JP2002100959A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP2002100959A
JP2002100959A JP2000290963A JP2000290963A JP2002100959A JP 2002100959 A JP2002100959 A JP 2002100959A JP 2000290963 A JP2000290963 A JP 2000290963A JP 2000290963 A JP2000290963 A JP 2000290963A JP 2002100959 A JP2002100959 A JP 2002100959A
Authority
JP
Japan
Prior art keywords
electrode
resonance
frequency
temperature
stop band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000290963A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hirota
和博 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2000290963A priority Critical patent/JP2002100959A/en
Publication of JP2002100959A publication Critical patent/JP2002100959A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a means by which a frequency temperature characteristic which is decided uniquely by a piezoelectric substrate, the shape of an electrode, and its film thickness is selected selectively by a resonance of a better characteristic. SOLUTION: In a resonance-type surface acoustic wave device, cyclic electrodes are constituted on the main face of the piezoelectric substrate. From among the resonances in both ends of a step band formed of the cyclic electrodes, the resonance whose frequency temperature deviation within the usage temperature range becomes small is used selectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は弾性表面波デバイス
に関し、特に温度特性を改善した弾性表面波デバイスに
関する。
The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device having improved temperature characteristics.

【0002】[0002]

【従来の技術】近年、弾性表面波デバイス(以下、SA
Wデバイスと称す)は通信分野で広く利用され、高性
能、小型、量産性等の優れた特徴を有することから特に
携帯電話機等に多く用いられている。図8はIDT電極
に正規型電極を用いた従来のSAW共振子であって、圧
電基板11の主面上に表面波の伝搬方向に沿ってIDT
電極12と、該IDT電極の両側にグレーティング反射
器(以下、反射器と称す)13、14を配置して構成し
たものである。周知のように、IDT電極が連続周期構
造である場合には、機械的共振としては該電極が形成す
るストップバンドの両端(下端と上端)のいずれか一方
の周波数において生ずる。実際のSAW共振子ではID
T電極12、反射器13、14とも有限の構造であるた
め、ストップバンドの下端あるいは上端の周波数は、連
続周期構造の周波数と少しずれるが、反射器間に表面波
が閉じ込めらた場合には近似的に連続周期と見なしても
よい。
2. Description of the Related Art In recent years, surface acoustic wave devices (hereinafter referred to as SAs) have been developed.
W devices) are widely used in the field of communications, and have excellent characteristics such as high performance, small size, and mass productivity, and are therefore often used particularly in mobile phones and the like. FIG. 8 shows a conventional SAW resonator using a normal-type electrode as an IDT electrode, and the IDT electrode is formed on the main surface of the piezoelectric substrate 11 along the propagation direction of the surface wave.
An electrode 12 and grating reflectors (hereinafter, referred to as reflectors) 13 and 14 are arranged on both sides of the IDT electrode. As is well known, when the IDT electrode has a continuous periodic structure, mechanical resonance occurs at one of the two ends (lower end and upper end) of the stop band formed by the electrode. ID in actual SAW resonator
Since both the T electrode 12 and the reflectors 13 and 14 have a finite structure, the frequency at the lower end or upper end of the stop band slightly deviates from the frequency of the continuous periodic structure, but when the surface wave is confined between the reflectors, It may be approximately regarded as a continuous period.

【0003】また、圧電基板が伝搬方向について対称で
あれば、モード結合定数κ12は実数となり、この値が正
のときはストップバンド下端の周波数が励振され、負の
ときはストップバンド上端の周波数が励振されることが
知られている。これは、モード結合定数κ12の符号によ
り、ストップバンド両端におけるそれぞれの定在波の腹
と励振中心との位置関係が変わるために起こることであ
る。
If the piezoelectric substrate is symmetric with respect to the propagation direction, the mode coupling constant κ 12 is a real number. When the value is positive, the frequency at the lower end of the stop band is excited, and when the value is negative, the frequency at the upper end of the stop band is excited. Is known to be excited. This is the sign of the mode coupling constant kappa 12, is to take place in the positional relationship between the respective antinodes of the standing wave in the stop band across the excitation center is changed.

【0004】この現象については、SAW共振子のみな
らず、ストップバンド端の共振を複数個用いてフィルタ
を形成する共振型SAWフィルタについても同様のこと
が言える。即ち、共振子型SAWフィルタのほとんどは
IDT電極に正規型電極を用い、且つモード結合定数κ
12が実数である圧電基板を使用しているので、ストップ
バンド下端の共振とその縦高次モードの共振を用いる
か、ストップバンド上端の共振とその縦高次モードの共
振を用いてフィルタを形成している。
[0004] This phenomenon can be applied not only to a SAW resonator but also to a resonance type SAW filter that forms a filter using a plurality of resonances at a stop band end. That is, most of the resonator type SAW filters use a normal type electrode as the IDT electrode and have a mode coupling constant κ.
Since the piezoelectric substrate 12 is a real number, a filter is formed by using the resonance at the lower end of the stop band and its higher-order mode resonance, or using the resonance at the upper end of the stop band and its higher-order mode resonance. are doing.

