JP2002104808A - Method of reforming fuel - Google Patents

Method of reforming fuel

Info

Publication number
JP2002104808A
JP2002104808A JP2000299102A JP2000299102A JP2002104808A JP 2002104808 A JP2002104808 A JP 2002104808A JP 2000299102 A JP2000299102 A JP 2000299102A JP 2000299102 A JP2000299102 A JP 2000299102A JP 2002104808 A JP2002104808 A JP 2002104808A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrocarbon
steam
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000299102A
Other languages
Japanese (ja)
Other versions
JP2002104808A5 (en
Inventor
Tomoko Kaneko
朋子 金子
Noriko Yoshida
紀子 吉田
Hisao Yamashita
寿生 山下
Terufumi Kawasaki
照文 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2000299102A priority Critical patent/JP2002104808A/en
Publication of JP2002104808A publication Critical patent/JP2002104808A/en
Publication of JP2002104808A5 publication Critical patent/JP2002104808A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of reforming a fuel by which a gas containing gaseous hydrogen mainly is produced from gaseous oxygen or air, a hydrocarbon and a steam. SOLUTION: Hydrogen is manufactured without external heating in the fuel-reforming method by making a raw material gas which contains oxygen or air, a hydrocarbon and a steam come in contact with a catalyst which simultaneously promotes an oxidation reaction of the hydrocarbon and a steam- reforming reaction of the hydrocarbon. A porous carrier of the catalyst consists of a metal oxide which contains at least Al and is loaded with precious metals such as Pd, Pt, Ru, and Rh, or the above metals and one or more metals selected from Ni, Co, Fe, Ag, Cu, Zn, Cr and rare earth elements. Exotherm of the oxidation reaction is balanced with endotherm of the steam-reforming reaction by controlling the supported quantity of the active component which promotes the oxidation reaction of the hydrocarbon and the active component which promotes the steam-reforming reaction of the hydrocarbon, as a result the whole catalyst is maintained at a prescribed temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素あるいは空気
と炭化水素,水蒸気を用いて水素を主成分とするガスを
生成する燃料改質方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel reforming method for producing a gas containing hydrogen as a main component by using oxygen or air, a hydrocarbon, and steam.

【0002】[0002]

【従来の技術】燃料改質器は、炭化水素と水蒸気を原料
とし、水素を主成分とするガスを生成する装置であり、
燃料電池の燃料である水素の供給装置として知られてい
る。
2. Description of the Related Art A fuel reformer is a device that generates a gas containing hydrogen and steam as raw materials and containing hydrogen as a main component.
It is known as a supply device of hydrogen which is a fuel of a fuel cell.

【0003】近年、燃料電池システムは、自動車用や家
庭用の電源システムとしての用途が期待されている。そ
のため、燃料電池本体のみならず、燃料電池の燃料とな
る水素を生成する燃料改質器においても、小型化や起動
時間の短縮が求められている。
In recent years, fuel cell systems are expected to be used as power systems for automobiles and homes. Therefore, not only the fuel cell body but also a fuel reformer that generates hydrogen serving as a fuel of the fuel cell is required to be reduced in size and start-up time.

【0004】燃料改質器の内部で進行する水蒸気改質反
応について、メタンを原料とした場合を例に説明する。
[0004] The steam reforming reaction which proceeds inside the fuel reformer will be described by taking as an example the case where methane is used as a raw material.

【0005】水蒸気改質反応は、式(1)に示すよう
に、メタンと水蒸気を反応させて水素を生成する反応
で、通常、その反応温度は750〜850℃で、反応速
度を上げるためにニッケル系等の触媒が使用される。
[0005] The steam reforming reaction is a reaction for producing hydrogen by reacting methane and steam, as shown in the equation (1). Usually, the reaction temperature is 750 to 850 ° C. A nickel-based catalyst or the like is used.

【0006】[0006]

【化1】 CH4+H2O ⇔ CO+3H2 …(1) 上記式(1)の反応は吸熱反応であり、この反応を促
進、継続させるためには熱源が必要である。従来のチュ
ーブラ型やプレート型の燃料改質器では、触媒を充填し
た改質部を、外部から加熱する間接加熱式であるため
に、燃料電池の負荷増減時や起動・停止時の追従性が著
しく悪いと云う問題があった。
Embedded image CH 4 + H 2 O⇔CO + 3H 2 (1) The reaction of the above formula (1) is an endothermic reaction, and a heat source is required to promote and continue this reaction. Conventional tubular and plate-type fuel reformers use an indirect heating method, in which the reforming section filled with catalyst is heated from the outside. There was a problem that it was extremely bad.

【0007】これに対し、外部加熱に加えて、燃料改質
器に空気または酸素を供給し、改質触媒上で、部分酸化
反応を併発させることにより反応熱を発生させ、燃料改
質器の内部からも加熱して、負荷追従性を向上するよう
にした燃料改質器が知られている(例えば、特開平1−
186570号、特開平2−160603号公報)。
On the other hand, in addition to external heating, air or oxygen is supplied to the fuel reformer, and a partial oxidation reaction is caused on the reforming catalyst to generate heat of reaction. 2. Description of the Related Art A fuel reformer that heats from the inside to improve load following performance is known (for example, Japanese Patent Application Laid-Open No.
186570, JP-A-2-160603).

【0008】[0008]

【発明が解決しようとする課題】前記の燃料改質器で
は、起動停止時や負荷変動時において、炭化水素の供給
量と、部分酸化用に供給する酸素量または空気量を独立
して制御することにより改質器の内部温度を調節してお
り、その制御は非常に複雑であった。
In the above-mentioned fuel reformer, the amount of supply of hydrocarbons and the amount of oxygen or air supplied for partial oxidation are independently controlled at the time of starting and stopping or at the time of load fluctuation. Thus, the internal temperature of the reformer was adjusted, and the control was very complicated.

【0009】また、水蒸気改質反応速度よりも酸化反応
速度が速いために、酸素濃度の高いガスの入口側では、
主に部分酸化反応が進行して温度が高くなり、改質器内
部に温度分布が生じると云う問題があった。
Further, since the oxidation reaction rate is higher than the steam reforming reaction rate, the inlet side of the gas having a high oxygen concentration has
There has been a problem that the temperature is increased mainly due to the progress of the partial oxidation reaction, and a temperature distribution is generated inside the reformer.

