JP2002100410A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002100410A
JP2002100410A JP2000339498A JP2000339498A JP2002100410A JP 2002100410 A JP2002100410 A JP 2002100410A JP 2000339498 A JP2000339498 A JP 2000339498A JP 2000339498 A JP2000339498 A JP 2000339498A JP 2002100410 A JP2002100410 A JP 2002100410A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
negative electrode
electrolyte secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000339498A
Other languages
Japanese (ja)
Inventor
Minoru Hashimoto
稔 橋本
Takayuki Nakajima
孝之 中島
Koichi Matsumoto
浩一 松本
Shinichi Kamibayashi
信一 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
Toshiba Development and Engineering Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK, Toshiba Electronic Engineering Co Ltd filed Critical A&T Battery Corp
Priority to JP2000339498A priority Critical patent/JP2002100410A/en
Publication of JP2002100410A publication Critical patent/JP2002100410A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery, having high temperature preservation and recovery characteristics which are improved by modifying a negative electrode. SOLUTION: This nonaqueous electrolyte secondary battery is equipped with a positive electrode which can occlude and discharge lithium, the negative electrode which can occlude and discharge lithium, a separator and a nonaqueous electrolyte, and the positive electrode and the negative electrode are structured by applying a positive electrode material and a negative electrode material to collectors respectively. The negative electrode material contains two or more kinds of carbonaceous materials, including spheroidal methophase low temperature baked carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関し、特に負極を改良した非水系電解液二次電池
に係わる。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、VTR、携帯電話、パソコンなど
の各種電子機器、コードレスの携帯型電子機器の小型、
軽量化に伴ない、それら機器用電源の高エネルギー密度
の要求が高まり、負極活物質に金属リチウムを使用した
リチウム二次電池に代表される非水系電解液二次電池が
提案されている。しかしながら、負極活物質として金属
リチウムを用いたリチウム二次電池は、放電時にリチウ
ムイオンとして電解液中に溶解したリチウムが電解液中
の非水溶媒と反応して一部不活性になる。このため、充
放電を繰り返すと負極の表面の凸部にリチウムが電析し
てデンドライト状(樹枝状)に析出し、このデンドライ
ト状リチウムがセパレータを貫通して正極と接すること
により内部短絡を生じる問題があった。
2. Description of the Related Art In recent years, various types of electronic devices such as VTRs, mobile phones, and personal computers, and small-sized cordless portable electronic devices have been developed.
Along with the weight reduction, the demand for a high energy density of the power supply for such devices has been increased, and non-aqueous electrolyte secondary batteries represented by lithium secondary batteries using metallic lithium as a negative electrode active material have been proposed. However, in a lithium secondary battery using metallic lithium as the negative electrode active material, lithium dissolved in the electrolyte as lithium ions at the time of discharge reacts with the nonaqueous solvent in the electrolyte to become partially inactive. Therefore, when charge and discharge are repeated, lithium is electrodeposited on the convex portion on the surface of the negative electrode and precipitates in a dendrite shape (dendritic shape), and this dendrite-like lithium penetrates the separator and comes into contact with the positive electrode, thereby causing an internal short circuit. There was a problem.

【0003】このようなことから、特開昭63−121
260号公報には負極にカーボンを用いた軽量の二次電
池が開示されている。その後、負極活物質としてコーク
ス、グラファイト、樹脂焼成体、熱分解気相炭素等、種
々の炭素質材料を用いる、いわゆるリチウムイオン二次
電池が提案され、実用化されている。
In view of the above, Japanese Patent Application Laid-Open No. 63-121
No. 260 discloses a lightweight secondary battery using carbon for the negative electrode. After that, a so-called lithium ion secondary battery using various carbonaceous materials such as coke, graphite, a resin fired body, and pyrolysis gas phase carbon as a negative electrode active material has been proposed and put into practical use.

【0004】前記リチウムイオン二次電池としては、正
極にLiCoO2、LiNiO2、LiMn2O4等のカル
コゲン化合物を用い、負極に前記炭素質材料を用いたも
のが知られており、前記炭素質材料の素材によって種々
の特徴を有する。例えば、特開平5−89879号公報
のように繊維径の断面方向にラメラ構造を持つ炭素繊維
を負極活物質として含むリチウムイオン二次電池は優れ
た充放電特性を有する。また、黒鉛度の高いグラファイ
トを負極活物質として含むリチウムイオン二次電池は高
い充電エネルギーを有する。
As the lithium ion secondary battery, there is known a lithium ion secondary battery in which a chalcogen compound such as LiCoO2, LiNiO2, and LiMn2 O4 is used for a positive electrode and the carbonaceous material is used for a negative electrode. It has the characteristics of For example, a lithium ion secondary battery containing carbon fibers having a lamellar structure in the cross-sectional direction of the fiber diameter as a negative electrode active material as disclosed in JP-A-5-89879 has excellent charge / discharge characteristics. Further, a lithium ion secondary battery containing graphite having a high degree of graphite as a negative electrode active material has high charging energy.

【0005】前記リチウムイオン二次電池は、金属リチ
ウムを負極として用いた二次電池に比べて安全性が高
く、各種の携帯端末の電源として広く利用されている。
特に、携帯端末用の二次電池の需要が多くなると、多岐
にわたる使用環境やトラブルを想定した特性の維持の要
求が多くなる。例えば、夏場に携帯電話機を自動車内に
放置する等、過酷な環境におかれた場合でも正常に作動
する、充放電特性を有することが要求されている。
The lithium ion secondary battery has higher safety than a secondary battery using metallic lithium as a negative electrode, and is widely used as a power source for various portable terminals.
In particular, when the demand for a secondary battery for a portable terminal increases, there is an increasing demand for maintaining characteristics that assume a wide variety of use environments and troubles. For example, it is required to have a charge / discharge characteristic that can operate normally even in a harsh environment such as leaving a mobile phone in a car in summer.

【0006】[0006]

【発明が解決しようとする課題】従来のリチウムイオン
二次電池では、通常の環境を想定して設計がなされ、特
殊仕様として寒冷地環境を採用することが行われてい
た。しかしながら、従来のリチウム二次電池では前述し
たような過酷な環境での使用に対応することが困難であ
った。
The conventional lithium ion secondary battery was designed on the assumption of a normal environment, and a cold environment was adopted as a special specification. However, it has been difficult for conventional lithium secondary batteries to cope with use in the harsh environment as described above.

【0007】本発明は、負極を改良することによって高
温の充放電サイクル寿命が向上され、さらに高温保存回
復特性を改善した非水系電解液二次電池を提供しようと
するものである。
An object of the present invention is to provide a nonaqueous electrolyte secondary battery in which the high-temperature charge / discharge cycle life is improved by improving the negative electrode, and the high-temperature storage recovery characteristics are further improved.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解液二次電池は、リチウムを吸
蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備え、前記正極お
よび前記負極は、集電体にそれぞれ正極材料および負極
材料を塗布した構造を有し、かつ前記負極材料は、低温
焼成炭素を含む2種以上の炭素質材を含有することを特
徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object has a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator and a non-aqueous electrolyte. An aqueous electrolyte is provided, the positive electrode and the negative electrode have a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively, and the negative electrode material includes two or more types of carbonaceous materials including low-temperature fired carbon. It is characterized by containing.

【0009】本発明に係る別の非水系電解液二次電池
は、リチウムを吸蔵・放出可能な正極、リチウムを吸蔵
・放出可能な負極、セパレータおよび非水系電解液を備
え、前記正極および前記負極は、集電体にそれぞれ正極
材料および負極材料を塗布した構造を有し、かつ前記負
極材料は、球状のメソフェーズ低温焼成炭素を含む2種
以上の炭素質材を含有することを特徴とするものであ
る。
Another non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator and a non-aqueous electrolyte, wherein the positive electrode and the negative electrode are provided. Has a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively, and the negative electrode material contains two or more types of carbonaceous materials including spherical mesophase low-temperature calcined carbon. It is.

【0010】本発明に係るさらに別の非水系電解液二次
電池は、リチウムを吸蔵・放出可能な正極、リチウムを
吸蔵・放出可能な負極、セパレータおよび非水系電解液
を備え、前記正極および前記負極は、集電体にそれぞれ
正極材料および負極材料を塗布した構造を有し、かつ前
記負極材料は、メソフェーズ低温焼成炭素繊維を含む2
種以上の炭素質材を含有することを特徴とするものであ
る。
[0010] Still another non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolytic solution. The negative electrode has a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively, and the negative electrode material includes a mesophase low-temperature fired carbon fiber.
It is characterized by containing more than one kind of carbonaceous material.

【0011】[0011]

【発明の実施の形態】以下、本発明に係わる非水系電解
液二次電池を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail.

【0012】この非水系電解液二次電池は、リチウムを
吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備える。
This non-aqueous electrolyte secondary battery includes a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte.

【0013】次に、前記負極、正極、セパレータおよび
非水系電解液を説明する。
Next, the negative electrode, the positive electrode, the separator and the non-aqueous electrolyte will be described.

【0014】1)負極 この負極は、集電体に負極材料を塗布した構造を有す
る。
1) Negative Electrode This negative electrode has a structure in which a current collector is coated with a negative electrode material.

【0015】前記集電体としては、例えば銅板、銅メッ
シュ材等を挙げることができる。
Examples of the current collector include a copper plate and a copper mesh material.