【0005】[0005]

【発明が解決しようとする課題】従来の共振型SAWデ
バイスの周波数温度特性は、圧電基板そのものの温度特
性に加え、IDT電極の膜厚およびその形状により周波
数温度特性が左右されていた。そのため、設計要求、例
えば共振周波数、容量比等により圧電基板(圧電材料、
伝搬方位等)、IDT電極の形状及び膜厚等が決められ
ると、SAWデバイスの周波数温度特性はほぼ自動的に
決まり、これを改善することは極めて難しいという問題
があった。また、後で説明するように、IDT電極の周
期構造が形成するストップバンドの両端、即ち下端及び
上端の周波数の中、上端の共振周波数の周波数温度特性
の方がより安定であるという文献が知られているが、ス
トップバンドの上端の共振を励起するには、STカット
水晶基板に金の電極を形成する必要があり、極めて高価
になるという問題があった。本発明は上記問題を解決す
るためになされたものであって、従来のものより優れた
周波数温度特性を有するSAWデバイスを提供すること
を目的とする。
The frequency temperature characteristics of the conventional resonance type SAW device depend on the thickness and shape of the IDT electrode in addition to the temperature characteristics of the piezoelectric substrate itself. Therefore, the piezoelectric substrate (piezoelectric material,
When the propagation direction and the like, the shape and the film thickness of the IDT electrode, and the like are determined, the frequency-temperature characteristics of the SAW device are almost automatically determined, and there is a problem that it is extremely difficult to improve them. Further, as will be described later, there is a document that the frequency temperature characteristic of the resonance frequency at the upper end is more stable among the both ends of the stop band formed by the periodic structure of the IDT electrode, that is, the lower end and the upper end. However, in order to excite the resonance at the upper end of the stop band, it is necessary to form a gold electrode on the ST-cut quartz substrate, which is extremely expensive. The present invention has been made to solve the above problems, and has as its object to provide a SAW device having better frequency-temperature characteristics than conventional devices.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る弾性表面波デバイスの請求項1記載の発
明は、圧電基板の主面上に周期的電極を配置した共振型
弾性表面波デバイスにおいて、前記周期的電極により形
成されるストップバンド両端の共振の中、使用温度範囲
内おける周波数温度偏差が小さくなる共振を選択的に利
用した弾性表面波デバイスである。請求項2記載の発明
は、前記周期電極に反射反転型電極を用いたことを特徴
とする請求項1に記載の弾性表面波デバイスである。
According to a first aspect of the present invention, there is provided a surface acoustic wave device according to the present invention, wherein a periodic electrode is disposed on a main surface of a piezoelectric substrate. The wave device is a surface acoustic wave device that selectively uses resonance that reduces a frequency temperature deviation within a use temperature range among resonances at both ends of a stop band formed by the periodic electrode. The invention according to claim 2 is the surface acoustic wave device according to claim 1, wherein a reflection inversion type electrode is used as the periodic electrode.

【0007】[0007]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。本発明を詳細に説明す
る前に、本発明の理解を助けるために自己結合係数
κ11、モード結合係数κ12等と、IDT電極が形成する
ストップバンドの両端(下端及び上端)における共振周
波数等との関係を簡単に説明する。例えば、圧電基板に
回転YカットX伝搬水晶を、電極材料にアルミニウムを
用いて、図8に示したSAW共振子を構成した場合、モ
ード結合係数κ12は正となり、ストップバンドの下端に
おける共振周波数fLが励振され、そのアドミッタンス
特性は図9に示す曲線ようになる。この図9に重ねてI
DT電極12が形成するストップバンドの位置、即ちそ
の中心、下端及び上端と、基準周波数f0(=Vf/L)
との関係を図示している。IDT電極12の電極周期を
L(図の例では20μm)と、自由表面における圧電基
板11の表面波の速度Vfとから基準となる周波数f0
f/Lが定まる。ストップバンドはこの基準周波数f0
よりもκ11’f0だけ低い周波数を中心として、2|κ
12’|f0の幅で形成される。ここでκ11’および
κ12’はそれぞれ自己結合係数κ11及びモード結合係数
κ12を規格化したものであり、κ11’=κ11/(2π/
L)、κ12’=κ12/(2π/L)と表される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. Before describing the present invention in detail, in order to facilitate understanding of the present invention, a self-coupling coefficient κ 11 , a mode-coupling coefficient κ 12 , a resonance frequency at both ends (lower end and upper end) of a stop band formed by an IDT electrode, and the like are described. The relationship will be briefly described. For example, a rotation Y-cut X propagation quartz piezoelectric substrate, with aluminum as the electrode material, when constituting the SAW resonator shown in FIG. 8, the mode coupling coefficient kappa 12 is positive, the resonant frequency at the lower end of the stop band f L is excited, and the admittance characteristic becomes a curve shown in FIG. In FIG.
The position of the stop band formed by the DT electrode 12, that is, its center, lower end and upper end, and the reference frequency f 0 (= V f / L)
FIG. The reference frequency f 0 = L from the electrode cycle of the IDT electrode 12 (20 μm in the example in the figure) and the velocity V f of the surface wave of the piezoelectric substrate 11 on the free surface.
V f / L is determined. The stop band is the reference frequency f 0
2 | κ centered on the frequency lower by κ 11 'f 0 than
12 '| is formed with a width of f 0. Here, κ 11 ′ and κ 12 ′ are obtained by normalizing the self-coupling coefficient κ 11 and the mode coupling coefficient κ 12 , respectively, and κ 11 ′ = κ 11 / (2π /
L), κ 12 ′ = κ 12 / (2π / L).

【0008】図9におけるストップバンド下端の周波数
Lは次式で表される。
The frequency f L at the lower end of the stop band in FIG. 9 is expressed by the following equation.

【数1】 この式(1)からfLの周波数温度特性は、Vf、L、κ
11’、|κ12’|の温度特性に依存していることが分か
る。Vf、Lの温度特性は圧電基板材料と伝搬方位に依
存し、κ11’、|κ12’|の温度特性は圧電基板と電極
材料、電極形状等により決定される。
(Equation 1) From this equation (1), the frequency temperature characteristic of f L is V f , L, κ
11 ', | κ 12' | it can be seen that depending on the temperature characteristics of the. The temperature characteristics of V f and L depend on the piezoelectric substrate material and the propagation direction, and the temperature characteristics of κ 11 ′ and | κ 12 ′ | are determined by the piezoelectric substrate, the electrode material, the electrode shape, and the like.

