性キャッサバ高分子 10,000rpmで遠心粉砕し、0.5mmメッシュ
スクリーンで篩分けした乾燥キャッサバに水を加え、キ
ャッサバスラリー33重量%を調製した。図1の装置を
使用し、このキャッサバスラリーを高圧ポンプで送液
し、200℃に加熱した反応器に導入し、実施例1と同
様に、反応開始、反応停止、反応液を回収した。反応時
間は120秒とした。得られた反応液を実施例1と同様
な処理を行い、GPCによって、分子量分布を測定し
た。図5に示すように原料スラリーに存在しなかった質
量500kDa〜3,000kDaに相当する水溶性高
分子の存在が確認された。
Example 4: Water-soluble cassava polymer Water was added to a dried cassava sieved by centrifugation at 10,000 rpm and sieved with a 0.5 mm mesh screen to prepare a cassava slurry (33% by weight). Using the apparatus shown in FIG. 1, the cassava slurry was fed by a high-pressure pump, introduced into a reactor heated to 200 ° C., and the reaction was started, stopped, and the reaction solution was recovered as in Example 1. The reaction time was 120 seconds. The obtained reaction solution was subjected to the same treatment as in Example 1, and the molecular weight distribution was measured by GPC. As shown in FIG. 5, the presence of a water-soluble polymer corresponding to a mass of 500 kDa to 3,000 kDa that was not present in the raw material slurry was confirmed.

【0024】比較例1 実施例1で使用したコーンスラリーについて、実施例1
に記載した反応液と同様の処理を行い、GPC分析を行
った。GPCチャートは図2に示す。
Comparative Example 1 The corn slurry used in Example 1 was used in Example 1.
And the GPC analysis was performed. The GPC chart is shown in FIG.

【0025】比較例2 実施例2で使用したおからスラリーについて、実施例1
に記載した反応液と同様の処理を行い、GPC分析を行
った。GPCチャートは図4に示す。
Comparative Example 2 Okara slurry used in Example 2 was used in Example 1.
And the GPC analysis was performed. The GPC chart is shown in FIG.

【0026】比較例3 実施例3で使用したタピオカでんぷんスラリーについ
て、実施例1に記載した反応液と同様の処理を行った
が、0.45μmフィルターろ過を行うことができなか
った。
Comparative Example 3 The tapioca starch slurry used in Example 3 was treated in the same manner as in the reaction solution described in Example 1, but could not be filtered with a 0.45 μm filter.

【0027】比較例4 実施例4で使用したキャッサバスラリーについて、実施
例1に記載した反応液と同様の処理を行ったが、0.4
5μmフィルターろ過を行うことができなかった。
Comparative Example 4 The cassava slurry used in Example 4 was treated in the same manner as in the reaction solution described in Example 1, except that
5 μm filter filtration could not be performed.

【0028】[0028]

【発明の効果】以上のように、本発明の方法によれば、
水不溶性天然高分子物質から水溶性天然高分子を効率よ
く生産することが可能となり、食品、医薬・健康栄養素
材、微生物培地等の分野において多くの利用の可能性が
期待できる材料を供給することができる。
As described above, according to the method of the present invention,
Supplying materials that enable efficient production of water-soluble natural polymers from water-insoluble natural polymer substances and are expected to have many potential uses in the fields of foods, pharmaceuticals / health and nutritional materials, and microbial media. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するために構成される装置例を示
す概略図である。
FIG. 1 is a schematic diagram showing an example of an apparatus configured to carry out the present invention.

【図2】実施例1及び比較例1の生成物のGPCチャー
トを示す図である。
FIG. 2 is a diagram showing a GPC chart of products of Example 1 and Comparative Example 1.

【図3】実施例2及び比較例2の生成物のGPCチャー
トを示す図である。
FIG. 3 is a diagram showing a GPC chart of products of Example 2 and Comparative Example 2.

【図4】実施例3の生成物GPCチャートを示す図であ
る。
FIG. 4 is a diagram showing a product GPC chart of Example 3.

【図5】実施例4の生成物のGPCチャートを示す図で
ある。
FIG. 5 is a diagram showing a GPC chart of a product of Example 4.