【0016】前記負極材料は、低温焼成炭素を含む2種
以上の炭素質材と、結着剤を含有する。
The negative electrode material contains two or more carbonaceous materials including low-temperature fired carbon and a binder.

【0017】前記低温焼成炭素は、負極容量の増大に寄
与する。この低温焼成炭素としては、石炭、石油ピッチ
などから得られた揮発性有機物、溶融溶解性有機物、不
融性繊維状有機物、フェノール樹脂、フルフラール樹脂
等を原料として、1000℃以下の温度で焼成されたカ
ーボン材料を挙げることができる。好ましい低温焼成炭
素としては、石油系ピッチから得られ、1000℃以下
(より好ましくは900℃以下)の低温で焼成されるメ
ソフェーズ系低温焼成炭素を用いることができる。この
メソフェーズ系低温焼成炭素としては、例えば球状のメ
ソフェーズ系低温焼成炭素またはメソフェーズ系低温焼
成炭素繊維を挙げることができる。
The low-temperature fired carbon contributes to an increase in the capacity of the negative electrode. As the low-temperature fired carbon, volatile organic matter obtained from coal, petroleum pitch, etc., melt-soluble organic matter, infusible fibrous organic matter, phenol resin, furfural resin and the like are used as raw materials and fired at a temperature of 1000 ° C. or less. Carbon materials. As preferred low-temperature fired carbon, mesophase low-temperature fired carbon obtained from petroleum pitch and fired at a low temperature of 1000 ° C. or less (more preferably 900 ° C. or less) can be used. Examples of the mesophase low-temperature fired carbon include spherical mesophase low-temperature fired carbon or mesophase low-temperature fired carbon fibers.

【0018】前記球状のメソフェーズ低温焼成炭素は、
平均粒径8〜20μm、真密度1.50〜1.75g/
ccであることが好ましい。
The spherical mesophase low-temperature calcined carbon is as follows:
Average particle size 8-20 μm, true density 1.50-1.75 g /
cc is preferred.

【0019】前記メソフェーズ低温焼成炭素繊維は、比
較的低温で焼成することにより得られ、平均繊維径8〜
18μm、平均繊維長8〜20μm、真密度1.50〜
1.75g/ccであることが好ましい。
The mesophase low-temperature fired carbon fiber is obtained by firing at a relatively low temperature, and has an average fiber diameter of 8 to
18 μm, average fiber length 8-20 μm, true density 1.50
It is preferably 1.75 g / cc.

【0020】前記炭素質材は、例えば次のような組成を
有することが好ましい。
The carbonaceous material preferably has, for example, the following composition.

【0021】(1)繊維状炭素質材と低温焼成炭素とを
混合した炭素質材。
(1) A carbonaceous material obtained by mixing a fibrous carbonaceous material and low-temperature fired carbon.

【0022】(2)鱗片状、球状、球塊状または疑球状
の黒鉛と低温焼成炭素を混合した炭素質材。
(2) A carbonaceous material obtained by mixing flaky, spherical, spherical or spheroidal graphite and low-temperature calcined carbon.

【0023】(3)繊維状炭素材と低温焼成炭素と鱗片
状、球状、球塊状または擬球状の黒鉛とを混合した炭素
質材。
(3) A carbonaceous material obtained by mixing a fibrous carbon material, low-temperature fired carbon, and flaky, spherical, spherical or pseudo-spherical graphite.

【0024】前記繊維状炭素質材は、1000℃以上
(好ましくは2500℃以上)の高温で焼成された炭素
質材であり、放電サイクル特性の向上に寄与する。繊維
状炭素質材としては、例えばメソフェーズピッチ系カー
ボン繊維、PAN系炭素繊維、またはフェノール樹脂、
ポリイミドからなる繊維状をなす炭素質材、繊維状の気
相成長炭素体等を挙げることができる。特に、メソフェ
ーズピッチ系カーボン繊維が好ましい。
The fibrous carbonaceous material is a carbonaceous material fired at a high temperature of 1000 ° C. or higher (preferably 2500 ° C. or higher) and contributes to improvement of discharge cycle characteristics. Examples of the fibrous carbonaceous material include mesophase pitch-based carbon fiber, PAN-based carbon fiber, or phenol resin,
Examples thereof include a fibrous carbonaceous material made of polyimide and a fibrous vapor-grown carbon body. Particularly, mesophase pitch-based carbon fibers are preferable.

【0025】前記繊維状炭素質材は、平均繊維径8〜1
8μm、平均繊維長10〜50μm、真密度2.22g
/cc以上、面間隔(d002)0.3356〜0.33
68nm(より好ましくは0.3354〜0.335
9)、c軸方向の結晶子の大きさ(Lc)が40nm以
上であることが望ましい。特に、平均繊維長を10μm
未満にすると、繊維としての性質が低下して、むしろ微
粉末状態になって充放電効率が低下する恐れがある。一
方、平均繊維長が50μmを超えると、集電体に対する
負極材料の密着性の低下、負極の欠けのような負極物性
が低下する恐れがある。また、前記繊維状炭素質材はa
軸方向の結晶子の大きさ(La)が40nm以上で、C
u−KαによるX線回折法での(101)回折ピークP
101と(100)回折ピークP100の強度比(P101/P
100)が1.0〜2.2であることが好ましい。
The fibrous carbonaceous material has an average fiber diameter of 8 to 1
8 μm, average fiber length 10-50 μm, true density 2.22 g
/ Cc or more, spacing (d 002 ) 0.3356-0.33
68 nm (more preferably 0.3354 to 0.335
9) It is desirable that the crystallite size (Lc) in the c-axis direction is 40 nm or more. In particular, the average fiber length is 10 μm
If it is less than the above, there is a possibility that the properties as a fiber are lowered, and rather, the powder becomes a fine powder state and the charge / discharge efficiency is lowered. On the other hand, if the average fiber length exceeds 50 μm, the physical properties of the negative electrode, such as a decrease in the adhesion of the negative electrode material to the current collector and the chipping of the negative electrode, may be reduced. The fibrous carbonaceous material is a
When the size (La) of the crystallite in the axial direction is 40 nm or more,
(101) diffraction peak P in X-ray diffraction method by u-Kα
The intensity ratio between the 101 and (100) diffraction peaks P 100 (P 101 / P
100 ) is preferably from 1.0 to 2.2.

【0026】前記繊維状炭素質材は、ホウ素添加により
黒鉛結晶の面間隔(d002)を拡大する、つまり黒鉛化
度を高めることを許容する。
The fibrous carbonaceous material allows boron to increase the interplanar spacing (d 002 ) of graphite crystals, that is, to increase the degree of graphitization.

【0027】前記鱗片状または球塊状の黒鉛は天然系、
人造系は問わなく、繊維状炭素質材間の結着剤を高め
て、前記負極材料の密度の向上に寄与する。この黒鉛
は、平均粒径2〜50μm、比表面積2〜20m2
g、真密度2.23〜2.28g/cc、面間隔(d
002)0.354〜0.3358nmであることが好ま
しい。特に、前記黒鉛の平均粒径を2μm未満にする
と、比表面積、吸油量が大きくなって負極材料を集電体
に塗布する際の固形分比率が低下すると共に、負極の不
可逆容量が大きくなる恐れがある。一方、前記黒鉛の平
均粒径が50μmを超えると、集電体に対する負極材料
の密着性が低下する等の物性劣化とプレス成形に際して
必要とする圧下線圧が増大する恐れがある。
The flaky or spherical graphite is a natural type,
Regardless of the artificial system, the binder between the fibrous carbonaceous materials is increased to contribute to the improvement of the density of the negative electrode material. This graphite has an average particle size of 2 to 50 μm and a specific surface area of 2 to 20 m 2 /
g, true density 2.23 to 2.28 g / cc, face spacing (d
002 ) It is preferably from 0.354 to 0.3358 nm. In particular, when the average particle size of the graphite is less than 2 μm, the specific surface area and the oil absorption increase, the solid content ratio when the negative electrode material is applied to the current collector decreases, and the irreversible capacity of the negative electrode may increase. There is. On the other hand, when the average particle size of the graphite exceeds 50 μm, there is a possibility that physical properties such as a decrease in the adhesion of the negative electrode material to the current collector and the reduction linear pressure required in press molding may increase.

【0028】前記(1),(2)、(3)の炭素質材に
おいて、前記低温焼成炭素は1〜10重量%の割合で含
有されることが好ましい。前記低温焼成炭素の含有割合
を1重量%未満にすると、高温保存回復特性を改善する
ことが困難になる虞がある。一方、前記低温焼成炭素の
含有割合が10重量%を超えると負極の不可逆容量が大
きくなって二次電池の容量が低下する虞がある。
In the carbonaceous materials (1), (2) and (3), the low-temperature fired carbon is preferably contained in a ratio of 1 to 10% by weight. If the content of the low-temperature fired carbon is less than 1% by weight, it may be difficult to improve the high-temperature storage recovery characteristics. On the other hand, if the content ratio of the low-temperature fired carbon exceeds 10% by weight, the irreversible capacity of the negative electrode increases, and the capacity of the secondary battery may decrease.