【0009】水晶基板、例えばSTカット基板は、通常
の使用温度範囲で2次の周波数温度特性を有しいる。即
ち、共振周波数がf0=Vf/Lで表される表面波の周波
数温度特性f0(T)は2次式で表される。そして、こ
の圧電基板上にIDT電極を形成すると、励振される共
振周波数fLの周波数温度特性は、f0(T)の呈する周
波数温度特性から頂点温度Tpや2次温度係数が変化す
ることが知られている。また、STカット基板に金の電
極を付着した場合、あるいは反射反転電極構造を用いた
場合には、モード結合係数κ12は負となり、図10に示
すようにストップバンドの上端の周波数fUが励振され
る。この場合も基準周波数、ストップバンド幅との関係
は図9の場合と同じである。
A quartz substrate, for example, an ST-cut substrate has a second-order frequency-temperature characteristic in a normal operating temperature range. That is, the frequency-temperature characteristic f 0 (T) of the surface wave whose resonance frequency is represented by f 0 = V f / L is represented by a quadratic expression. When the IDT electrode is formed on the piezoelectric substrate, the frequency temperature characteristic of the resonance frequency f L to be excited is such that the peak temperature Tp and the secondary temperature coefficient change from the frequency temperature characteristic exhibited by f 0 (T). Are known. Also, when adhering the electrodes of gold ST-cut substrate, or in the case of using the reflection inversion electrodes structure, mode coupling coefficient kappa 12 is negative, the frequency f U of the upper end of the stop band, as shown in FIG. 10 Excited. Also in this case, the relationship between the reference frequency and the stop bandwidth is the same as in the case of FIG.

【0010】文献「有限要素法を用いた弾性表面波の周
波数−温度特性解析」信学技報US99-20においては、電
極膜厚hの増加につれてストップバンド下端の共振周波
数fLの周波数温度特性が、どのように変化するかを有
限要素法解析を用いて示している。この文献では、オイ
ラー角(0,123°,0)、即ち33°Yカット−X
伝搬の水晶SAW共振子について解析し、電極膜厚h’
(h’=h/λ、電極膜厚hを励振される表面波の波長
λで基準化)が大きくなるにつれて、図11に示すよう
に、2次曲線の頂点温度Tpは低下する傾向を示してい
る。図中のTpL及びTpUはそれぞれストップバンド下端及
び上端における共振周波数fL及びfUの周波数温度特性
の頂点温度を示している。頂点温度TpLは過去の実験に
よる経験とも一致していると述べている。
In the literature, "Analysis of the frequency-temperature characteristics of surface acoustic waves using the finite element method", IEICE technical report US99-20, frequency-temperature characteristics of the resonance frequency f L at the lower end of the stop band as the electrode thickness h increases. Shows how this changes using finite element analysis. In this document, the Euler angle (0, 123 °, 0), that is, 33 ° Y cut-X
Analysis of the propagating quartz SAW resonator, electrode thickness h ′
As (h ′ = h / λ, the electrode thickness h is normalized by the wavelength λ of the excited surface wave), the peak temperature Tp of the quadratic curve tends to decrease as shown in FIG. ing. TpL and TpU in the figure indicate the peak temperatures of the frequency temperature characteristics of the resonance frequencies f L and f U at the lower end and the upper end of the stop band, respectively. He states that the peak temperature TpL is consistent with past experimental experience.

【0011】上記文献ではさらにもう一つの機械共振で
あるストップバンド上端の共振fUについても、図12
に示すように、fUの2次温度係数αUがfLのそれαL
りも絶対値が小さいことを示している。しかし、ストッ
プバンド上端の共振周波数f Uについては、その励振及
び利用法について何も記述されていない。ちなみに、ス
トップバンド上端の共振周波数fUは次の式(2)で表
される。
In the above document, there is another mechanical resonance.
Resonance f at the top of a certain stop bandUAs for FIG.
As shown in fUSecondary temperature coefficient αUIs fLIt's αLYo
This indicates that the absolute value is small. However,
Resonance frequency f at the top of the band UAbout its excitement
Nothing is described about its use and usage. By the way,
Resonance frequency f at the top of the top bandUIs expressed by the following equation (2).
Is done.

【数2】 式(2)から明らかなように、膜厚h’の変化に対する
温度特性の変化は、f Lと同様にκ11’、|κ12’|の
温度特性に依存している。ここで、fLとfUとの式を比
較すると、異なるのは|κ12’|項の前の符号のみであ
り、両者の温度特性の違いは、|κ12’|の温度特性が
逆符号で加わるためであることが分かる。
(Equation 2)As is apparent from the equation (2), the change in the film thickness h '
The change in temperature characteristic is f LAs well as κ11’, | Κ12’|
Depends on temperature characteristics. Where fLAnd fUAnd the formula
The difference is | κ12'|
The difference between the two temperature characteristics is | κ12’|
It can be seen that this is because the addition is performed with the opposite sign.

【0012】上記文献の解析結果によると、電極膜厚
h’が大きくなるにつれて共振周波数fL及びfUのいず
れの2次温度係数もその絶対値は大きくなるが、fU
絶対値の方が常に小さいことを示している。これはf0
=Vf/Lの2次温度係数が負であるのに対し、κ11
の2次温度係数は正、κ12’の2次温度係数も正である
ことを意味する。このことを以下に式を用いて説明す
る。
According to the analysis results of the above-mentioned document, as the electrode thickness h 'increases, the absolute values of the secondary temperature coefficients of both the resonance frequencies f L and f U increase, but the absolute value of f U increases. Is always small. This is f 0
= V f / L is negative, whereas κ 11
Means that the second order temperature coefficient is positive, and the second order temperature coefficient of κ 12 ′ is also positive. This will be described below using equations.