【0010】本発明の目的は、上記に鑑み、酸化反応の
発熱量と水蒸気改質反応の吸熱量をバランスさせた燃料
改質方法を提供することにある。
[0010] In view of the above, an object of the present invention is to provide a fuel reforming method in which the calorific value of the oxidation reaction and the heat absorption amount of the steam reforming reaction are balanced.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の要旨は次のとおりである。
The gist of the present invention for solving the above problems is as follows.

【0012】酸素または空気と炭化水素,水蒸気を含む
原料ガスを、前記炭化水素の酸化反応および前記炭化水
素の水蒸気改質反応を同時に促進する活性成分を有する
触媒と接触させることにより、外部から熱を与えずに水
素を製造することを特徴とする燃料改質方法にある。
By contacting a raw material gas containing oxygen or air with hydrocarbons and steam with a catalyst having an active component which simultaneously promotes the oxidation reaction of the hydrocarbons and the steam reforming reaction of the hydrocarbons, heat from the outside is obtained. Fuel reforming method characterized by producing hydrogen without applying hydrogen.

【0013】即ち、前記炭化水素の酸化反応を促進する
活性成分と、前記炭化水素の水蒸気改質活性を促進する
活性成分の担持量を調整して、酸化反応の発熱量と水蒸
気改質反応の吸熱量をバランスさせ、触媒全体を所望の
温度に維持する燃料改質方法にある。
That is, by adjusting the amount of the active component that promotes the oxidation reaction of the hydrocarbon and the amount of the active component that promotes the steam reforming activity of the hydrocarbon, the calorific value of the oxidation reaction and the amount of the steam reforming reaction are adjusted. There is a fuel reforming method that balances the amount of heat absorbed and maintains the entire catalyst at a desired temperature.

【0014】前記触媒として、少なくともAlを含む酸
化物で構成された多孔質担体に、Pd,Pt,Ru,R
hの貴金属および/または前記貴金属とNi,Co,F
e,Ag,Cu,Zn,Cr,希土類の少なくとも1種
を担持した触媒を用いる。
[0014] As the catalyst, Pd, Pt, Ru, R
h and / or the noble metal and Ni, Co, F
A catalyst supporting at least one of e, Ag, Cu, Zn, Cr and rare earth is used.

【0015】酸素または空気と炭化水素,水蒸気を本発
明の触媒と接触させることにより、以下の反応が起こ
る。
The following reaction takes place by bringing oxygen or air into contact with a hydrocarbon or steam with the catalyst of the present invention.

【0016】[0016]

【化2】 CH4+H2O ⇔ CO+3H2 …(1) CH4+2O2 → CO2+2H2O …(2) 式(2)の反応は大きな発熱反応であり、例えば、1%
のCH4が式(2)で反応するとガスの温度は約350℃
に上昇する。これに対して式(1)では前述したように
大きな吸熱反応であるため、反応を継続するには常時外
部から熱を供給する必要がある。
CH 4 + H 2 O⇔CO + 3H 2 (1) CH 4 + 2O 2 → CO 2 + 2H 2 O (2) The reaction of the formula (2) is a large exothermic reaction, for example, 1%
Of CH 4 reacts according to the formula (2), the gas temperature becomes about 350 ° C.
To rise. On the other hand, in the formula (1), since the reaction is a large endothermic reaction as described above, it is necessary to constantly supply heat from the outside to continue the reaction.

【0017】本発明では、同一触媒上で式(1)、式
(2)を同時に起こすことにより、外部から熱を供給せ
ずに式(1)の反応を継続する点に特徴がある。
The present invention is characterized in that the formula (1) and the formula (2) occur simultaneously on the same catalyst, so that the reaction of the formula (1) is continued without supplying heat from the outside.

【0018】図1は、酸化反応を促進する活性点として
Pdを、水蒸気改質反応を促進する活性点としてNiを
担持させた触媒の場合を例に、触媒上での反応を模式化
して示した模式図である。
FIG. 1 schematically shows a reaction on a catalyst in which Pd is supported as an active point for promoting an oxidation reaction and Ni is supported as an active point for promoting a steam reforming reaction. FIG.

【0019】Pd上においては主に式(2)の反応が起
って熱エネルギΔEが発生し()、発生したΔEが近
傍のNiに伝達される()。このΔEを利用してNi
上では主に式(1)の反応が起こり()、水素を製造
することができる。
On Pd, the reaction of equation (2) mainly occurs to generate heat energy ΔE (), and the generated ΔE is transmitted to nearby Ni (). Using this ΔE, Ni
Above, the reaction of the formula (1) occurs mainly (), and hydrogen can be produced.

【0020】このように、本発明によれば、外部加熱、
即ち、反応管外壁を通しての伝熱によらず、発生した反
応熱により直接触媒層全体が加熱されるため、負荷追従
性を著しく向上することができる。
Thus, according to the present invention, external heating,
In other words, the entire catalyst layer is directly heated by the generated reaction heat without relying on the heat transfer through the outer wall of the reaction tube, so that the load following ability can be significantly improved.

【0021】また、触媒層のいずれの個所においても酸
化反応の発熱量と、水蒸気改質反応の吸熱量がバランス
しているため、触媒層内部の温度分布が改善される。
Further, since the calorific value of the oxidation reaction and the endothermic amount of the steam reforming reaction are balanced in any part of the catalyst layer, the temperature distribution inside the catalyst layer is improved.

【0022】また、起動時には、原料ガスの組成を変え
ずに装置が保有する熱容量の分だけ供給量を増やすこと
で容易に昇温ができる。さらに、負荷変動時において
も、原料ガスの組成を変えずに、供給量を変えるだけで
実質的に温度変化を伴わずに水素製造量の増減ができ
る。
At the time of startup, the temperature can be easily raised by increasing the supply amount by the heat capacity of the apparatus without changing the composition of the source gas. Further, even at the time of load fluctuation, the hydrogen production amount can be increased or decreased substantially without a temperature change by merely changing the supply amount without changing the composition of the source gas.