【0029】前記(3)の炭素質材において、前記鱗片
状、球塊状または擬球状の黒鉛は、10〜60重量%の
割合で含有されることが好ましい。この黒鉛の含有割合
を10重量%未満にすると、この黒鉛の配合による効
果、つまり繊維状炭素質材間の結着剤を高めて、前記負
極材料の密度の向上させる効果を十分に図ることが困難
になる。一方、前記黒鉛の含有割合が60重量%を超え
るとこの黒鉛を含む負極塗料スラリーを調製した際に固
形分比率が低下する虞がある。
In the carbonaceous material of (3), it is preferable that the flaky, spherical or pseudospherical graphite is contained in a ratio of 10 to 60% by weight. When the content of the graphite is less than 10% by weight, the effect of the blending of the graphite, that is, the effect of increasing the binder between the fibrous carbonaceous materials and improving the density of the negative electrode material can be sufficiently achieved. It becomes difficult. On the other hand, if the content ratio of the graphite exceeds 60% by weight, the solid content ratio may decrease when a negative electrode coating slurry containing the graphite is prepared.

【0030】前記結着剤は、PVdFに代表される有機
溶媒に溶解性を持つ高分子材料、CMC、SBRに代表
される水に分散し易い高分子材料等を用いることができ
るが、これらの高分子材料は一例に過ぎず特に制約を受
けない。ただし、今後の環境の点も考慮すると水に分散
し易い高分子材料が好ましい。
As the binder, a polymer material having solubility in an organic solvent represented by PVdF, a polymer material easily dispersed in water represented by CMC and SBR, and the like can be used. The polymer material is merely an example and is not particularly limited. However, in consideration of the environment in the future, a polymer material that is easily dispersed in water is preferable.

【0031】前記結着剤は、負極材料に対して1.0〜
6.0重量%配合されることが好ましい。結着剤利配合
量を1.0重量%未満にすると、容量向上等の電極性能
の点で好ましいものの、集電体に対する負極材料の密着
性が低下して負極の加工時(特に裁断時)において欠け
や剥離を生じ、また例えば正負極間にセパレータを介在
した帯状物を捲回して電極群を作製する際にその電極群
に微細な欠損物が混入して正負極の短絡等を招く虞があ
る。一方、前記結着剤の配合量が6.0重量%を超える
と、負極中に占める結着剤量が増大して容量の低下を招
く。
The binder is used in an amount of 1.0 to 1.0 with respect to the negative electrode material.
It is preferred to be blended at 6.0% by weight. When the amount of the binder is less than 1.0% by weight, although it is preferable in terms of electrode performance such as capacity improvement, the adhesiveness of the negative electrode material to the current collector is reduced and the negative electrode is processed (particularly during cutting). Chipping or peeling, and, for example, when winding a belt-like material having a separator interposed between the positive and negative electrodes to produce an electrode group, minute defects may be mixed into the electrode group to cause a short circuit between the positive and negative electrodes. There is. On the other hand, when the compounding amount of the binder exceeds 6.0% by weight, the amount of the binder occupying in the negative electrode increases and the capacity is reduced.

【0032】2)正極 この正極は、集電体に正極材料を塗布した構造を有す
る。
2) Positive electrode This positive electrode has a structure in which a positive electrode material is applied to a current collector.

【0033】前記集電体としては、例えばアルミニウム
板、アルミニウムメッシュ材等を挙げることができる。
Examples of the current collector include an aluminum plate and an aluminum mesh material.

【0034】前記正極材料は、例えば活物質と結着剤と
を含有する。前記活物質としては、例えば二酸化マンガ
ン、二硫化モリブデン、LiCoO2、LiNiO2、L
iMn24等のカルコゲン化合物を挙げることができ
る。これらのカルコゲン化合物は、1種または2種以上
の混合物で用いることができる。
The positive electrode material contains, for example, an active material and a binder. Examples of the active material include manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , L
Chalcogen compounds such as iMn 2 O 4 can be mentioned. These chalcogen compounds can be used alone or in a mixture of two or more.

【0035】前記結着剤としては、例えばフッ素系樹
脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系
樹脂のような熱可塑性エラストマー系樹脂、またはフッ
素ゴムのようなゴム系樹脂を用いることができる。具体
的には、ポリテトラフルオロエチレン、ポリフッ化ビニ
リデン、ポリフッ化ビニル、ポリエチレン、ポリアクリ
ロニトリル、ニトリルゴム、ポリブタジエン、ブチルゴ
ム、ポリスチレン、スチレン−ブタジエンゴム、水添ス
チレン−ブタジエンゴム、多硫化ゴム、ニトロセルロー
ス、シアノエチルセルロース、カルボキシメチルセルロ
ース等が挙げられる。これらの結着剤の中でエラストマ
ー、ゴム架橋体または極性基を導入した変成体は、前記
集電体と前記正極材料との密着性の向上および過充電時
における抵抗増大効果の向上の観点から好適である。
As the binder, for example, a thermoplastic elastomer resin such as a fluorine resin, a polyolefin resin, a styrene resin, an acrylic resin, or a rubber resin such as a fluorine rubber can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber, nitrocellulose , Cyanoethylcellulose, carboxymethylcellulose and the like. Among these binders, elastomers, cross-linked rubbers or modified compounds having polar groups introduced are preferably used in view of improving the adhesion between the current collector and the positive electrode material and improving the resistance increasing effect during overcharge. It is suitable.

【0036】前記正極材料には、導電補助材としてアセ
チレンブラック、粉末状膨張黒鉛などのグラファイト
類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさら
に含有することを許容する。
The cathode material is allowed to further contain, as a conductive auxiliary material, acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

【0037】3)セパレータ このセパレータとしては、例えば10〜30μmの厚さ
を有するポリエチレン多孔質フィルム、ポリプロピレン
多孔質フィルム等を用いることができる。
3) Separator As the separator, for example, a porous polyethylene film or a porous polypropylene film having a thickness of 10 to 30 μm can be used.

【0038】4)非水系電解液 この非水系電解液は、例えばエチレンカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、ジエ
チルカーボネート、γ−ブチロラクトンから選ばれる少
なくとも1種からなる非水溶媒に、過塩素酸リチウム
(LiClO4)、六フッ化リン酸リチウム(LiP
6)、ホウフッ化リチウム(LiBF4)、六フッ化砒
素リチウム(LiAsF6)を溶解した組成のもの等を
用いることができる。
4) Non-aqueous Electrolyte This non-aqueous electrolyte is prepared, for example, by adding lithium perchlorate to a non-aqueous solvent comprising at least one selected from ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and γ-butyrolactone. (LiClO 4 ), lithium hexafluorophosphate (LiP
F 6), lithium borofluoride (LiBF 4), or the like can be used as the composition prepared by dissolving lithium hexafluoroarsenate (LiAsF 6).

【0039】前記非水溶媒は、液体粘性との関係から単
独で使用するよりも2〜3種類を混合して使用すること
が好ましく、この非水溶媒に溶解する電解質の濃度は
0.5〜1.5モル/Lの範囲にすることが好ましい。
特に、中間にアルミニウム箔を介在させたラミネートフ
ィルムからなる外装フィルムを用いる薄型非水系電解液
二次電池では、前記非水溶媒中にはγ−ブチロラクトン
が10〜80重量%(より好ましくは45〜70重量
%)含有することが望ましい。
The non-aqueous solvent is preferably used in combination of two or three types rather than used alone in view of the viscosity of the liquid. The concentration of the electrolyte dissolved in this non-aqueous solvent is 0.5 to 0.5. It is preferred to be in the range of 1.5 mol / L.
In particular, in a thin non-aqueous electrolyte secondary battery using an exterior film made of a laminate film with an aluminum foil interposed therebetween, γ-butyrolactone is contained in the non-aqueous solvent in an amount of 10 to 80% by weight (more preferably 45 to 50% by weight). 70% by weight).

【0040】前記電解質は、単独でも混合物の形態でも
使用することができる。
The above-mentioned electrolytes can be used alone or in the form of a mixture.

【0041】本発明に係る非水系電解液二次電池として
は、次に説明する図1に示す円筒型、図2に示す角型、
図3,図4に示す薄型の構造のものが挙げられる。
The non-aqueous electrolyte secondary battery according to the present invention includes a cylindrical type shown in FIG. 1 and a rectangular type shown in FIG.
3 and 4 have a thin structure.

【0042】(1)円筒型非水系電解液二次電池 図1に示すように有底円筒状をなす金属製外装缶1は、
例えば負極端子を兼ね、底部内面に下部絶縁板2が配置
されている。発電要素である電極体3は、前記外装缶1
内に収納されている。前記電極体3は、負極4とセパレ
ータ5と正極6とを前記セパレータ5が最外周に位置す
るように渦巻き状に捲回することにより作製したもので
ある。前記負極4の下端面には、負極リードタブ7が接
続され、かつこのリードタブ7の他端は前記外装缶1の
底部内面に接続されている。中心付近に正極リードタブ
取出穴を有する上部絶縁板8は、前記外装缶1内の前記
電極体3上に配置されている。
(1) Cylindrical Nonaqueous Electrolyte Secondary Battery As shown in FIG. 1, a metal outer can 1 having a bottomed cylindrical shape is
For example, the lower insulating plate 2 is disposed on the inner surface of the bottom portion also serving as a negative electrode terminal. The electrode body 3 as a power generating element is provided with the outer can 1
Is housed inside. The electrode body 3 is manufactured by spirally winding the negative electrode 4, the separator 5, and the positive electrode 6 such that the separator 5 is located at the outermost periphery. A negative electrode lead tab 7 is connected to a lower end surface of the negative electrode 4, and the other end of the lead tab 7 is connected to a bottom inner surface of the outer can 1. An upper insulating plate 8 having a positive electrode lead tab extraction hole near the center is disposed on the electrode body 3 in the outer can 1.