【図6】図2〜図5における保持時間と分子量の関係を
示す図である。
FIG. 6 is a diagram showing the relationship between retention time and molecular weight in FIGS. 2 to 5;

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08B 15/00 C08B 15/00 C08H 1/00 C08H 1/00 Fターム(参考) 4B018 LB10 LE05 MD47 ME11 MF04 MF10 4B020 LB24 LG07 LP03 LP09 LS10 4B023 LC05 LE30 LG08 LG10 LK08 LP07 LQ01 4C090 AA04 BA07 BA13 BA17 BA24 BA34 BB12 BC11 BC12 BD03 BD37 CA04 CA05 CA31 DA22 DA27 DA32 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08B 15/00 C08B 15/00 C08H 1/00 C08H 1/00 F term (Reference) 4B018 LB10 LE05 MD47 ME11 MF04 MF10 4B020 LB24 LG07 LP03 LP09 LS10 4B023 LC05 LE30 LG08 LG10 LK08 LP07 LQ01 4C090 AA04 BA07 BA13 BA17 BA24 BA34 BB12 BC11 BC12 BD03 BD37 CA04 CA05 CA31 DA22 DA27 DA32

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水不溶性天然高分子からなる原料物質
と、100℃を超える300℃までの範囲の温度でかつ
圧力がその温度における水の蒸気圧よりも高い圧力状態
にある高温高圧水とを、該原料物質がより低分子量の高
分子物質に部分分解される時間接触せしめることを特徴
とする水溶性高分子物質の製造方法。
1. A raw material comprising a water-insoluble natural polymer, and high-temperature high-pressure water at a temperature in the range of more than 100 ° C. to 300 ° C. and a pressure higher than the vapor pressure of water at that temperature. A method for producing a water-soluble polymer substance, wherein the raw material substance is brought into contact with the polymer substance having a lower molecular weight for a partial decomposition time.
【請求項2】 前記のより低分子量の高分子物質が、質
量10kDa〜10000kDaに相当する高分子物質
であることを特徴とする請求項1記載の水溶性高分子物
質の製造方法。
2. The method for producing a water-soluble polymer substance according to claim 1, wherein the lower molecular weight polymer substance is a polymer substance having a mass of 10 kDa to 10,000 kDa.
JP2000304013A 2000-10-03 2000-10-03 Method for producing water-soluble polymer Pending JP2002105101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304013A JP2002105101A (en) 2000-10-03 2000-10-03 Method for producing water-soluble polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304013A JP2002105101A (en) 2000-10-03 2000-10-03 Method for producing water-soluble polymer

Publications (1)

Publication Number Publication Date
JP2002105101A true JP2002105101A (en) 2002-04-10

Family

ID=18785125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304013A Pending JP2002105101A (en) 2000-10-03 2000-10-03 Method for producing water-soluble polymer

Country Status (1)

Country Link
JP (1) JP2002105101A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034808A (en) * 2003-07-18 2005-02-10 Hyogo Prefecture Continuous treatment apparatus using subcritical or supercritical water and hydrolysate of organic material obtained using the same
WO2008090804A1 (en) * 2007-01-24 2008-07-31 Ajinomoto Co., Inc. Method for production of saccharide from starch-containing plant raw material
WO2008155890A1 (en) * 2007-06-21 2008-12-24 J-Oil Mills, Inc. Method for producing glycoside aglycone
JP2009232747A (en) * 2008-03-27 2009-10-15 National Univ Corp Shizuoka Univ Production system of water-soluble saccharide derived from paper sludge and production method of water-soluble saccharide derived from paper sludge
JP2009540106A (en) * 2006-06-15 2009-11-19 バイオポリマー エンジニアリング インコーポレイテッド ディービーエイ バイオセラ インコーポレイテッド Glucan preparation
WO2011013530A1 (en) * 2009-07-31 2011-02-03 物産フードサイエンス株式会社 Process for production of galactomannan with reduced moleculr weight and catalyst to be used therein
KR20140105620A (en) * 2007-05-08 2014-09-01 바이오테라, 인크. Particulate-soluble glucan preparation
US10111901B2 (en) 2014-07-10 2018-10-30 Biothera, Inc. Beta-glucan in combination with anti-cancer agents affecting the tumor microenvironment
US10111900B2 (en) 2014-11-06 2018-10-30 Biothera, Inc. β-glucan methods and compositions that affect the tumor microenvironment
US11815435B2 (en) 2017-02-24 2023-11-14 Hibercell, Inc. Beta glucan immunopharmacodynamics