【0023】酸素または空気と炭化水素,水蒸気を原料
として水素を主成分とするガスを生成する燃料改質器に
おいても、前記原料中の炭化水素の酸化反応と水蒸気改
質反応とを一定の割合で促進する機能を有する触媒は重
要な役割を果たす。従って、本発明のキーポイントでも
ある。この触媒について以下に詳述する。
In a fuel reformer which generates a gas containing hydrogen as a main component using oxygen or air, hydrocarbons and steam as raw materials, the oxidation reaction of hydrocarbons in the raw materials and the steam reforming reaction are performed at a constant rate. The catalyst having the function of promoting the reaction plays an important role. Therefore, it is also a key point of the present invention. This catalyst is described in detail below.

【0024】まず、前記式(2)に示したような炭化水
素を酸化するための触媒としては、700℃以上の耐熱
性と、できるだけ低温で着火するための低温活性が必要
となる。このためには、アルミナ,シリカ,シリカ−ア
ルミナ等を含む多孔質セラミックス担体に、活性成分と
してPd,Pt,Ru,Rh等の貴金属やAg,Mn,
Co等の遷移金属を担持した触媒が良い。特に、Pd,
Mn,Agが有効である。
First, a catalyst for oxidizing hydrocarbons represented by the above formula (2) needs to have heat resistance of 700 ° C. or higher and low-temperature activity for igniting at as low a temperature as possible. For this purpose, noble metals such as Pd, Pt, Ru, Rh, Ag, Mn, and the like are added to a porous ceramics carrier containing alumina, silica, silica-alumina and the like.
A catalyst supporting a transition metal such as Co is preferable. In particular, Pd,
Mn and Ag are effective.

【0025】これらの元素の近傍に、式(1)を促進す
るための活性成分である貴金属、Ni,Co,Fe,A
g,Cu,Zn,Cr,希土類の少なくとも1種を担持
する。これにより同一触媒表面上で、同時に式(1)と
式(2)の反応が起こり、水素を製造することができ
る。
In the vicinity of these elements, noble metals, Ni, Co, Fe, A, which are active components for promoting the formula (1),
g, Cu, Zn, Cr, and at least one of rare earths. As a result, the reactions of the formulas (1) and (2) occur simultaneously on the same catalyst surface, and hydrogen can be produced.

【0026】これらの中では、特に、希土類・β−アル
ミナ、特に、La・β−アルミナを担体とし、式(1)
の反応を活性化する成分としてNi,Ru、式(2)の
反応を活性化する成分としてPd,Ptを担持した触媒
が有効である。なお、β−アルミナとはβ構造のアルミ
ナを意味する。また、La・β−アルミナとしては、L
aとアルミナのモル比が5:95で、Laを含むβ構造
のアルミナが好ましい。
Among these, in particular, rare earth / β-alumina, particularly La · β-alumina, is used as a carrier, and the formula (1)
It is effective to use Ni, Ru as a component for activating the reaction of Pd and Pd, Pt as a component for activating the reaction of the formula (2). Here, β-alumina means alumina having a β structure. In addition, as La · β-alumina, L
The alumina having a β-structure containing La at a molar ratio of a to alumina of 5:95 is preferable.

【0027】次に、触媒形状は、通常、製造の容易さか
ら粒状が多く用いられるが、圧力損失、熱容量が小さい
等の利点からモノリシス構造体が望ましい。
Next, the catalyst is usually used in a granular form for ease of production. However, a monolithic structure is desirable because of its advantages such as low pressure loss and small heat capacity.

【0028】モノリシス構造体の材質としては、通常の
コージェライト,ムライト,炭化ケイ素,アルミナ、並
びに、熱伝導率が高い金属も有効である。これらの構造
体の表面に前記の多孔質担体をコーティングし、さらに
前記のPd,Pt,Ru,Rhなどの貴金属および/ま
たは前記貴金属とNi,Co,Fe,Ag,Cu,Z
n,Cr,希土類の少なくとも1種を担持させる。触媒
をモノリシス構造にすることにより、粒状の触媒におい
て問題があったガスの通気抵抗を低減することができ
る。
As the material of the monolithic structure, ordinary cordierite, mullite, silicon carbide, alumina, and metals having high thermal conductivity are also effective. The surface of these structures is coated with the above-mentioned porous carrier, and the above-mentioned noble metals such as Pd, Pt, Ru, Rh and / or the above-mentioned noble metals and Ni, Co, Fe, Ag, Cu, Z
At least one of n, Cr and rare earth is supported. By making the catalyst have a monolithic structure, the gas flow resistance, which has a problem with the granular catalyst, can be reduced.

【0029】また、粒状の担体に比べてモノリシス構造
の担体は、担体自体の熱容量が小さくなるため、触媒層
全体が所定の温度に達するまでの時間を短縮することが
できる。さらに、モノリシス構造の触媒担体を熱伝導率
の高い金属製にすることにより、起動停止時や負荷変動
時に、触媒全体の温度分布が解消するに要する時間を著
しく短縮することができる。
Further, since the heat capacity of the carrier itself of the monolithic structure is smaller than that of the granular carrier, the time required for the entire catalyst layer to reach a predetermined temperature can be shortened. Furthermore, by making the catalyst carrier having a monolithic structure made of a metal having a high thermal conductivity, the time required for eliminating the temperature distribution of the entire catalyst at the time of starting and stopping or a load change can be significantly reduced.

【0030】さらに触媒としては、式(1)と式(2)
の反応を同一触媒表面でなく、式(1)の反応を促進す
る触媒と、式(2)の反応を促進する触媒とを均一に混
合したものでもよい。但し、この場合、同一触媒上での
反応に比べて熱伝導効率が劣るため、若干、水素製造効
率が低下するが、有効な手段の一つである。
Further, the catalysts represented by the formulas (1) and (2)
The reaction of the formula (1) may not be performed on the same catalyst surface, and a catalyst that promotes the reaction of the formula (1) and a catalyst that promotes the reaction of the formula (2) may be uniformly mixed. However, in this case, since the heat conduction efficiency is lower than the reaction on the same catalyst, the hydrogen production efficiency slightly decreases, but this is one of effective means.