【0013】自由表面で考えた基準周波数f0の周波数
温度特性は2次式で近似することができ、且つIDT電
極を形成した後のストップバンド両端の周波数fLとfU
の周波数温度特性が、共に2次で近似できるところか
ら、κ11’、κ12’の温度特性も2次式で表されること
が分かる。κ11’、κ12’の1次及び2次温度係数をそ
れぞれa1、a2、b1、b2とすると、κ11’、κ12’の温度
特性は次式のように表される。
The frequency temperature characteristic of the reference frequency f 0 considered on the free surface can be approximated by a quadratic equation, and the frequencies f L and f U at both ends of the stop band after the IDT electrode is formed.
Can be quadratic, it can be seen that the temperature characteristics of κ 11 ′ and κ 12 ′ are also represented by quadratic expressions. Assuming that the primary and secondary temperature coefficients of κ 11 ′ and κ 12 ′ are a 1 , a 2 , b 1 and b 2 , respectively, the temperature characteristics of κ 11 ′ and κ 12 ′ are expressed by the following equations. .

【数3】 (Equation 3)

【数4】 これらの係数a1、a2、b1、b2が膜厚依存性を持つものと
する。ここで、hはIDT電極の膜厚、Tは摂氏温度で
あり、κ11 (0)、κ12 (0)はそれぞれ零度におけるκ11
κ12の値である。さらに、基準周波数f0の温度特性の
1次及び2次温度係数をそれぞれc1、c2とすると、f0
は次式で表される。
(Equation 4) It is assumed that these coefficients a 1 , a 2 , b 1 , and b 2 have film thickness dependence. Here, h is the thickness of the IDT electrode, T is the temperature in degrees Celsius, and κ 11 (0) and κ 12 (0) are κ 11 at zero degree,
κ is a value of 12. Further, assuming that the primary and secondary temperature coefficients of the temperature characteristic of the reference frequency f 0 are c 1 and c 2 , respectively, f 0
Is represented by the following equation.

【数5】 ここで、f0 (0)は零度における基準周波数f0の値であ
り、膜厚hを省略して、ストップバンド下端及び上端に
おける共振周波数fL、fUをf0 (0)で除した周波数fL/f
0 (0)、fU/f0 (0)はそれぞれ次式で近似される。
(Equation 5) Here, f 0 (0) is the value of the reference frequency f 0 at zero degree, the thickness h is omitted, and the resonance frequencies f L and f U at the lower end and the upper end of the stop band are divided by f 0 (0) . Frequency f L / f
0 (0) and f U / f 0 (0) are approximated by the following equations, respectively.

【数6】 (Equation 6)

【数7】 これらの式より、fL/f0 (0)及びfU/f0 (0)の2次温度係
数αL及びαUはそれぞれ次式で表される。
(Equation 7) From these equations, the secondary temperature coefficients α L and α U of f L / f 0 (0) and f U / f 0 (0) are respectively expressed by the following equations.

【数8】 (Equation 8)

【数9】 YカットX伝搬水晶では、κ11 (0)、κ12 (0)>0 である
ので、fL及びfUの2次温度係数αL、αUがαL<αU
らばb2>0である。またYカットX伝搬水晶ではc2<0
であり、膜厚が増加するにつれてαLとαUのいずれも小
さくなる。符号が負で絶対値が増加していることから、
a2>0であることが分かる。
(Equation 9) The Y-cut X-propagation quartz, κ 11 (0), because it is κ 12 (0)> 0, f L and f U of the secondary temperature coefficient α L, α U is α LU if b 2> It is 0. In the case of a Y-cut X-propagating crystal, c 2 <0
And both α L and α U decrease as the film thickness increases. Since the sign is negative and the absolute value is increasing,
It can be seen that a 2 > 0.

【0014】以上示したようにκ12’の2次温度特性b2
が正であり、ストップバンド上端と下端とではそれぞれ
の共振周波数において、κ12’の温度特性の影響が一方
では正、他方では負となって加わるので、下端の2次温
度係数αLよりも上端の2次温度係数αUの方が絶対値が
小さくなる。2次温度係数のみではなく、当然1次温度
係数も下端と上端では異なる。そのため圧電基板が2次
温度特性を有する場合には頂点温度Tpが変化し、下端
と上端の一方では頂点温度Tpが高く、他方では低くな
る。
As described above, the secondary temperature characteristic b 2 of κ 12
Is positive, and at the upper and lower ends of the stop band, at each resonance frequency, the effect of the temperature characteristic of κ 12 ′ is positive on the one hand and negative on the other, so that it is greater than the secondary temperature coefficient α L at the lower end. The absolute value of the secondary temperature coefficient α U at the upper end is smaller. Not only the secondary temperature coefficient but also the primary temperature coefficient is naturally different at the lower end and the upper end. Therefore, when the piezoelectric substrate has the secondary temperature characteristic, the peak temperature Tp changes, and one of the lower end and the upper end has a higher peak temperature Tp and the other has a lower peak temperature Tp.