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034808A (en) * 2003-07-18 2005-02-10 Hyogo Prefecture Continuous treatment apparatus using subcritical or supercritical water and hydrolysate of organic material obtained using the same
JP4664580B2 (en) * 2003-07-18 2011-04-06 兵庫県 Continuous processing equipment using subcritical water or supercritical water
JP2014025079A (en) * 2006-06-15 2014-02-06 Biothera Inc Glucan preparation
US10272101B2 (en) 2006-06-15 2019-04-30 Biothera Inc. Glucan preparations
US9610303B2 (en) 2006-06-15 2017-04-04 Biothera, Inc. Glucan preparations
JP2009540106A (en) * 2006-06-15 2009-11-19 バイオポリマー エンジニアリング インコーポレイテッド ディービーエイ バイオセラ インコーポレイテッド Glucan preparation
WO2008090804A1 (en) * 2007-01-24 2008-07-31 Ajinomoto Co., Inc. Method for production of saccharide from starch-containing plant raw material
KR101665216B1 (en) * 2007-05-08 2016-10-11 바이오테라, 인크. Particulate-soluble glucan preparation
KR20140105620A (en) * 2007-05-08 2014-09-01 바이오테라, 인크. Particulate-soluble glucan preparation
WO2008155890A1 (en) * 2007-06-21 2008-12-24 J-Oil Mills, Inc. Method for producing glycoside aglycone
JP2009232747A (en) * 2008-03-27 2009-10-15 National Univ Corp Shizuoka Univ Production system of water-soluble saccharide derived from paper sludge and production method of water-soluble saccharide derived from paper sludge
WO2011013530A1 (en) * 2009-07-31 2011-02-03 物産フードサイエンス株式会社 Process for production of galactomannan with reduced moleculr weight and catalyst to be used therein
US10111901B2 (en) 2014-07-10 2018-10-30 Biothera, Inc. Beta-glucan in combination with anti-cancer agents affecting the tumor microenvironment
US10111900B2 (en) 2014-11-06 2018-10-30 Biothera, Inc. β-glucan methods and compositions that affect the tumor microenvironment
US11815435B2 (en) 2017-02-24 2023-11-14 Hibercell, Inc. Beta glucan immunopharmacodynamics

Similar Documents

Publication Publication Date Title
Sedaghat et al. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan
Wang et al. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics
Jeon et al. Continuous production of chitooligosaccharides using a dual reactor system
Zhang et al. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-d-glucosamine
EP4137207A1 (en) Dextran-poly alpha-1,3-glucan graft copolymers and synthesis methods thereof
Mohammed et al. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan
Zhang et al. Efficient hydrolysis of chitosan in ionic liquids
US20070267008A1 (en) Method of Hydrolyzing an Organic Compound
JP2002105101A (en) Method for producing water-soluble polymer
CN108264574B (en) Ozone degradation method of polysaccharide
US20180230239A1 (en) A starch-based food thickener with low molecular weight and a preparation method thereof
JP2006204207A (en) Method for producing starch decomposition product and white dextrin
CN109232770A (en) A kind of preparation method of high substituted degree acetylation Sodium Hyaluronate
CN110862461B (en) Preparation method of resistant dextrin
US5376537A (en) Process for production of cyclodextrins
HU220079B (en) Method of producing starch decomposition products and the use of this method
WO2002030219A1 (en) Dietary fibers and oligosaccharides from ginseng and process for preparation thereof
JPH04261401A (en) Water-soluble celurose acetate and preparation thereof
JP5777634B2 (en) Coffee processing method
CN111234040A (en) Preparation method and application of urea modified starch
Bai et al. Synthesis of octenylsuccinic‐anhydride‐modified cassava starch in supercritical carbon dioxide
JPH08140585A (en) Production of low-molecular potato protein
JP2010106068A (en) New chemical modification method for polysaccharide
JPWO2008004530A1 (en) Hyaluronic acid or its salt powder and method for producing the same
CN108157582A (en) It is a kind of that the method for improving sesame protein gelation is modified using immobilised enzymes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216