【0031】以上のような触媒を用いて、酸素または空
気と炭化水素,水蒸気から水素を高効率で製造すること
ができる。
Using the above catalyst, hydrogen can be produced with high efficiency from oxygen or air, hydrocarbons and water vapor.

【0032】また、前記の式(1)で生成したCOも、
以下に示す式(3)のシフト反応により、水素に転換さ
れて水素濃度が高くなる。
The CO generated by the above formula (1) is also:
By the shift reaction of the formula (3) shown below, it is converted into hydrogen and the hydrogen concentration increases.

【0033】[0033]

【化3】 CO+H2O → CO2+H2 …(3) この場合、通常用いられるCu,Cr,Zn等を含むシ
フト触媒が有効である。また、固体高分子形燃料電池用
の水素製造においては、式(3)のシフト反応でCO2
に転換できなかったCOは、燃料電池の電極の性能を劣
化させるために、100ppm以下に低減させる必要が
ある。これには、シフト触媒の後段にCO選択酸化触媒
を設置し、酸素または空気を加えてCOを選択的に酸化
する。この触媒は通常のCO選択酸化触媒でよい。
[Image Omitted] CO + H 2 O → CO 2 + H 2 (3) In this case, a commonly used shift catalyst containing Cu, Cr, Zn or the like is effective. In addition, in the production of hydrogen for a polymer electrolyte fuel cell, CO 2 is produced by the shift reaction of the formula (3).
It is necessary to reduce the CO that could not be converted to 100 ppm or less in order to deteriorate the performance of the electrode of the fuel cell. To this end, a CO selective oxidation catalyst is provided downstream of the shift catalyst, and oxygen or air is added to selectively oxidize CO. The catalyst may be a conventional CO selective oxidation catalyst.

【0034】本発明において使用する原料の炭化水素
は、CH4,天然ガス(LNG),プロパン,ブタン等
のガス状炭化水素,ナフサ,灯油,ガソリン,軽油等の
液状炭化水素等で、改質反応に比較的高温を必要とする
ものが主な対象である。
The hydrocarbons used as raw materials in the present invention are gaseous hydrocarbons such as CH 4 , natural gas (LNG), propane and butane, and liquid hydrocarbons such as naphtha, kerosene, gasoline and light oil, and the like. Those requiring relatively high temperatures for the reaction are the main targets.

【0035】[0035]

【発明の実施の形態】以下に、本発明の実施例について
説明する。
Embodiments of the present invention will be described below.

【0036】〔実施例 1〕図2は、本実施例の炭化水
素の改質試験を行った試験装置の模式断面図である。本
実施例では、原料の炭化水素としてCH4を用いた。
Embodiment 1 FIG. 2 is a schematic cross-sectional view of a test apparatus for performing a hydrocarbon reforming test of this embodiment. In this example, CH 4 was used as a raw material hydrocarbon.

【0037】反応管11は電気炉12で周囲から加熱さ
れるようになっている。反応管11には触媒13が充填
されており、触媒13のガス上流側には、原料ガスが十
分に混合されるように充填材14が充填されている。触
媒13のガス出口部には温度センサ15が設置されてお
り、触媒13を通過する生成ガスの温度を測定できるよ
うになっている。
The reaction tube 11 is heated from the surroundings by an electric furnace 12. The reaction tube 11 is filled with a catalyst 13, and a filler 14 is filled upstream of the catalyst 13 so that the raw material gas is sufficiently mixed. A temperature sensor 15 is provided at the gas outlet of the catalyst 13 so that the temperature of the product gas passing through the catalyst 13 can be measured.

【0038】初めに、反応管11に空気を2.99リッ
トル/minの速度で供給しながら、外周から電気炉1
2で加熱した。温度センサ15で計測される触媒13
の、出口におけるガスの温度が100℃に達したところ
で、反応管11の上部から水を1.58g/minの速
度で供給した。
First, while supplying air to the reaction tube 11 at a rate of 2.99 l / min, the electric furnace 1
Heated at 2. Catalyst 13 measured by temperature sensor 15
When the gas temperature at the outlet reached 100 ° C., water was supplied from the upper part of the reaction tube 11 at a rate of 1.58 g / min.

【0039】さらに触媒13の加熱を続け、温度センサ
15で計測される触媒13の出口におけるガスの温度が
400℃に達した時点で、CH4を0.78リットル/m
inの速度で供給すると同時に、電気炉12を停止して
外部からの加熱を止めた。
When the temperature of the gas at the outlet of the catalyst 13 measured by the temperature sensor 15 reaches 400 ° C., CH 4 is reduced to 0.78 l / m 2.
At the same time, the electric furnace 12 was stopped to stop the external heating.

【0040】原料の組成は、H2O(モル)/CH4(モ
ル)=2.5、O2(モル)/CH4(モル)=0.8で、
触媒13の入口における乾燥ガスベースでの空間速度は
10000h~1とした。
The composition of the raw materials is as follows: H 2 O (mol) / CH 4 (mol) = 2.5, O 2 (mol) / CH 4 (mol) = 0.8,
The space velocity on a dry gas basis at the inlet of the catalyst 13 was set to 10000h- 1 .

【0041】触媒13としては、セル数400セル/i
nch2のコージェライトハニカム構造体にLa・β−
Al23をコーティングした後、Pdをハニカム1リッ
トル当り1.5g、Ruをハニカム1リットル当り1.5
g担持した触媒を用いた。
As the catalyst 13, the number of cells was 400 cells / i.
La-β- is added to the cordierite honeycomb structure of nch 2
After coating with Al 2 O 3 , Pd was 1.5 g / l honeycomb and Ru was 1.5 g / l honeycomb.
g supported catalyst was used.

【0042】図3は、上記の条件で試験した場合の、触
媒13の出口における生成ガスの温度特性を示すグラフ
である。
FIG. 3 is a graph showing the temperature characteristics of the produced gas at the outlet of the catalyst 13 when the test was conducted under the above conditions.