【0043】茫漠気孔を有する封口部材9は、正極端子
を兼ね、前記外装缶1の上端開口部に絶縁ガスケット1
0を介してかしめ固定されている。この封口部材9は、
中央付近にガス抜き穴11が開口された皿形封口板12
と、この封口板12に前記ガス抜き穴11を覆うように
固定された例えばアルミニウムからなる弁膜ラブチャ1
3と、前記封口板12の周縁に配置されたリング状のP
TC(Positive temperature Coefficient)14と、複
数のガス抜き孔15が開口された帽子形の正極端子16
とから構成されている。前記封口板12の下面には、正
極リードタブ17が接続され、かつこのリードタブ17
の他端は前記上部絶縁板8のリード取出穴を通して前記
電極3の正極6に接続されている。
A sealing member 9 having a stunning pore also serves as a positive electrode terminal, and an insulating gasket 1 is provided at an upper end opening of the outer can 1.
It is swaged and fixed through 0. This sealing member 9
Dish-shaped sealing plate 12 with vent hole 11 opened near the center
And a valve membrane latch 1 made of, for example, aluminum fixed to the sealing plate 12 so as to cover the gas vent hole 11.
3 and a ring-shaped P disposed on the periphery of the sealing plate 12.
TC (Positive Temperature Coefficient) 14 and hat-shaped positive electrode terminal 16 having a plurality of vent holes 15
It is composed of A positive electrode lead tab 17 is connected to the lower surface of the sealing plate 12 and
Is connected to the positive electrode 6 of the electrode 3 through a lead extraction hole of the upper insulating plate 8.

【0044】(2)角型非水系電解液二次電池 図2に示す有底矩形筒状をなす金属、例えばアルミニウ
ムから作られる外装缶21は、例えば正極端子を兼ね、
底部内面に絶縁フィルム22が配置されている。発電要
素である電極体23は、前記外装缶21内に収納されて
いる。なお、外装缶がステンレスまたは鉄からなる場合
には負極端子を兼ねる。前記電極体23は、負極24と
セパレータ25と正極26とを前記正極26が最外周に
位置するように渦巻状に捲回した後、扁平状にプレス成
形することにより作製したものである。中心付近にリー
ド取出穴を有する例えば合成樹脂からなるスペーサ27
は、前記外装缶21内の前記電極体23上に配置されて
いる。
(2) Prismatic Nonaqueous Electrolyte Secondary Battery An outer can 21 made of metal having a bottomed rectangular cylindrical shape, for example, aluminum as shown in FIG. 2 also serves as a positive electrode terminal, for example.
An insulating film 22 is disposed on the inner surface of the bottom. The electrode body 23 as a power generation element is housed in the outer can 21. When the outer can is made of stainless steel or iron, it also serves as the negative electrode terminal. The electrode body 23 is formed by spirally winding the negative electrode 24, the separator 25, and the positive electrode 26 such that the positive electrode 26 is located at the outermost periphery, and then press-molding the flat electrode into a flat shape. Spacer 27 made of, for example, synthetic resin and having a lead extraction hole near the center
Is disposed on the electrode body 23 in the outer can 21.

【0045】金属製蓋体28は、前記外装缶1の上端開
口部に例えばレーザ溶接により気密に接合されている。
前記蓋体28の中心付近には、負極端子の取出穴29が
開口されている。負極端子30は、前記蓋体28の穴2
9にガラス製または樹脂製の絶縁材31を介してハーメ
ティックシールされている。前記負極端子30の下端面
には、リード32が接続され、かつこのリード32の他
端は前記電極体23の負極24に接続されている。
The metal lid 28 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding.
In the vicinity of the center of the lid 28, an extraction hole 29 for a negative electrode terminal is opened. The negative electrode terminal 30 is connected to the hole 2 of the lid 28.
9 is hermetically sealed via an insulating material 31 made of glass or resin. A lead 32 is connected to the lower end surface of the negative electrode terminal 30, and the other end of the lead 32 is connected to the negative electrode 24 of the electrode body 23.

【0046】上部側絶縁紙33は、前記蓋体28の外表
面全体に被覆されている。スリット34を有する下部側
絶縁紙35は、前記外装缶21の底面に配置されてい
る。二つ折りされたPTC素子(Positive Temperatur
e Coefficient)36は、一方の面が前記外装缶21の
底面と前記下部側絶縁紙35の間に介装され、かつ他方
の面が前記スリット34を通して前記絶縁紙35の外側
に延出されている。外装チューブ37は、前記外装缶2
1の側面から上下面の絶縁紙33、35の周辺まで延出
するように配置され、前記上部側絶縁紙33および下部
側絶縁紙35を前記外装缶21に固定している。このよ
うな外装チューブ37の配置により、外部に延出された
前記PTC素子36の他方の面が前記下部側絶縁紙35
の底面に向けて折り曲げられる。
The upper insulating paper 33 covers the entire outer surface of the lid 28. The lower insulating paper 35 having the slit 34 is disposed on the bottom surface of the outer can 21. PTC element (Positive Temperatur)
e Coefficient) 36, one surface is interposed between the bottom surface of the outer can 21 and the lower insulating paper 35, and the other surface is extended outside the insulating paper 35 through the slit 34. I have. The outer tube 37 is made of the outer can 2.
The upper insulating paper 33 and the lower insulating paper 35 are fixed to the outer can 21 so as to extend from the side surface 1 to the periphery of the insulating papers 33 and 35 on the upper and lower surfaces. Due to such an arrangement of the outer tube 37, the other surface of the PTC element 36 extended to the outside is connected to the lower insulating paper 35.
It is bent toward the bottom of.

【0047】(3)薄型非水系電解液二次電池 図3,図4に示すように発電要素41は、例えば活物質
および結着剤を含む正極材料である正極活物質層42が
集電体43の両面に担持された正極44とセパレータ4
5と活物質および結着剤を含む負極材料である負極活物
質層46が集電体47の両面に担持された負極48とセ
パレータ45とを渦巻状に捲回し、さらに成形した扁平
で矩形状をなす。前記正極44,負極48に接続された
外部リード端子49,50は、それぞれ前記発電要素4
1の同一側面から外部に延出されている。
(3) Thin Non-Aqueous Electrolyte Secondary Battery As shown in FIGS. 3 and 4, the power generating element 41 is formed by a positive electrode active material layer 42 which is a positive electrode material containing, for example, an active material and a binder. The positive electrode 44 and the separator 4 supported on both surfaces of the negative electrode 43
5, a negative electrode active material layer 46, which is a negative electrode material containing an active material and a binder, spirally winds a negative electrode 48 supported on both surfaces of a current collector 47 and a separator 45, and further forms a flat and rectangular shape. Make External lead terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 are connected to the power generating element 4 respectively.
1 extend outside from the same side.

【0048】前記発電要素41は、図3に示すように例
えば2つ折りのカップ型外装フィルム51のカップ52
内にその折曲げ部が前記発電要素41の前記外部リード
端子49,50が延出された側面と反対側の側面側に位
置するように包み込まれている。この外装フィルム51
は、図4に示すように内面側に位置するシーラントフィ
ルム53、アルミニウムまたはアルミニウム合金の箔5
4および剛性を有する有機樹脂フィルム55をこの順序
で積層した構造を有する。前記外装フィルム51におけ
る前記折り曲げ部を除く前記発電要素1の2つの長側面
および1つの短側面に対応する3つの側部は、前記シー
ラントフィルム53同士を熱シールして水平方向に延出
したシール部56a,56b,56cが形成され、これ
らのシール部56a,56b,56cにより前記発電要素
41を封口している。前記発電要素41の正極44、負
極48に接続された外部端子49,50は、前記折り曲
げ部と反対側のシール部56bを通して外部に延出され
ている。前記発電要素41内部および前記シール部56
a,56b,56cで封口された前記外装フィルム51内
には、非水系電解液が含浸・収容されている。
As shown in FIG. 3, the power generating element 41 includes a cup 52 of a two-fold cup-shaped exterior film 51, for example.
The bent portion is enclosed so as to be located on the side surface opposite to the side surface on which the external lead terminals 49 and 50 of the power generation element 41 extend. This exterior film 51
Is a sealant film 53 located on the inner side as shown in FIG.
4 and a rigid organic resin film 55 laminated in this order. Three side portions corresponding to two long side surfaces and one short side surface of the power generation element 1 excluding the bent portion in the exterior film 51 are seals extending in the horizontal direction by heat sealing the sealant films 53 to each other. Parts 56a, 56b, 56c are formed, and the power generating element 41 is sealed by these seal parts 56a, 56b, 56c. External terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 of the power generation element 41 extend to the outside through a seal portion 56b on the opposite side to the bent portion. Inside the power generating element 41 and the seal portion 56
A non-aqueous electrolytic solution is impregnated and contained in the exterior film 51 sealed by a, 56b, and 56c.

【0049】なお、前記薄型非水系電解液二次電池にお
いて外装フィルムはカップ型に限らず、ピロー型、パウ
チ型にしてもよい。
In the thin non-aqueous electrolyte secondary battery, the outer film is not limited to the cup type, but may be a pillow type or a pouch type.