【0015】図11、12に示すように、共振周波数fL
/f0 (0)及びfU/f0 (0)の頂点温度Tpと2次温度係数α
L、αUから、式(6)、(7)の一次及び二次の温度係
数がそれぞれ求まる。そして、式(6)、(7)よりfL
/f0 (0)及びfUの/f0 (0)の一次温度係数同士の和及び差
を求め、それを1/2することにより、(κ11 (0)a1-
c1)、κ12 (0)b1をそれぞれ求めることができる。これ
らを基準化膜厚h’に対して図示したものが図1であ
る。同図より(κ11 (0)a1- c1)は一次式であり、基準
化膜厚h’を零としたとき、-c1は切片を表している。
また、κ12 (0)b1は二次曲線となり、基準化膜厚h’を
零とするとこの値はほぼ零になることが分かる。同様
に、図12と、式(6)、(7)よりfL/f0 (0)及びfU
の/f0 (0)の二次温度係数同士の和及び差を求め、それ
を1/2することにより、(κ11 (0)a2- c2)、κ12 (0)
b2をそれぞれ求めることができ、これらを基準化膜厚
h’に対して図示したものが図2である。いずれも一次
式で表され、(κ11 (0)a2- c2)の基準化膜厚h’を零
としたとき、-c2は切片を表し、κ12 (0)b2は基準化膜厚
h’を零としたとき、零になることが分かる。ここで、
c1及びc2には膜厚依存性はない。
As shown in FIGS. 11 and 12, the resonance frequency f L
/ F 0 (0) and f U / f 0 (0) apex temperature Tp and secondary temperature coefficient α
From L and α U , the primary and secondary temperature coefficients of equations (6) and (7) are determined, respectively. Then, from equations (6) and (7), f L
/ F 0 (0) and calculates the sum and difference between the primary temperature coefficient of the f U of / f 0 (0), by 1/2 it, (κ 11 (0) a 1 -
c 1 ) and κ 12 (0) b 1 can be obtained. FIG. 1 shows these with respect to the standardized film thickness h ′. In the figure, (κ 11 (0) a 1 -c 1 ) is a linear expression, and -c 1 represents an intercept when the normalized film thickness h ′ is set to zero.
Also, κ 12 (0) b 1 is a quadratic curve, and it can be seen that this value is almost zero when the standardized film thickness h ′ is zero. Similarly, from FIG. 12 and equations (6) and (7), f L / f 0 (0) and f U
By calculating the sum and difference between the secondary temperature coefficients of / f 0 (0) and halving them, (κ 11 (0) a 2 -c 2 ), κ 12 (0)
b 2 a can be obtained, respectively, is 2 those shown for these reference film thickness h '. Both are expressed by linear expressions, and when the normalized film thickness h ′ of (κ 11 (0) a 2 −c 2 ) is set to zero, −c 2 represents an intercept, and κ 12 (0) b 2 is a reference. It can be seen that when the thickness h ′ is zero, the thickness becomes zero. here,
c no film thickness dependence on the first and c 2.

【0016】ここで、κ11、κ12の膜厚依存性について
従来から知られている値を用いれば、それぞれの一次及
び二次の温度係数a1、a2及びb1、b2の膜厚依存性を求め
ることができる。STカット水晶基板ではκ11=0.3643
K2+0.2796h'、κ12=0.2188h'と膜厚に関して一次式で
近似される。ここでK2は電気機械結合係数である。この
κ11、κ12の一次式を用いて、基準化膜厚h’に対して
κ11、κ12、f0のそれぞれの一次及び二次の温度係数a
1、a2、b1、b2及びc1、c2を求めて、基準化膜厚h’に
対して図示したものが、図3、4である。κ12の一次温
度係数b1のみが基準化膜厚に関して一次式で表され、他
の温度係数a1、a2、b2、c1、及びc2は膜厚に依存しない
ことが分かる。また、c1、c2の値が他の値に比べて小
さいのは、これらは水晶基板の温度係数であって極めて
安定しているのに対し、a1、a2、b1、b2は電極アルミニ
ウムに依存しているために大きな値となっている。
Here, if conventionally known values are used for the dependence of κ 11 and κ 12 on the film thickness, the film coefficients of the primary and secondary temperature coefficients a 1 , a 2 and b 1 , b 2 can be obtained. The thickness dependence can be determined. Κ 11 = 0.3643 for ST cut quartz substrate
K 2 + 0.2796h ′ and κ 12 = 0.2188h ′ are approximated by a linear expression with respect to the film thickness. Here K 2 is the electromechanical coupling coefficient. The kappa 11, using a linear expression of κ 12, κ 11 relative to the reference film thickness h ', κ 12, each of the primary and secondary temperature coefficient of the f 0 a
1 , a 2 , b 1 , b 2 and c 1 , c 2 are obtained and shown with respect to the standardized film thickness h ′ in FIGS. only the primary temperature coefficient b 1 of the kappa 12 is represented by a linear equation with respect to a reference of the film thickness, it is understood that other temperature coefficients a 1, a 2, b 2 , c 1, and c 2 are not dependent on the film thickness. Also, the reason why the values of c 1 and c 2 are smaller than the other values is that they are extremely stable because they are temperature coefficients of the quartz substrate, whereas a 1 , a 2 , b 1 , b 2 Is a large value because it depends on the electrode aluminum.

【0017】図5は、上記の準備を経て33゜Y−Xカ
ット水晶基板にアルミニウム電極の膜厚h’を0.03とし
た場合のκ11/κ11 (0)、κ12/κ12 (0)及びf0/f0
(0)の温度変化率特性を示す図である。κ11/κ11 (0)
κ12/κ12 (0)に対してf0/f0 (0)が如何に安定してい
るかが分かる。また、図6、7は零度の基準周波数f0
(0)で基準化した各定数、κ11/f0 (0)、κ12
0 (0)、f0/f0 (0)及びストップバンド下端fL/f0
(0)、上端fU/f0 (0)の周波数の周波数変動量を示した
図である。
FIG. 5 shows κ 11 / κ 11 (0) and κ 12 / κ 12 (0 ) when the thickness h ′ of the aluminum electrode is set to 0.03 on the 33 ° YX cut quartz substrate after the above preparation. ) And f 0 / f 0
FIG. 6 is a diagram showing a temperature change rate characteristic of (0) . κ 11 / κ 11 (0) ,
It can be seen how f 0 / f 0 (0) is stable with respect to κ 12 / κ 12 (0) . 6 and 7 show a zero-degree reference frequency f 0.
Each constant normalized by (0) , κ 11 / f 0 (0) , κ 12 /
f 0 (0) , f 0 / f 0 (0) and stop band lower end f L / f 0
(0) is a diagram showing the frequency fluctuation amount of the frequency at the upper end f U / f 0 (0) .