【0043】生成ガスの温度は、電気炉12による加熱
に伴い上昇し、1分後には所定の温度である700℃で
安定した。
The temperature of the produced gas rose with the heating by the electric furnace 12, and was stabilized at a predetermined temperature of 700 ° C. after one minute.

【0044】また、電気炉12を停止した後も、原料ガ
スの供給を続けている間は、触媒13の温度はほぼ70
0℃で一定になっており、熱的に自立していることが分
かった。反応が完全に定常となった時点で出口ガスの分
析を行い、水素生成量を測定した。その結果を表1に示
す。
Further, even after the electric furnace 12 is stopped, while the supply of the raw material gas is continued, the temperature of the catalyst 13 becomes approximately 70 ° C.
It was constant at 0 ° C., indicating that it was thermally independent. When the reaction became completely steady, the outlet gas was analyzed and the amount of hydrogen generated was measured. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】表1において、理論計算値は、CH4,H2
O,空気を実施例1の組成、温度で反応させたときの平
衡値である。この結果から、水素は理論計算値に近い値
を示し、本発明が有効であることが分かる。なお、水素
以外のCO,CO2,CH4も理論値に近いことがことが
明確である。
In Table 1, the theoretical calculation values are CH 4 , H 2
This is an equilibrium value when O and air are reacted at the composition and temperature of Example 1. From these results, hydrogen shows a value close to the theoretical calculation value, which indicates that the present invention is effective. It is clear that CO, CO 2 , and CH 4 other than hydrogen are close to the theoretical values.

【0047】〔実施例 2〕図4は、本実施例の炭化水
素の改質試験を行った試験装置の模式断面図である。本
試験装置は、図2に示した試験装置に、反応管11へ供
給する空気,CH4および水を予熱するための予熱器1
6を設けた点が特徴である。
[Embodiment 2] FIG. 4 is a schematic sectional view of a test apparatus for performing a hydrocarbon reforming test of this embodiment. This test apparatus is different from the test apparatus shown in FIG. 2 in that a preheater 1 for preheating air, CH 4 and water supplied to the reaction tube 11 is provided.
6 is provided.

【0048】始めに、反応管11を外周から電気炉12
で加熱し、温度センサ15で計測される触媒13の、出
口におけるガスの温度が450℃に達した時点で、予熱
器16で予め450℃に加熱した空気,メタンおよび水
を、それぞれ1.87リットル/min、0.78リット
ル/min、1.58g/minの速度で供給した。そ
れと同時に電気炉12を停止して外部からの加熱を止め
た。
First, the reaction tube 11 was moved from the outer periphery to the electric furnace 12.
When the temperature of the gas at the outlet of the catalyst 13 measured by the temperature sensor 15 reaches 450 ° C., the air, methane, and water which have been heated to 450 ° C. Liter / min, 0.78 liter / min, 1.58 g / min. At the same time, the electric furnace 12 was stopped to stop external heating.

【0049】原料の組成は、H2O(モル)/CH4(モ
ル)=2.5、O2(モル)/CH4(モル)=0.6で、
触媒13の入口における乾燥ガスベースでの空間速度は
10000h~1とした。触媒13は、モノリシス構造体
としてメタルハニカムを使用し、かつ、活性成分として
は、ハニカム1リットル当りPtを2gとNiを18g
担持したものを使用した。
The composition of the raw materials is as follows: H 2 O (mol) / CH 4 (mol) = 2.5, O 2 (mol) / CH 4 (mol) = 0.6,
The space velocity on a dry gas basis at the inlet of the catalyst 13 was set to 10000h- 1 . The catalyst 13 uses a metal honeycomb as a monolithic structure, and as an active component, 2 g of Pt and 18 g of Ni per liter of honeycomb.
What was carried was used.

【0050】上記の条件で試験した結果、触媒13の出
口におけるガスの温度は、電気炉12による加熱を止め
ても、所望する700℃で保持されていた。
As a result of the test under the above conditions, the gas temperature at the outlet of the catalyst 13 was maintained at the desired 700 ° C. even when the heating by the electric furnace 12 was stopped.

【0051】また、700℃で安定するまでに要する時
間は、実施例1よりも短縮されており、担体として熱容
量が小さく、熱伝導性の良いメタルハニカムを使用する
ことにより応答性が向上したことが分かる。
The time required to stabilize at 700 ° C. is shorter than that in Example 1, and the responsiveness is improved by using a metal honeycomb having a small heat capacity and good thermal conductivity as a carrier. I understand.

【0052】触媒温度が定常となった時点で出口ガスの
分析を行った結果を表2に示す。本実施例においても水
素は理論計算値に近い値を示し、本発明が有効であるこ
とが分かる。
Table 2 shows the results of analysis of the outlet gas when the catalyst temperature became steady. Also in this example, hydrogen shows a value close to the theoretical calculation value, which indicates that the present invention is effective.

【0053】[0053]

【表2】 [Table 2]

【0054】〔実施例 3〕図5は、本発明による燃料
改質器を含む固体高分子形燃料電池システムの一例を示
す概略フロー図である。
Embodiment 3 FIG. 5 is a schematic flow chart showing an example of a polymer electrolyte fuel cell system including a fuel reformer according to the present invention.

【0055】本実施例では、水素製造の原料としてLN
Gを用いた場合について述べる。本システムは、主に、
燃料改質器1、起動用バーナ2、熱交換器3、シフト反
応器4、CO除去器5、固体高分子形燃料電池6、ボイ
ラ7から構成されている。燃料改質器1には本発明によ
る触媒が充填されている。空気とLNGは熱交換器3を
経由して燃料改質器1に供給されるようになっている。
水はボイラ7で水蒸気に変えられた後、燃料改質器1に
供給されるようになっている。
In this embodiment, LN was used as a raw material for hydrogen production.
The case where G is used will be described. This system is mainly
It comprises a fuel reformer 1, a starter burner 2, a heat exchanger 3, a shift reactor 4, a CO remover 5, a polymer electrolyte fuel cell 6, and a boiler 7. The fuel reformer 1 is filled with the catalyst according to the present invention. Air and LNG are supplied to the fuel reformer 1 via the heat exchanger 3.
The water is converted into steam by the boiler 7 and then supplied to the fuel reformer 1.