【0050】以上説明したように本発明に係る非水系電
解液二次電池は、リチウムを吸蔵・放出可能な正極、リ
チウムを吸蔵・放出可能な負極、セパレータおよび非水
系電解液を備え、前記正極および前記負極が集電体にそ
れぞれ正極材料および負極材料を塗布した構造を有し、
かつ前記負極材料が低温焼成炭素を含む2種以上の炭素
質材を含有した構造を有する。
As described above, the non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. And the negative electrode has a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively.
In addition, the negative electrode material has a structure containing two or more carbonaceous materials including low-temperature fired carbon.

【0051】このような低温焼成炭素を含む2種以上の
炭素質材を含有した負極材料を集電体に塗布した改良さ
れた負極を備えることによって、高温充放電サイクル特
性が向上され、かつ高温保存回復特性を改善した非水電
解二次電池を得ることができる。
By providing an improved negative electrode in which a current collector is coated with a negative electrode material containing two or more kinds of carbonaceous materials including such low-temperature fired carbon, high-temperature charge / discharge cycle characteristics are improved, and A non-aqueous electrolytic secondary battery with improved storage recovery characteristics can be obtained.

【0052】特に、前記低温焼成炭素として、例えば石
油系ピッチから得られ、平均粒径8〜20μm、真密度
1.50〜1.75g/ccの球状のメソフェーズ系低
温焼成炭素、または平均繊維径8〜18μm、平均繊維
長8〜20μm、真密度1.50〜1.75g/ccの
メソフェーズ低温焼成炭素繊維を用いることによって、
より高温保存回復特性を改善した非水系電解液二次電池
を得ることができる。
In particular, as the low-temperature fired carbon, a spherical mesophase low-temperature fired carbon obtained from, for example, petroleum pitch and having an average particle diameter of 8 to 20 μm and a true density of 1.50 to 1.75 g / cc, or an average fiber diameter By using mesophase low-temperature-fired carbon fibers having an average fiber length of 8 to 18 μm, an average fiber length of 8 to 20 μm, and a true density of 1.50 to 1.75 g / cc,
A non-aqueous electrolyte secondary battery with improved high-temperature storage recovery characteristics can be obtained.

【0053】また、前記低温焼成炭素以外の炭素質材と
して繊維状炭素材(好ましくは平均繊維径8〜18μ
m、平均繊維長10〜50μm、真密度2.22g/c
c以上、面間隔(d002)0.3356〜0.3368
nm、c軸方向の結晶子の大きさ(Lc)が40nm以
上である繊維状炭素質材)を用いることによって、高温
保存回復特性を改善され、かつ充放電サイクル寿命を向
上した非水電解二次電池を得ることができる。
As a carbonaceous material other than the low-temperature fired carbon, a fibrous carbon material (preferably having an average fiber diameter of 8 to 18 μm) is used.
m, average fiber length 10 to 50 μm, true density 2.22 g / c
c or more, surface interval (d 002 ) 0.3356 to 0.3368
The use of a fibrous carbonaceous material having a crystallite size (Lc) of at least 40 nm in the nm and c-axis directions) improves the high-temperature storage recovery characteristics and improves the charge / discharge cycle life. The following battery can be obtained.

【0054】さらに、前記低温焼成炭素以外の炭素質材
として繊維状炭素材(好ましくは平均繊維径8〜18μ
m、平均繊維長10〜50μm、真密度2.22g/c
c以上、面間隔(d002)0.3356〜0.3368
nm、c軸方向の結晶子の大きさ(Lc)が40nm以
上である繊維状炭素質材)と鱗片状、球状、球塊状また
は擬球状の黒鉛(好ましくは平均粒径2〜50μm、比
表面積2〜20m2/g、真密度2.23〜2.28g
/cc、面間隔(d002)0.3354〜0.3358
nmである黒鉛)との2種を用いることによって、より
高温保存回復特性を改善され、かつ充放電サイクル寿命
を向上した非水電解二次電池を得ることができる。
Further, as a carbonaceous material other than the low-temperature fired carbon, a fibrous carbon material (preferably having an average fiber diameter of 8 to 18 μm) is used.
m, average fiber length 10 to 50 μm, true density 2.22 g / c
c or more, surface interval (d 002 ) 0.3356 to 0.3368
fibrous carbonaceous material having a crystallite size (Lc) of 40 nm or more in the nm and c-axis directions) and scaly, spherical, spherical or massive graphite (preferably having an average particle size of 2 to 50 μm, specific surface area) 2 to 20 m 2 / g, true density 2.23 to 2.28 g
/ Cc, spacing (d 002 ) 0.3354-0.3358
By using the two types of graphite described above, it is possible to obtain a nonaqueous electrolytic secondary battery having improved high-temperature storage / recovery characteristics and improved charge / discharge cycle life.

【0055】[0055]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0056】「メソフェーズ低温焼成炭素繊維」黒鉛化
温度830℃で焼成した平均繊維径13.8μm、平均
繊維長17μm、真密度1.55g/ccのメソフェー
ズ低温焼成炭素繊維を用意した。
"Mesophase Low-Temperature Carbon Fiber" A mesophase low-temperature-fired carbon fiber having an average fiber diameter of 13.8 μm, an average fiber length of 17 μm, and a true density of 1.55 g / cc, which was fired at a graphitization temperature of 830 ° C., was prepared.

【0057】「フルフラール樹脂からの低温焼成炭素
(擬球状低温焼成体)」焼成温度840℃で焼成した平
均粒径10μm、真密度1.60g/ccの低温焼成炭
素材を準備した。
"Low-temperature fired carbon from furfural resin (pseudo spherical low-temperature fired body)" A low-temperature fired carbon material fired at a firing temperature of 840 ° C and having an average particle diameter of 10 µm and a true density of 1.60 g / cc was prepared.

【0058】「球状メソフェーズ低温焼成炭素」黒鉛化
温度850℃で焼成した平均粒径17μm、真密度1.
63g/ccの球状メソフェーズ低温焼成炭素を用意し
た。
"Spherical mesophase low-temperature calcined carbon" calcined at a graphitization temperature of 850 ° C, average particle diameter 17 µm, true density 1.
63 g / cc spherical mesophase low-temperature calcined carbon was prepared.

【0059】「繊維状炭素質材の作製」メソフェーズピ
ッチを紡糸、不融化し、アルゴン雰囲気下、680℃で
炭化し、適度に粉砕した後、窒素雰囲気下で3000℃
にて黒鉛化することにより繊維状炭素質材を得た。
[Preparation of fibrous carbonaceous material] A mesophase pitch was spun, made infusible, carbonized at 680 ° C in an argon atmosphere, pulverized appropriately, and then 3,000 ° C in a nitrogen atmosphere.
To obtain a fibrous carbonaceous material.

【0060】得られた繊維状炭素質材は、c軸方向の結
晶子(Lc)の大きさ60nm、平均繊維径8.5μ
m、平均繊維長18.5μm、真密度2.24g/c
c、面間隔(d002)0.3359nm、Cu−Kαに
よるX線回折法での(101)回折ピークP101と(1
00)回折ピークP100の強度比(P101/P100)が
1.45であった。
The obtained fibrous carbonaceous material had a crystallite (Lc) size of 60 nm in the c-axis direction and an average fiber diameter of 8.5 μm.
m, average fiber length 18.5 μm, true density 2.24 g / c
c, spacing (d 002 ) of 0.3359 nm, (101) diffraction peak P 101 and (1) by X-ray diffraction method using Cu-Kα
00) The intensity ratio (P 101 / P 100 ) of the diffraction peak P 100 was 1.45.

【0061】「黒鉛の作製」天然系黒鉛を球塊状に解扮
した黒鉛を用意した。この黒鉛は、平均粒径8.5μ
m、比表面積6.7m2/g、面間隔(d002)0.33
58nmであった。
[Preparation of Graphite] Graphite prepared by dressing natural graphite in a spherical shape was prepared. This graphite has an average particle size of 8.5μ.
m, specific surface area 6.7 m 2 / g, spacing (d 002 ) 0.33
It was 58 nm.

【0062】(実施例1) <正極の作製>まず、12重量%濃度のポリフッ化ビニ
リデン樹脂(PVdF)のN−メチルピロリドン溶液4
1.7重量部に活物質としてのLiCoO2粉末100
重量部、導電フィラーとしてのグラファイト粉末(ロン
ザ社製商品名;KS4)5重量部を混合し、混練した。
つづいて、この混合物にN−メチルピロリドン15重量
部をさらに添加し、ビーズミルを用いて前記固形物を分
散させて正極塗工スラリーを調製した。
Example 1 <Preparation of Positive Electrode> First, a 12% by weight solution of polyvinylidene fluoride resin (PVdF) in N-methylpyrrolidone 4
1.7 parts by weight of LiCoO 2 powder 100 as an active material
5 parts by weight of graphite powder (trade name: KS4, manufactured by Lonza) as a conductive filler was mixed and kneaded.
Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to the mixture, and the solid was dispersed using a bead mill to prepare a positive electrode coating slurry.

【0063】次いで、前記正極塗工スラリーを厚さ15
μmのアルミニウム箔(集電体)の両面にそれそれ25
5g/m2になるように塗工し、乾燥した後、プレス、
スリット加工を施すことにより厚さ167μm、幅4
2.00mmの帯状正極を作製した。
Next, the positive electrode coating slurry was applied to a thickness of 15
25 μm on both sides of aluminum foil (current collector)
After coating to 5 g / m 2 and drying, press
167μm thickness, 4 width by slit processing
A band-shaped positive electrode of 2.00 mm was produced.