【0018】次に、圧電基板が1次の周波数温度特性を
有する場合には1次温度係数が変化し、ストップバンド
の一方の共振周波数では温度係数係数が大きく他方では
小さくなる。これらは水晶以外の一般の基板について言
えることである。
Next, when the piezoelectric substrate has a first-order frequency temperature characteristic, the first-order temperature coefficient changes, and at one resonance frequency of the stop band, the temperature coefficient coefficient is large and the other is small. These are true for general substrates other than quartz.

【0019】YカットX伝搬水晶において、ストップバ
ンド上端の共振周波数fUを利用し、カットアングルを
適切に設定することにより頂点温度の調整を行えば、下
端の共振周波数fLを用いる場合よりも所定の温度範囲
内で、周波数変動を小さくすることが出来ると考えられ
る。しかし、上端の共振は、通常の用い方では強勢に励
振することは出来ず、上記文献でも下端の共振の温度特
性が実験値に対応することを述べているだけである。
In the Y-cut X-propagating crystal, if the apex temperature is adjusted by using the resonance frequency f U at the upper end of the stop band and appropriately setting the cut angle, the resonance frequency f L at the lower end is more than when the lower end resonance frequency f L is used. It is considered that the frequency fluctuation can be reduced within a predetermined temperature range. However, the resonance at the upper end cannot be vigorously excited in a normal use, and the above-mentioned literature only states that the temperature characteristic of the resonance at the lower end corresponds to the experimental value.

【0020】本願出願者は、特開平11−214958
号報に開示した反射反転電極構造を提案している。即ち
図13(a)に示すように、幅員W1の第1の電極指1
と、図中右方に間隙g1をおいて幅員W2の第2の電極
指2と、図中右方に間隙g2をおいて幅員W3の第3の
電極指3と、電極指1と3の両側の(g3)/2のスペ
ースから成る単位区間、即ち一波長λ当たり3本の電極
指で構成される単位区間を圧電基板上に繰り返し配列し
たものである。さらに、第1の電極指1の幅員W1と第
3の電極指3の幅員W3とをW1=W3とし、第1の電
極指1と第2の電極指2との間隙g1と、第2の電極指
2と第3の電極指3との間隙g2とをg1=g2とす
る。そして、電極指1と3とを電極指2と逆相にて駆動
する。
[0020] The applicant of the present application has disclosed in Japanese Patent Application Laid-Open No. 11-214958.
The reflection inversion electrode structure disclosed in the bulletin is proposed. That is, as shown in FIG. 13A, the first electrode finger 1 having the width W1
The second electrode finger 2 having a width W2 with a gap g1 to the right in the drawing, the third electrode finger 3 having a width W3 with a gap g2 on the right in the drawing, and the electrode fingers 1 and 3 A unit section composed of (g3) / 2 spaces on both sides, that is, a unit section composed of three electrode fingers per wavelength λ is repeatedly arranged on the piezoelectric substrate. Further, the width W1 of the first electrode finger 1 and the width W3 of the third electrode finger 3 are set to W1 = W3, the gap g1 between the first electrode finger 1 and the second electrode finger 2, and the second The gap g2 between the electrode finger 2 and the third electrode finger 3 is defined as g1 = g2. Then, the electrode fingers 1 and 3 are driven in the opposite phase to the electrode finger 2.

【0021】図13(b)は同図(a)のA−Aにおけ
る断面図であり、くし形電極に高周波電圧を印加してI
DT電極を駆動した場合のある瞬間の表面電位を示した
ものである。このように一波長λ当たり電極指を3本と
したIDT電極の単位区間当たりの反射係数Γ1(反射
ベクトル)を求める。図14(a)に示すようにIDT
電極の任意の1区間、即ち、電極指1〜3の各両端の6
つのエッジ面E1〜E6からの反射ベクトルE1〜E6
(Eiはエッジ面を示すと同時にそのエッジからの反射
ベクトルも示すものとする)を求めてみると、図14
(b)に示すように6つの反射ベクトルE1〜E6が求
まる。この反射ベクトルE1〜E6の合成ベクトルは、
図14(b)に示すように反射ベクトルГ1となる。
FIG. 13B is a cross-sectional view taken along line AA of FIG. 13A.
This shows the surface potential at a certain moment when the DT electrode is driven. Thus, the reflection coefficient Γ1 (reflection vector) per unit section of the IDT electrode having three electrode fingers per one wavelength λ is obtained. As shown in FIG.
Any one section of the electrode, that is, 6 at each end of each of the electrode fingers 1 to 3
Reflection vectors E1 to E6 from the two edge surfaces E1 to E6
(Ei indicates an edge surface and also indicates a reflection vector from the edge).
As shown in (b), six reflection vectors E1 to E6 are obtained. The composite vector of the reflection vectors E1 to E6 is
As shown in FIG. 14B, the reflection vector becomes Г1.

【0022】このように、正規型電極の代わりに反射反
転型電極を用いることで、κ12’の符号を反転させるこ
とが出来る。即ち、正規型のκ12’が正であり、下端の
共振が強勢に励振される基板においては、反射反転電極
を用いることにより上端の共振が強勢に励振される。ま
た、正規型のκ12’が負であり上端の共振が強勢に励振
される基板に置いては、反射反転電極構造を用いること
により下端の共振が強勢に励振されることになる。上述
したYカットX伝搬水晶のように、正規型で励振される
ストップバンド端の一方の共振よりも、他方のストップ
バンド端の共振の方が温度による周波数変動が小さくな
る場合、反射反転電極構造を用いて一方のストップバン
ド端の共振を強勢に励振し、これを共振子として利用す
ればよい。
As described above, by using the reflection inversion type electrode instead of the normal type electrode, the sign of κ 12 ′ can be inverted. That is, in a substrate in which the normal type κ 12 ′ is positive and the resonance at the lower end is strongly excited, the resonance at the upper end is strongly excited by using the reflection inversion electrode. On a substrate where the normal type κ 12 ′ is negative and the resonance at the upper end is strongly excited, the resonance at the lower end is strongly excited by using the reflection inversion electrode structure. As in the case of the above-described Y-cut X-propagation crystal, when the frequency fluctuation due to temperature is smaller at the resonance at the other stop band end than at one resonance at the stop band end excited in the normal type, the reflection inversion electrode structure , The resonance at one end of the stop band is strongly excited, and this may be used as a resonator.