【0056】本システムの運転方法について説明する。
まず始めに、所定流量の空気を燃料改質器1の内部へ、
触媒の上流側から供給すると同時に、燃料と燃焼用空気
を起動用バーナ2に供給して点火し、燃焼ガスを発生さ
せ、これを導入することにより触媒を加熱する。
An operation method of the present system will be described.
First, a predetermined flow of air is introduced into the fuel reformer 1,
Simultaneously with the supply from the upstream side of the catalyst, the fuel and the combustion air are supplied to the starting burner 2 to ignite and generate combustion gas, which is heated to heat the catalyst.

【0057】次に、所定流量の水をボイラ7へ供給して
水蒸気に変えた後、触媒の上流側から燃料改質器1へ供
給する。さらに起動用バーナ2により触媒の加熱を続
け、触媒の温度がLNGの着火温度以上になったところ
で、所定流量のLNGを触媒の上流側から燃料改質器1
の内部に供給する。
Next, a predetermined flow rate of water is supplied to the boiler 7 and converted into steam, and then supplied to the fuel reformer 1 from the upstream side of the catalyst. Further, the heating of the catalyst is continued by the starting burner 2, and when the temperature of the catalyst becomes equal to or higher than the ignition temperature of LNG, a predetermined flow rate of LNG is supplied from the fuel reformer 1 to the upstream side of the catalyst.
Supply inside.

【0058】触媒の温度は、LNGの供給直後にわずか
に低下するものの、LNGの酸化により発生する反応熱
によって直ちに再び上昇し始める。この温度上昇が始ま
ったところで、起動用バーナ2への燃料と燃焼用空気の
供給を停止し、起動用バーナ2による触媒の加熱を止め
る。
Although the temperature of the catalyst slightly decreases immediately after the supply of LNG, it immediately starts to increase again due to the heat of reaction generated by the oxidation of LNG. When the temperature rise starts, the supply of fuel and combustion air to the starting burner 2 is stopped, and the heating of the catalyst by the starting burner 2 is stopped.

【0059】その後も、燃料改質器1に充填した触媒に
より熱が発生するために温度が下がることはなく、放熱
とバランスして一定の温度で安定化する。燃料改質器1
の温度が定常状態に達したら、熱交換器3の出口のガス
をシフト反応器4へ導入し、シフト反応により水素濃度
を高め、さらに、CO除去器5へ導入しCOを選択的に
酸化してCO濃度を所定の濃度以下とし、これを固体高
分子形燃料電池6へ導入する。
Thereafter, the temperature does not decrease because the catalyst filled in the fuel reformer 1 generates heat, and the temperature is stabilized at a constant temperature in balance with the heat radiation. Fuel reformer 1
When the temperature reaches a steady state, the gas at the outlet of the heat exchanger 3 is introduced into the shift reactor 4, the hydrogen concentration is increased by the shift reaction, and the gas is introduced into the CO remover 5 to selectively oxidize CO. The CO concentration is set to a predetermined concentration or less, and the CO concentration is introduced into the polymer electrolyte fuel cell 6.

【0060】燃料改質器1の温度の制御は、従来はLN
Gと空気と水の供給量を個別に調節していたため、運転
制御が非常に複雑であったが、本発明によれば、LNG
と空気と水の組成は変えず、総量の増減により容易に行
うことができる。
Conventionally, the temperature of the fuel reformer 1 is controlled by LN
The operation control was very complicated because the supply amounts of G, air, and water were individually adjusted, but according to the present invention, LNG
It can be easily performed by changing the total amount without changing the composition of air and water.

【0061】例えば、冷起動時は短時間で定常温度に到
達するように原料ガスの量を増やし、温度が定常に近づ
くに伴ない所定量まで減らすようにする。また、外気温
の経日変化や経年変化による装置からの放熱量の変動
も、改質温度に影響を与えるが、そのような場合にも原
料ガスの組成は変えず、総量の増減により容易に所定の
定常温度に調整することができる。
For example, at the time of the cold start, the amount of the source gas is increased so as to reach the steady temperature in a short time, and is reduced to a predetermined amount as the temperature approaches the steady state. Fluctuations in the amount of heat radiated from the device due to aging and aging of the outside air temperature also affect the reforming temperature, but in such a case, the composition of the raw material gas does not change, and it is easier to increase or decrease the total amount. It can be adjusted to a predetermined steady temperature.

【0062】負荷変動に合わせて水素製造量を変える場
合、従来は、LNGと空気と水の供給量をそれぞれ独立
して調整していたため、水素製造量を変えようとしたと
きに同時に温度が変動しないよう複雑な制御が必要であ
った。しかし、本発明によれば原料ガスの総量を変える
だけで水素製造量を変えることができ、また、このとき
に温度変化が伴わないために、運転制御が著しく容易に
なる。
In the case where the hydrogen production amount is changed in accordance with the load fluctuation, conventionally, the supply amounts of LNG, air, and water were independently adjusted. A complicated control was needed to avoid this. However, according to the present invention, the hydrogen production amount can be changed only by changing the total amount of the raw material gas, and at this time, since the temperature does not change, the operation control becomes extremely easy.

【0063】[0063]

【発明の効果】本発明によれば、LNGや灯油を原料と
して水素を製造する燃料電池用の燃料改質方法におい
て、従来よりも負荷追従性が著しく改善され、家庭用燃
料電池システムや自動車用燃料電池システム等の高速起
動が要求される装置への用途の拡大を図ることができ
る。
According to the present invention, in a fuel reforming method for a fuel cell for producing hydrogen from LNG or kerosene as a raw material, the load following ability is remarkably improved as compared with the conventional method, and the fuel cell system for home use and the automotive fuel cell are used. It is possible to expand applications to devices that require high-speed startup such as a fuel cell system.

【0064】また、制御用補機の削減、低コスト材料の
使用、構造の簡略化などを図ることができる。
Further, it is possible to reduce the number of control auxiliary machines, use low-cost materials, simplify the structure, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒上での反応の模式図である。FIG. 1 is a schematic diagram of a reaction on a catalyst.