【0064】<負極の作製>カルボキシメチルセルロー
スの0.68重量%濃度の粘調水溶液177重量部に前
記繊維状炭素質材89重量部、前記メソフェーズ低温焼
成炭素繊維1重量部を添加した後、せん断分散した。つ
づいて、この混合物にSBRラテックス3.4重量部を
添加し、均一の混合攪拌して負極塗工スラリーを調製し
た。
<Preparation of Negative Electrode> 89 parts by weight of the fibrous carbonaceous material and 1 part by weight of the mesophase low-temperature calcined carbon fiber were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and then shearing was performed. Dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0065】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面に1
03g/m2になるように塗工し、乾燥した。この時の
銅箔上の負極材料の密度は、1.23g/ccであっ
た。その後、プレス、スリット加工を施して厚さ149
μm(負極材料の密度;1.5g/cc)、幅43.2
5mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm using a knife edge coater.
Coating was performed so as to be 03 g / m 2 and drying was performed. At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc. Then, press and slit to give a thickness of 149
μm (density of negative electrode material; 1.5 g / cc), width 43.2
A 5 mm strip-shaped negative electrode was produced.

【0066】次いで、前記正負極の集電体にリードタブ
をそれぞれ接合し、自動捲回機を用いてポリエチレン製
多孔膜を2枚介してスパイラル状に巻き上げ、さらにプ
レスすることにより扁平状の電極体を作製した。得られ
た電極体に直流電源から100Vの電圧を5秒間印加
し、10μV以上流れるものを不良と判定して除外し
た。
Next, lead tabs were respectively joined to the positive and negative electrode current collectors, spirally wound through two polyethylene porous membranes using an automatic winding machine, and further pressed to obtain a flat electrode body. Was prepared. A voltage of 100 V was applied from a DC power supply to the obtained electrode body for 5 seconds, and a current flowing at 10 μV or more was judged to be defective and excluded.

【0067】次いで、良品として判定された電極体を厚
さ4.8mm、幅30mm、高さ47mmの有底矩形筒
状をなすアルミニウム製外装缶内に挿入し、非水系電解
液を注入した後、前記外装缶の開口部にアルミニウム製
蓋体を気密に接合することにより前述した図2に示す角
型リチウムイオン二次電池を組立てた。なお、前記非水
系電解液はエチレンカーボネートとメチルエチルカーボ
ネートとジエチルカーボネートを3:2:5の重量比で
混合した混合非水溶媒に六フッ化リン酸リチウム(Li
PF6)を1.0モル/Lの濃度で溶解した組成を有す
る。
Next, the electrode assembly determined as a non-defective product was inserted into an aluminum outer can having a bottomed rectangular cylindrical shape having a thickness of 4.8 mm, a width of 30 mm, and a height of 47 mm. The above-mentioned prismatic lithium ion secondary battery shown in FIG. 2 was assembled by hermetically bonding an aluminum lid to the opening of the outer can. The non-aqueous electrolytic solution was prepared by mixing lithium hexafluorophosphate (Li) in a mixed non-aqueous solvent in which ethylene carbonate, methyl ethyl carbonate and diethyl carbonate were mixed at a weight ratio of 3: 2: 5.
PF 6 ) at a concentration of 1.0 mol / L.

【0068】(実施例2)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Example 2 Example 1 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0069】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ258g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
169μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at 258 g / m 2 and dried. A band-shaped positive electrode having a thickness of 169 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0070】<負極の作製>カルボキシメチルセルロー
スの0.67重量%濃度の粘調水溶液180重量部に前
記繊維状炭素質材70重量部、前記メソフェーズ低温焼
成炭素繊維5重量部および前記球塊状黒鉛25重量部を
添加した後、せん断分散した。つづいて、この混合物に
SBRラテックス3.4重量部を添加し、均一の混合攪
拌して負極塗工スラリーを調製した。
<Preparation of negative electrode> 70 parts by weight of the fibrous carbonaceous material, 5 parts by weight of the mesophase low-temperature calcined carbon fiber, and 25 parts of the spheroidal graphite 25 were added to 180 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.67% by weight. After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0071】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ101g/m2になるように塗工し、乾燥した。
この時、の銅箔上の負極材料の密度は1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
147μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 15 μm to a thickness of 101 g / m 2 by a knife edge coater and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is pressed and slit to a thickness of 147 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0072】(実施例3)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Example 3 Example 1 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0073】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ262g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
171μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 262 g / m 2 and dried. A band-shaped positive electrode having a thickness of 171 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0074】<負極の作製>カルボキシメチルセルロー
スの0.64重量%濃度の粘調水溶液190重量部に前
記繊維状炭素質材56重量部、前記球状メソフェーズ低
温焼成炭素9重量部および前記球塊状黒鉛35重量部を
添加した後、せん断分散した。つづいて、この混合物に
SBRラテックス3.4重量部を添加し、均一の混合攪
拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> In 190 parts by weight of a 0.64% by weight viscous aqueous solution of carboxymethyl cellulose, 56 parts by weight of the fibrous carbonaceous material, 9 parts by weight of the spherical mesophase low-temperature calcined carbon, and 35 parts of the spheroidal graphite 35 After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0075】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ100g/m2になるように塗工し、乾燥した。
この時、の銅箔上の負極材料の密度は1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
145μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 15 μm by a knife edge coater so as to have a thickness of 100 g / m 2 and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is pressed and slit to give a thickness of 145 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0076】(実施例4)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Example 4 Example 1 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0077】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ264g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
169μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 264 g / m 2 and dried. A band-shaped positive electrode having a thickness of 169 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0078】<負極の作製>カルボキシメチルセルロー
スの0.64重量%濃度の粘調水溶液190重量部に前
記繊維状炭素質材45重量部、前記球状メソフェーズ低
温焼成炭素10重量部および前記球塊状黒鉛45重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 45 parts by weight of the fibrous carbonaceous material, 10 parts by weight of the spherical mesophase low-temperature calcined carbon and 190 parts by weight of the viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.64% by weight were prepared. After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0079】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ90g/m2になるように塗工し、乾燥した。こ
の時、の銅箔上の負極材料の密度は1.22g/ccで
あった。その後、プレス、スリット加工を施して厚さ1
44μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a 15 μm-thick copper foil (current collector) at 90 g / m 2 by a knife edge coater and dried. At this time, the density of the negative electrode material on the copper foil was 1.22 g / cc. After that, press and slit processing is performed to make the thickness 1
44 μm (density of negative electrode material; 1.5 g / cc), width 4
A 3.25 mm strip-shaped negative electrode was produced.

【0080】(実施例5)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Example 5 Example 1 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0081】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ270g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
169μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at 270 g / m 2 and dried. A band-shaped positive electrode having a thickness of 169 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0082】<負極の作製>カルボキシメチルセルロー
スの0.62重量%濃度の粘調水溶液194重量部に前
記繊維状炭素質材43重量部、前記擬球状低温焼成炭素
15重量部および前記球塊状黒鉛42重量部を添加した
後、せん断分散した。つづいて、この混合物にSBRラ
テックス3.4重量部を添加し、均一の混合攪拌して負
極塗工スラリーを調製した。次いで、前記塗工スラリー
をナイフエッジコータにより厚さ15μmの銅箔(集電
体)の両面にそれぞれ94g/m2になるように塗工
し、乾燥した。この時、銅箔上の負極材料の密度は、
1.22g/ccであった。その後、プレス、スリット
加工を施して厚さ137μm(負極材料の密度;1.5
g/cc)、幅43.25mmの帯状負極を作製した。
<Preparation of negative electrode> 43 parts by weight of the fibrous carbonaceous material, 15 parts by weight of the pseudo-spherical low-temperature calcined carbon and spheroidal graphite 42 were added to 194 parts by weight of a carboxymethyl cellulose viscosified aqueous solution having a concentration of 0.62% by weight. After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 15 μm at a thickness of 94 g / m 2 by a knife edge coater, and dried. At this time, the density of the negative electrode material on the copper foil is
1.22 g / cc. After that, it is pressed and slit to a thickness of 137 μm (density of negative electrode material: 1.5
g / cc) and a band-shaped negative electrode having a width of 43.25 mm was produced.

【0083】(比較例1)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Comparative Example 1 Example 1 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0084】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ255g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
167μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at a rate of 255 g / m 2 and dried. A band-shaped positive electrode having a thickness of 167 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0085】<負極の作製>カルボキシメチルセルロー
スの0.68重量%濃度の粘調水溶液177重量部に前
記繊維状炭素質材80重量部および前記球塊状黒鉛20
重量部を添加した後、せん断分散した。つづいて、この
混合物にSBRラテックス3.4重量部を添加し、均一
の混合攪拌して負極塗工スラリーを調製した。次いで、
前記塗工スラリーをナイフエッジコータにより厚さ15
μmの銅箔(集電体)の両面にそれぞれ104g/m2
になるように塗工し、乾燥した。この時、銅箔上の負極
材料の密度は、1.24g/ccであった。その後、プ
レス、スリット加工を施して厚さ151μm(負極材料
の密度;1.5g/cc)、幅43.25mmの帯状負
極を作製した。
<Preparation of Negative Electrode> 80 parts by weight of the fibrous carbonaceous material and spheroidal graphite 20 were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight.
After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. Then
The coating slurry was applied to a thickness of 15 using a knife edge coater.
104 g / m 2 on both sides of a copper foil (current collector) of μm
And dried. At this time, the density of the negative electrode material on the copper foil was 1.24 g / cc. Then, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 151 μm (density of negative electrode material; 1.5 g / cc) and a width of 43.25 mm.