【0023】以上は、圧電基板に水晶基板を用いたSA
W共振子の例を説明してきたが、他の圧電基板、例えば
タンタル酸リチウム、ニオブ酸リチウム、四硼酸リチウ
ム、ランガサイト等にも適用できる。また、共振子型S
AWフィルタでは、ストップバンド端の共振を利用して
SAWフィルタを形成しているため、同じ手法を用いて
温度特性の改善したSAWフィルタを構成することがで
きる。
The above description is based on SA using a quartz substrate as the piezoelectric substrate.
Although the example of the W resonator has been described, the present invention can be applied to other piezoelectric substrates such as lithium tantalate, lithium niobate, lithium tetraborate, and langasite. Also, the resonator type S
In the AW filter, the SAW filter is formed using the resonance at the end of the stop band. Therefore, a SAW filter with improved temperature characteristics can be configured using the same method.

【0024】[0024]

【発明の効果】本発明は以上説明した如く構成したの
で、請求項1記載の発明は弾性表面波デバイスの周波数
温度特性を従来のものより大幅に改善できるという優れ
て効果を奏する。また、請求項2記載の発明は従来は利
用できなかったストップバンド上端の共振を利用可能に
するという優れた効果を奏する。
Since the present invention is constructed as described above, the invention according to claim 1 has an excellent effect that the frequency temperature characteristic of the surface acoustic wave device can be greatly improved as compared with the conventional one. Further, the invention according to claim 2 has an excellent effect of enabling the resonance at the upper end of the stop band which could not be used conventionally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るストップバンド下端の周波数の1
次温度係数を示す図である。
FIG. 1 shows the frequency 1 at the lower end of the stop band according to the present invention.
It is a figure which shows a next temperature coefficient.

【図2】本発明に係るストップバンド下端の周波数の2
次温度係数を示す図である。
FIG. 2 shows the frequency 2 at the lower end of the stop band according to the present invention.
It is a figure which shows a next temperature coefficient.

【図3】κ11、κ12、f0(=Vf/L)のそれぞれの1次
温度係数と膜厚h’との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the primary temperature coefficient of each of κ 11 , κ 12 , and f 0 (= V f / L) and the film thickness h ′.

【図4】κ11、κ12、f0(=Vf/L)のそれぞれの2次
温度係数と膜厚h’との関係を示す図である。
FIG. 4 is a diagram showing the relationship between each of the secondary temperature coefficients of κ 11 , κ 12 , and f 0 (= V f / L) and the film thickness h ′.

【図5】κ11/κ11 (0)、κ12/κ11 (0)及びf0/f0
(0)の温度変化率特性を示す図である。
FIG. 5: κ 11 / κ 11 (0) , κ 12 / κ 11 (0) and f 0 / f 0
FIG. 6 is a diagram showing a temperature change rate characteristic of (0) .

【図6】−κ11/f0 (0)、−κ12/f0 (0)、f0/f0
(0)及びfL/f0 (0)の温度による変動量を表す図であ
る。
FIG. 6: −κ 11 / f 0 (0) , −κ 12 / f 0 (0) , f 0 / f 0
Is a diagram showing the variation with temperature of the (0) and f L / f 0 (0).

【図7】−κ11/f0 (0)、−κ12/f0 (0)、f0/f0
(0)及びfU/f0 (0)の温度による変動量を表す図であ
る。
FIG. 7: −κ 11 / f 0 (0) , −κ 12 / f 0 (0) , f 0 / f 0
It is a diagram showing the variation with temperature of the (0) and f U / f 0 (0).

【図8】従来のSAW共振子の構成を示す平面図であ
る。
FIG. 8 is a plan view showing a configuration of a conventional SAW resonator.

【図9】ストップバンドの下端の周波数が励振されるS
AW共振子のアドミッタンス曲線とストップバンド等と
の関係を示す図である。
FIG. 9: S at which the frequency at the lower end of the stop band is excited
FIG. 4 is a diagram illustrating a relationship between an admittance curve of an AW resonator, a stop band, and the like.

【図10】ストップバンドの上端の周波数が励振される
SAW共振子のアドミッタンス曲線とストップバンド等
との関係を示す図である。
FIG. 10 is a diagram illustrating a relationship between an admittance curve of a SAW resonator in which a frequency at an upper end of a stop band is excited, a stop band, and the like.

【図11】ストップバンド下端及び上端の共振周波数の
頂点温度TpL及びTpUと基準化膜厚h’との関係を示す図
である。
FIG. 11 is a diagram showing the relationship between the peak temperatures TpL and TpU of the resonance frequency at the lower end and upper end of the stop band and the normalized film thickness h ′.

【図12】ストップバンド下端及び上端の共振周波数の
2次温度係数αL及びαUと基準化膜厚h’との関係を示
す図である。
FIG. 12 is a diagram showing a relationship between secondary temperature coefficients α L and α U of resonance frequencies at the lower end and the upper end of a stop band and a standardized film thickness h ′.

【図13】(a)は反射反転電極構造を示す平面図、
(b)はその電極上の表面電位を示した断面図である。
FIG. 13A is a plan view showing a reflection inversion electrode structure,
(B) is a sectional view showing the surface potential on the electrode.

【図14】(a)はIDT電極の1波長に配列した3つ
のIDT電極指の6個のエッジ面を示す断面図、(b)
は前記6個のエッジ面における反射ベクトルE1〜E6
とその合成ベクトルΓ1を示す図である。
FIG. 14A is a cross-sectional view showing six edge surfaces of three IDT electrode fingers arranged at one wavelength of the IDT electrode, and FIG.
Are reflection vectors E1 to E6 on the six edge surfaces.
FIG. 6 is a diagram showing a composite vector Γ1 and a combined vector Γ1.