【図2】実施例1の炭化水素の改質試験を行った試験装
置の模式断面図である。
FIG. 2 is a schematic cross-sectional view of a test apparatus for performing a hydrocarbon reforming test of Example 1.

【図3】実施例1の触媒の性能を示すグラフである。FIG. 3 is a graph showing the performance of the catalyst of Example 1.

【図4】実施例2の炭化水素の改質試験を行った試験装
置の模式断面図である。
FIG. 4 is a schematic cross-sectional view of a test device for performing a hydrocarbon reforming test of Example 2.

【図5】本発明による燃料改質器を含む固体高分子形燃
料電池システムの一例を示す概略フロー図である。
FIG. 5 is a schematic flow chart showing an example of a polymer electrolyte fuel cell system including a fuel reformer according to the present invention.

【符号の説明】[Explanation of symbols]

1…燃料改質器、2…起動用バーナ、3…熱交換器、4
…シフト反応器、5…CO除去器、6…固体高分子形燃
料電池、7…ボイラ、11…反応管、12…電気炉、1
3…触媒、14…充填材、15…温度センサ、16…予
熱器。
DESCRIPTION OF SYMBOLS 1 ... Fuel reformer, 2 ... Burner for starting, 3 ... Heat exchanger, 4
... Shift reactor, 5 ... CO remover, 6 ... Polymer fuel cell, 7 ... Boiler, 11 ... Reaction tube, 12 ... Electric furnace, 1
3 ... catalyst, 14 ... filler, 15 ... temperature sensor, 16 ... preheater.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 吉田 紀子 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 河崎 照文 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4G040 EA03 EA06 EA07 EB31 EB32 EC02 EC03 EC04 EC07 4G069 AA03 AA08 BA01A BA01B BA13A BA13B BB04A BC16A BC31A BC32A BC35A BC38A BC42A BC42B BC58A BC66A BC67A BC68A BC68B BC70A BC70B BC71A BC72A BC72B BC75A BC75B CC17 DA06 EA19 EC22X EC22Y FA02 FA03 FB23 FC08 4G140 EA03 EA06 EA07 EB31 EB32 EC02 EC03 EC04 EC07 5H026 AA06 5H027 AA06 BA01 BA17 Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) H01M 8/10 H01M 8/10 (72) Inventor Noriko Yoshida 7-2-1, Omikacho, Hitachi City, Hitachi City, Ibaraki Pref. Within the Hitachi, Ltd. Power and Electricity Development Laboratory (72) Inventor Toshio Yamashita 7-2-1, Omika-cho, Hitachi, Ibaraki Prefecture Within the Hitachi, Ltd. Power and Electricity Development Laboratory (72) Inventor Teruhumi Kawasaki Hitachi, Ibaraki 7-2-1, Omikacho F-term in Hitachi, Ltd. Electric Power and Electric Power Development Laboratory Co., Ltd. BC66A BC67A BC68A BC68B BC70A BC70B BC71A BC72A BC72B BC75A BC75B CC17 DA06 EA19 EC22X EC22Y FA02 FA03 FB23 FC08 4G140 EA03 EA06 EA07 EB31 EB32 EC02 EC03 EC04 EC07 5H026 AA06 5H027 AA01 BA01 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸素または空気と炭化水素,水蒸気を含
む原料ガスを、前記炭化水素の酸化反応および前記炭化
水素の水蒸気改質反応を同時に促進する活性成分を有す
る触媒と接触させることにより、外部から熱を与えずに
水素を製造する燃料改質方法であって、 前記触媒として、少なくともAlを含む酸化物で構成さ
れた多孔質担体に、Pd,Pt,Ru,Rhの貴金属お
よび/または前記貴金属とNi,Co,Fe,Ag,C
u,Zn,Cr,希土類の少なくとも1種を担持した触
媒を用い、 前記炭化水素の酸化反応を促進する活性成分と、前記炭
化水素の水蒸気改質活性を促進する活性成分の担持量を
調整して、酸化反応の発熱量と水蒸気改質反応の吸熱量
をバランスさせ、触媒全体を所望の温度に維持すること
を特徴とする燃料改質方法。
1. An external gas by contacting a raw material gas containing oxygen or air with hydrocarbons and steam with a catalyst having an active component which simultaneously promotes the oxidation reaction of the hydrocarbons and the steam reforming reaction of the hydrocarbons. A fuel reforming method for producing hydrogen without applying heat from a precious metal such as Pd, Pt, Ru, Rh and / or a porous carrier composed of an oxide containing at least Al as the catalyst. Precious metals and Ni, Co, Fe, Ag, C
A catalyst carrying at least one of u, Zn, Cr, and rare earths is used, and the amount of the active component that promotes the oxidation reaction of the hydrocarbon and the amount of the active component that promotes the steam reforming activity of the hydrocarbon are adjusted. Wherein the calorific value of the oxidation reaction and the endothermic amount of the steam reforming reaction are balanced to maintain the entire catalyst at a desired temperature.
【請求項2】 前記触媒を担持させる多孔質担体とし
て、希土類・β−アルミナ、または、La・β−アルミ
ナを用いた請求項1に記載の燃料改質方法。
2. The fuel reforming method according to claim 1, wherein a rare earth β-alumina or La β-alumina is used as the porous carrier for supporting the catalyst.
【請求項3】 前記触媒を担持させる担体として、コー
ジェライトまたはムライトのセラミックスおよび/また
は金属からなるモノリシス構造体を用いた請求項1に記
載の燃料改質方法。
3. The fuel reforming method according to claim 1, wherein a monolithic structure made of cordierite or mullite ceramics and / or metal is used as a carrier for supporting the catalyst.
【請求項4】 前記触媒として、多孔質担体に貴金属を
担持した炭化水素酸化触媒とセラミックス製の担体にN
i,Co,Fe,Ag,Cu,Zn,Cr,希土類の少
なくとも1種を担持した水蒸気改質触媒を均一に混合し
て形成した触媒を用いる請求項1に記載の燃料改質方
法。
4. A hydrocarbon oxidation catalyst comprising a porous carrier carrying a noble metal and a ceramic carrier comprising N
The fuel reforming method according to claim 1, wherein a catalyst formed by uniformly mixing a steam reforming catalyst supporting at least one of i, Co, Fe, Ag, Cu, Zn, Cr, and rare earth is used.
【請求項5】 燃料改質器の後段に、COをH2Oと反
応させるシフト反応触媒およびCOをCO2に選択的に
酸化する触媒を設置した請求項1に記載の燃料改質方
法。
5. The fuel reforming method according to claim 1, wherein a shift reaction catalyst for reacting CO with H 2 O and a catalyst for selectively oxidizing CO to CO 2 are provided downstream of the fuel reformer.
【請求項6】 酸素または空気と炭化水素,水蒸気を含
む原料ガスをコージェライト,ムライトのセラミックス
および/または金属からなるモノリシス構造体に、La
・β−アルミナ多孔質担体をコーティングし、かつ、P
d,Pt,Ru,Rhの貴金属および/または前記貴金
属とNi,Co,Fe,Ag,Cu,Zn,Cr,希土
類の少なくとも1種を担持した触媒と接触させることに
より、前記炭化水素の酸化反応および水蒸気改質反応を
同時に促進させ、外部から熱を与えずに水素を製造する
ことを特徴とする燃料改質方法。
6. A monolithic structure made of ceramics and / or metal of cordierite or mullite is converted into a raw material gas containing oxygen or air, a hydrocarbon, and water vapor.
.Beta.-alumina porous carrier is coated and P
d. Pt, Ru, Rh noble metal and / or the noble metal is brought into contact with a catalyst supporting at least one of Ni, Co, Fe, Ag, Cu, Zn, Cr, and rare earths, thereby oxidizing the hydrocarbon. And a steam reforming reaction at the same time to produce hydrogen without externally applying heat.
JP2000299102A 2000-09-27 2000-09-27 Method of reforming fuel Pending JP2002104808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299102A JP2002104808A (en) 2000-09-27 2000-09-27 Method of reforming fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299102A JP2002104808A (en) 2000-09-27 2000-09-27 Method of reforming fuel