【0086】(比較例2)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例1
と同様な構造の角型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する電極体の作製後
は、実施例1と同様な良・不良の判定を行ない、良品と
して判定された電極体のみを使用した。
Comparative Example 2 Example 1 was repeated except that the positive electrode and the negative electrode were manufactured by the method described below.
A prismatic lithium ion secondary battery having the same structure as that of was assembled. After the fabrication of the electrode body having the positive and negative electrodes and the separator, the same good / bad determination as in Example 1 was performed, and only the electrode body determined to be non-defective was used.

【0087】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ257g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
168μm、幅42.00mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 257 g / m 2 and dried. A band-shaped positive electrode having a thickness of 168 μm and a width of 42.00 mm was prepared by pressing and slitting.

【0088】<負極の作製>カルボキシメチルセルロー
スの0.62重量%濃度の粘調水溶液194重量部に前
記繊維状炭素質材50重量部および前記球塊状黒鉛50
重量部を添加した後、せん断分散した。つづいて、この
混合物にSBRラテックス3.4重量部を添加し、均一
の混合攪拌して負極塗工スラリーを調製した。次いで、
前記塗工スラリーをナイフエッジコータにより厚さ15
μmの銅箔(集電体)の両面にそれぞれ104g/m2
になるように塗工し、乾燥した。この時、銅箔上の負極
材料の密度は、1.24g/ccであった。その後、プ
レス、スリット加工を施して厚さ151μm(負極材料
の密度;1.5g/cc)、幅43.25mmの帯状負
極を作製した。
<Preparation of Negative Electrode> 50 parts by weight of the fibrous carbonaceous material and spheroidal graphite 50 were added to 194 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.62% by weight.
After adding parts by weight, shear dispersion was performed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. Then
The coating slurry was applied to a thickness of 15 using a knife edge coater.
104 g / m 2 on both sides of a copper foil (current collector) of μm
And dried. At this time, the density of the negative electrode material on the copper foil was 1.24 g / cc. Then, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 151 μm (density of negative electrode material; 1.5 g / cc) and a width of 43.25 mm.

【0089】得られた実施例1〜5および比較例1,2
の角型リチウムイオン二次電池について、700mAh
で6時間初充電し、エージングを12時間施した後、2
0℃で0.2C相当で放電した時の初期容量を測定し
た。
The obtained Examples 1 to 5 and Comparative Examples 1 and 2
700 mAh for the prismatic lithium ion secondary battery of
After charging for 6 hours and aging for 12 hours,
The initial capacity at the time of discharging at 0.2 ° C. at 0 ° C. was measured.

【0090】また、前記各二次電池について20℃にお
いて1Cで満充電し、85℃の環境下に48時間放置と
90℃の環境下に24時間放置した後、1C(カットオ
フ電圧3.0V)で放電したときの容量を測定し、得ら
れた容量から初期容量に対する容量維持率を求めた。
Each of the secondary batteries was fully charged at 1 ° C. at 20 ° C., left for 48 hours in an environment of 85 ° C. and 24 hours in an environment of 90 ° C., and then charged at 1 C (cutoff voltage of 3.0 V). ), The capacity at the time of discharging was measured, and the capacity retention ratio with respect to the initial capacity was determined from the obtained capacity.

【0091】さらに、放電後の各二次電池を20℃にお
いて1Cで追充電し、1C(カットオフ電圧3.0V)
で放電させたときの容量を測定し、得られた容量から初
期容量に対する容量回復率を求めた。
Further, each secondary battery after discharging was additionally charged at 20 ° C. at 1 C, and was charged at 1 C (cutoff voltage 3.0 V).
The capacity at the time of discharging was measured, and the capacity recovery rate with respect to the initial capacity was determined from the obtained capacity.

【0092】さらに、前記各二次電池について20℃お
よび60℃の環境下において1Cで充電し、1C(カッ
トオフ電圧3.0V)で放電する充放電を繰り返し、5
00サイクル目の放電容量を測定し、得られた放電容量
から初期容量に対する容量維持率を求めた。
Further, each of the secondary batteries was repeatedly charged and discharged at 1 C under an environment of 20 ° C. and 60 ° C. and discharged at 1 C (cutoff voltage 3.0 V).
The discharge capacity at the 00th cycle was measured, and the capacity retention ratio with respect to the initial capacity was determined from the obtained discharge capacity.

【0093】これらの結果を下記表1に示す。The results are shown in Table 1 below.

【0094】[0094]

【表1】 [Table 1]

【0095】前記表1から明らかなように、実施例1〜
4の角型リチウムイオン二次電池と比較例1,2の角型
リチウムイオン二次電池とは初期容量の点で大きな差異
がないものの、特定の炭素材料を含む負極を備えた実施
例1〜4の二次電池は比較例1,2の二次電池に比べて
85℃の環境下に24時間放置後の容量維持率および容
量回復率がいずれも優れていることがわかる。
As apparent from Table 1 above, Examples 1 to
Although the square lithium ion secondary battery of Comparative Example 4 and the prismatic lithium ion secondary batteries of Comparative Examples 1 and 2 have no significant difference in the initial capacity, Examples 1 to 3 provided with the negative electrode containing a specific carbon material It can be seen that the secondary battery of No. 4 is superior to the secondary batteries of Comparative Examples 1 and 2 both in the capacity retention ratio and the capacity recovery ratio after being left for 24 hours in an environment of 85 ° C.

【0096】一方、実施例5の角型リチウムイオン二次
電池は初期容量が比較例1,2の二次電池に比べて若干
劣るものの、85℃の環境下に24時間放置後の容量維
持率および容量回復率数いずれも優れていることがわか
る。
On the other hand, although the initial capacity of the prismatic lithium ion secondary battery of Example 5 was slightly inferior to that of the secondary batteries of Comparative Examples 1 and 2, the capacity retention rate after being left for 24 hours in an environment of 85 ° C. It can be seen that both the capacity recovery rate numbers are excellent.

【0097】(実施例6) <正極の作製>まず、12重量%濃度のポリフッ化ビニ
リデン樹脂(PVdF)のN−メチルピロリドン溶液4
1.7重量部に活物質としてのLiCoO2粉末100
重量部、導電フィラーとしてのグラファイト粉末(ロン
ザ社製商品名;KS4)5重量部を混合し、混練した。
つづいて、この混合物にN−メチルピロリドン15重量
部をさらに添加し、ビーズミルを用いて前記固形物を分
散させて正極塗工スラリーを調製した。
Example 6 <Preparation of Positive Electrode> First, a 12% by weight solution of polyvinylidene fluoride (PVdF) in N-methylpyrrolidone 4
1.7 parts by weight of LiCoO 2 powder 100 as an active material
5 parts by weight of graphite powder (trade name: KS4, manufactured by Lonza) as a conductive filler was mixed and kneaded.
Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to the mixture, and the solid was dispersed using a bead mill to prepare a positive electrode coating slurry.

【0098】次いで、前記正極塗工スラリーを厚さ15
μmのアルミニウム箔(集電体)の両面にそれそれ19
4g/m2になるように塗工し、乾燥した後、プレス、
スリット加工を施すことにより厚さ130μm、幅4
9.5mmの帯状正極を作製した。
Next, the positive electrode coating slurry was applied to a thickness of 15
μm on both sides of aluminum foil (collector) 19
After coating and drying to 4g / m2, press,
130μm thickness, 4 width by slit processing
A 9.5 mm strip-shaped positive electrode was produced.

【0099】<負極の作製>カルボキシメチルセルロー
スの0.68重量%濃度の粘調水溶液177重量部に前
記繊維状炭素材72重量部、前記球状メソフェーズ低温
焼成炭素1重量部および前記球塊状黒鉛27重量部をそ
れぞれ添加した後、せん断分散した。つづいて、この混
合物にSBRラテックス3.4重量部を添加し、均一の
混合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 72 parts by weight of the fibrous carbon material, 1 part by weight of the spherical mesophase low-temperature calcined carbon and 27 parts by weight of the spheroidal graphite were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. After adding each part, it was sheared and dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0100】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面に7
6g/m2になるように塗工し、乾燥した。その後、プ
レス、スリット加工を施して厚さ113μm、幅51.
0mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 12 μm using a knife edge coater.
Coating was performed to 6 g / m 2 and drying was performed. After that, pressing and slitting are performed to make the thickness 113 μm and the width 51.
A band-shaped negative electrode of 0 mm was produced.

【0101】次いで、前記正負極の集電体にリードタブ
をそれぞれ接合し、自動捲回機を用いてポリエチレン製
多孔膜を2枚介してスパイラル状に巻き上げ、さらにプ
レスすることにより扁平状の発電要素を作製した。得ら
れた発電要素に直流電源から100Vの電圧を5秒間印
加し、10μV以上流れるものを不良と判定して除外し
た。
Next, lead tabs were respectively joined to the positive and negative electrode current collectors, spirally wound through two polyethylene porous membranes using an automatic winding machine, and further pressed to obtain a flat power generating element. Was prepared. A voltage of 100 V was applied from the DC power supply to the obtained power generating element for 5 seconds, and a current flowing at 10 μV or more was judged to be defective and excluded.