【符号の説明】[Explanation of symbols]

0・・基準周波数(=Vf/L) f0 (0) ・・零度のおけるf0の値 Vf・・自由表面における表面波の速度 L・・電極周期 κ11・・自己結合係数 κ12・・モード結合係数 κ11 (0)・・零度のおけるのκ11値 κ12 (0)・・零度のおけるのκ12値 a1、a2、b1、b2、c1、c2・・温度係数 fL・・ストップバンド下端の共振周波数 fU・・ストップバンド上端の共振周波数f 0 ··· Reference frequency (= V f / L) f 0 (0) ··· Value of f 0 at zero degree V f · · · Surface wave velocity on free surface L · · Electrode period κ 11 · · · Self-coupling coefficient κ 12・ ・ Mode coupling coefficient κ 11 (0)・ ・ κ 11 value at zero degree κ 12 (0)・ ・ κ 12 value at zero degree a 1 , a 2 , b 1 , b 2 , c 1 , c 2 ··· Temperature coefficient f L · · · Resonance frequency at lower end of stop band f U · · · Resonance frequency at upper end of stop band

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板の主面上に周期的電極を配置し
た共振型弾性表面波デバイスにおいて、前記周期的電極
により形成されるストップバンド両端の共振の中、使用
温度範囲内おける周波数温度偏差が小さくなる共振を選
択的に利用した弾性表面波デバイス。
In a resonance type surface acoustic wave device having a periodic electrode disposed on a main surface of a piezoelectric substrate, a frequency temperature deviation within a use temperature range during resonance at both ends of a stop band formed by the periodic electrode. Surface acoustic wave device that selectively uses resonance that reduces the surface acoustic wave.
【請求項2】 前記周期電極に反射反転型電極を用いた
ことを特徴とする請求項1に記載の弾性表面波デバイ
ス。
2. The surface acoustic wave device according to claim 1, wherein a reflection inversion type electrode is used as the periodic electrode.
JP2000290963A 2000-09-25 2000-09-25 Surface acoustic wave device Withdrawn JP2002100959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290963A JP2002100959A (en) 2000-09-25 2000-09-25 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290963A JP2002100959A (en) 2000-09-25 2000-09-25 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2002100959A true JP2002100959A (en) 2002-04-05

Family

ID=18774114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290963A Withdrawn JP2002100959A (en) 2000-09-25 2000-09-25 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2002100959A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659687A1 (en) 2004-11-22 2006-05-24 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
EP2224591A2 (en) 2009-02-27 2010-09-01 Epson Toyocom Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
WO2010098139A1 (en) 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8016930B2 (en) 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8016931B2 (en) 2007-07-19 2011-09-13 Seiko Epson Corporation Ink set
US8038783B2 (en) 2008-09-10 2011-10-18 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8277552B2 (en) 2009-12-04 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
WO2012137027A1 (en) 2011-04-07 2012-10-11 Gvr Trade Sa Surface acoustic wave resonator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659687A1 (en) 2004-11-22 2006-05-24 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
US8016930B2 (en) 2005-11-16 2011-09-13 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
US8486186B2 (en) 2005-11-16 2013-07-16 Seiko Epson Corporation Magenta ink composition, ink cartridge, and recording system and recorded matter using the same
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
US7696675B2 (en) 2006-02-06 2010-04-13 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
US8016931B2 (en) 2007-07-19 2011-09-13 Seiko Epson Corporation Ink set
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8092583B2 (en) 2008-08-25 2012-01-10 Seiko Epson Corporation Ink set
US8172933B2 (en) 2008-08-25 2012-05-08 Seiko Epson Corporation Ink set
US8038783B2 (en) 2008-09-10 2011-10-18 Seiko Epson Corporation Ink set, recording method, and recording apparatus
US8277551B2 (en) 2009-02-23 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
WO2010098139A1 (en) 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
EP2224591A2 (en) 2009-02-27 2010-09-01 Epson Toyocom Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8277552B2 (en) 2009-12-04 2012-10-02 Seiko Epson Corporation Ink set, recording apparatus, and recording method
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8723393B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723396B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723395B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8723394B2 (en) 2010-09-09 2014-05-13 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
WO2012137027A1 (en) 2011-04-07 2012-10-11 Gvr Trade Sa Surface acoustic wave resonator

Similar Documents

Publication Publication Date Title
JP2002100959A (en) Surface acoustic wave device
JP7178881B2 (en) surface acoustic wave element
JP4148294B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
US20080067891A1 (en) Acoustic wave device and filter
US6933810B2 (en) Surface acoustic wave device with lithium tantalate on a sapphire substrate and filter using the same
JP5648908B2 (en) Vibration device, oscillator, and electronic device
JPH10233645A (en) Surface acoustic wave device
JP2002330051A (en) Surface acoustic wave unit and surface acoustic wave device using the same
JPH09298446A (en) Surface acoustic wave device and its design method
JP2008054163A (en) Lamb-wave type high-frequency resonator
JP2024001367A (en) Converter structure for generation source suppression in saw filter device
JP2002076835A (en) Surface acoustic wave element
JP3255502B2 (en) Highly stable surface acoustic wave device
JP4465464B2 (en) Lamb wave type elastic wave device
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JPH10335966A (en) Surface acoustic wave device
JP2002141768A (en) Surface acoustic wave element
US6847154B2 (en) Surface acoustic wave device and communication device
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2007221840A (en) Surface acoustic device and module device or oscillation circuit using the same
JP2006270360A (en) Surface acoustic wave element
JP3597483B2 (en) Surface acoustic wave device
WO2022168799A1 (en) Elastic wave device
WO2022168796A1 (en) Elastic wave device
JPH10190407A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100106