Publications (2)

Publication Number Publication Date
JP2002104808A true JP2002104808A (en) 2002-04-10
JP2002104808A5 JP2002104808A5 (en) 2005-08-25

Family

ID=18780959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299102A Pending JP2002104808A (en) 2000-09-27 2000-09-27 Method of reforming fuel

Country Status (1)

Country Link
JP (1) JP2002104808A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002186A (en) * 2002-05-13 2004-01-08 Boc Group Inc:The Gas recovery method
JP2005537132A (en) * 2002-08-26 2005-12-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Multilayer catalyst for self-heat exchange steam reforming of hydrocarbons and process using said catalyst
JP2006036567A (en) * 2004-07-26 2006-02-09 T Rad Co Ltd Steam reforming method and mixed catalyst
WO2007029862A1 (en) * 2005-09-08 2007-03-15 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
KR100700552B1 (en) 2005-10-11 2007-03-28 엘지전자 주식회사 Catalyst charging method of reformer for fuel cell
JP2007117798A (en) * 2005-10-25 2007-05-17 Ishikawajima Harima Heavy Ind Co Ltd Reforming catalyst, reforming method, operation method and structure of reforming catalyst
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
WO2009054830A1 (en) * 2007-10-25 2009-04-30 Utc Power Corporation Reduced generation of ammonia in nickel catalyst of reformer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002186A (en) * 2002-05-13 2004-01-08 Boc Group Inc:The Gas recovery method
JP2005537132A (en) * 2002-08-26 2005-12-08 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Multilayer catalyst for self-heat exchange steam reforming of hydrocarbons and process using said catalyst
JP2006036567A (en) * 2004-07-26 2006-02-09 T Rad Co Ltd Steam reforming method and mixed catalyst
WO2007029862A1 (en) * 2005-09-08 2007-03-15 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
KR100700552B1 (en) 2005-10-11 2007-03-28 엘지전자 주식회사 Catalyst charging method of reformer for fuel cell
JP2007117798A (en) * 2005-10-25 2007-05-17 Ishikawajima Harima Heavy Ind Co Ltd Reforming catalyst, reforming method, operation method and structure of reforming catalyst
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
WO2009054830A1 (en) * 2007-10-25 2009-04-30 Utc Power Corporation Reduced generation of ammonia in nickel catalyst of reformer

Similar Documents

Publication Publication Date Title
US6929785B2 (en) Method and apparatus for preheating of a fuel cell micro-reformer
JP5244292B2 (en) Fuel cell module and fuel cell system
KR20050030492A (en) Compact partial oxidation reactor assemblage with fast start-up capability
JPH02160603A (en) Reforming of fuel for fuel cell
JP2002104808A (en) Method of reforming fuel
US7402294B2 (en) Catalyst for partial oxidation reforming of fuel and fuel reforming apparatus and method using the catalyst
EP1148024A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
KR100993468B1 (en) Auto ignition type autothermal reformer and fuel cell system having the same
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
JP2004196600A (en) Hydrogen generating apparatus to be used for fuel cell and starting method
RU113729U1 (en) PROCESSOR FOR CONVERSION OF HYDROCARBON FUELS IN SYNTHESIS-GAS FOR APPLICATION IN SOLID-OXIDE FUEL ELEMENTS
JP2000191304A (en) Liquid fuel evaporator and reformer for fuel cell using the same
JP4189731B2 (en) Auto-oxidation internally heated steam reforming system and its startup method
JP2001089108A (en) Fuel reformer and method for operating the reformer
JP2004115321A (en) Reforming apparatus
JP3432298B2 (en) Fuel reformer
JP2002025597A (en) Reforming device for fuel cell and its operating method
JP2001085039A (en) Fuel cell system
JPS63129002A (en) Internal heating fuel reformer
JPH07106881B2 (en) Fuel cell reformer device
JPH0647441B2 (en) Fuel reformer for fuel cell
JP2001106513A (en) Fuel reforming device
JP4676819B2 (en) Method for reducing reforming catalyst
JP2002104809A (en) Apparatus of reforming fuel
JPH0450244B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304