【0102】次いで、厚さ25μmの延伸ナイロンフィ
ルムと厚さ40μmのアルミニウムシートと厚さ30μ
mの直鎖状低密度ポリエチレン(LLDPE)フィルム
とをこの順序でウレタン系接着剤を介して積層・接着し
た厚さ3.6mmの外装材用フィルム素材を二つ折りに
し、一方の面にカップ部(長さ36mm、幅35mm、
高さ62mm)を絞り加工し、このカップ部に良品とし
て判定された発電要素を挿入し、他方の面を前記カップ
部を有する面の周辺に注液口を除いて熱シールし、非水
系電解液を注入した後、前記注液口を熱シールして封口
することによって、前述した図3,図4に示す薄型リチ
ウムイオン二次電池を組立てた。なお、前記非水系電解
液はエチレンカーボネートとγ−ブチロラクトンを1:
3の重量比で混合した混合非水溶媒にホウフッ化リチウ
ム(LiBF4)を1.5モル/Lの濃度で溶解した組
成を有する。
Next, a stretched nylon film having a thickness of 25 μm, an aluminum sheet having a thickness of 40 μm, and a
m and a low-density linear low-density polyethylene (LLDPE) film are laminated and bonded in this order via a urethane-based adhesive, and a 3.6 mm-thick film material for an exterior material is folded in two. (Length 36mm, width 35mm,
(The height of 62 mm) is drawn, a power generating element determined as a non-defective product is inserted into the cup portion, and the other surface is heat-sealed around the surface having the cup portion except for a liquid injection port, and the non-aqueous electrolytic solution is formed. After the liquid was injected, the injection port was heat-sealed and sealed to assemble the thin lithium ion secondary battery shown in FIGS. The non-aqueous electrolyte solution was prepared by mixing ethylene carbonate and γ-butyrolactone in a ratio of 1:
The composition has a composition in which lithium borofluoride (LiBF 4 ) is dissolved at a concentration of 1.5 mol / L in a mixed nonaqueous solvent mixed at a weight ratio of 3.

【0103】(実施例7)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例6
と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
Example 7 Example 6 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A thin lithium-ion secondary battery having the same structure as that of was assembled. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0104】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ194g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
130μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 194 g / m 2 and dried. A band-shaped positive electrode having a thickness of 130 μm and a width of 49.5 mm was produced by pressing and slitting.

【0105】<負極の作製>カルボキシメチルセルロー
スの0.58重量%濃度の粘調水溶液173重量部に前
記繊維状炭素材90重量部、前記球状メソフェーズ低温
焼成炭素3重量部および前記球塊状黒鉛7重量部をそれ
ぞれ添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.4重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 90 parts by weight of the fibrous carbon material, 3 parts by weight of the spherical mesophase low-temperature calcined carbon and 7 parts by weight of the spheroidal graphite were added to 173 parts by weight of a 0.58% by weight viscous aqueous solution of carboxymethyl cellulose. After adding each part, it was sheared and dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0106】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ76g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ113μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 12 μm by a knife edge coater so as to have a thickness of 76 g / m 2 , respectively, and dried. After that, it is pressed and slit to a thickness of 113 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0107】(実施例8)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例6
と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
Example 8 Example 6 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A thin lithium-ion secondary battery having the same structure as that of was assembled. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0108】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ196g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
132μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at 196 g / m 2 and dried. A band-shaped positive electrode having a thickness of 132 μm and a width of 49.5 mm was produced by performing pressing and slitting.

【0109】<負極の作製>カルボキシメチルセルロー
スの1.16重量%濃度の粘調水溶液206重量部に前
記繊維状炭素材5重量部、前記メソフェーズ低温焼成炭
素繊維7重量部および前記球塊状黒鉛88重量部をそれ
ぞれ添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.4重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 5 parts by weight of the fibrous carbon material, 7 parts by weight of the mesophase low-temperature calcined carbon fiber, and 88 parts by weight of the spheroidal graphite were added to 206 parts by weight of a 1.16% by weight viscous aqueous solution of carboxymethyl cellulose. After adding each part, it was sheared and dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0110】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ73g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ110μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied on both surfaces of a copper foil (current collector) having a thickness of 12 μm by a knife edge coater so as to be 73 g / m 2 , and dried. After that, pressing and slitting are performed to a thickness of 110 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0111】(実施例9)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例6
と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
Example 9 Example 6 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A thin lithium-ion secondary battery having the same structure as that of was assembled. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0112】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ196g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
132μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at 196 g / m 2 and dried. A band-shaped positive electrode having a thickness of 132 μm and a width of 49.5 mm was produced by performing pressing and slitting.

【0113】<負極の作製>カルボキシメチルセルロー
スの0.74重量%濃度の粘調水溶液191重量部に前
記繊維状炭素材45重量部、前記メソフェーズ低温焼成
炭素繊維10重量部および前記球塊状黒鉛45重量部を
それぞれ添加した後、せん断分散した。つづいて、この
混合物にSBRラテックス3.4重量部を添加し、均一
の混合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 45 parts by weight of the fibrous carbon material, 10 parts by weight of the mesophase low-temperature calcined carbon fiber, and 45 parts by weight of the spheroidal graphite were added to 191 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.74% by weight. After adding each part, it was sheared and dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0114】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ73g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ110μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 12 μm to a thickness of 73 g / m 2 by a knife edge coater and dried. After that, pressing and slitting are performed to a thickness of 110 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0115】(実施例10)正極および負極として、以
下に説明する方法で作製したものを用いた以外、実施例
6と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
(Example 10) A thin lithium ion secondary battery having the same structure as in Example 6 was assembled except that the positive electrode and the negative electrode were manufactured by the method described below. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0116】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ196g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
132μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 196 g / m 2 and dried. A band-shaped positive electrode having a thickness of 132 μm and a width of 49.5 mm was produced by performing pressing and slitting.

【0117】<負極の作製>カルボキシメチルセルロー
スの0.64重量%濃度の粘調水溶液190重量部に前
記繊維状炭素材50重量部、前記擬球状低温焼成炭素1
5重量部および前記球塊状黒鉛35重量部をそれぞれ添
加した後、せん断分散した。つづいて、この混合物にS
BRラテックス3.4重量部を添加し、均一の混合攪拌
して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 50 parts by weight of the fibrous carbon material and 190 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.64% by weight,
After 5 parts by weight and 35 parts by weight of the spheroidal graphite were added, they were shear-dispersed. Subsequently, S
3.4 parts by weight of BR latex were added, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0118】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ71g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ107μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 12 μm by a knife edge coater so as to be 71 g / m 2 , and dried. After that, it is pressed and slitted to a thickness of 107 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0119】(比較例3)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例6
と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
Comparative Example 3 Example 6 was repeated except that the positive electrode and the negative electrode were manufactured by the method described below.
A thin lithium-ion secondary battery having the same structure as that of was assembled. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0120】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ194g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
130μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both surfaces of a 15 μm-thick aluminum foil (current collector) at 194 g / m 2 and dried. A band-shaped positive electrode having a thickness of 130 μm and a width of 49.5 mm was produced by pressing and slitting.

【0121】<負極の作製>カルボキシメチルセルロー
スの0.67重量%濃度の粘調水溶液180重量部に前
記繊維状炭素材75重量部および前記球塊状黒鉛25重
量部をそれぞれ添加した後、せん断分散した。つづい
て、この混合物にSBRラテックス3.4重量部を添加
し、均一の混合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 75 parts by weight of the fibrous carbon material and 25 parts by weight of the spheroidal graphite were added to 180 parts by weight of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.67% by weight, followed by shear dispersion. . Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0122】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ78g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ116μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 12 μm by a knife edge coater so as to have a thickness of 78 g / m 2 , and dried. After that, it is pressed and slit to a thickness of 116 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0123】(比較例4)正極および負極として、以下
に説明する方法で作製したものを用いた以外、実施例6
と同様な構造の薄型リチウムイオン二次電池を組立て
た。なお、正負極、セパレータを有する発電要素の作製
後は、実施例6と同様な良・不良の判定を行ない、良品
として判定された発電要素のみを使用した。
Comparative Example 4 Example 6 was repeated except that a positive electrode and a negative electrode were manufactured by the method described below.
A thin lithium-ion secondary battery having the same structure as that of was assembled. After the production of the power generating element having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 6 was performed, and only the power generating element judged as good was used.

【0124】<正極の作製>実施例1と同様な正極塗工
スラリーを厚さ15μmのアルミニウム箔(集電体)の
両面にそれぞれ194g/m2になるように塗工し、乾
燥した後、プレス、スリット加工を施すことにより厚さ
130μm、幅49.5mmの帯状正極を作製した。
<Preparation of Positive Electrode> The same positive electrode coating slurry as in Example 1 was applied to both sides of a 15 μm-thick aluminum foil (current collector) at 194 g / m 2 and dried. A band-shaped positive electrode having a thickness of 130 μm and a width of 49.5 mm was produced by pressing and slitting.

【0125】<負極の作製>カルボキシメチルセルロー
スの0.74重量%濃度の粘調水溶液191重量部に前
記繊維状炭素材50重量部および前記球塊状黒鉛50重
量部をそれぞれ添加した後、せん断分散した。つづい
て、この混合物にSBRラテックス3.4重量部を添加
し、均一の混合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> 50 parts by weight of the fibrous carbon material and 50 parts by weight of the spheroidal graphite were added to 191 parts by weight of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.74% by weight, and then dispersed by shearing. . Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0126】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ12μmの銅箔(集電体)の両面にそ
れぞれ78g/m2になるように塗工し、乾燥した。そ
の後、プレス、スリット加工を施して厚さ116μm、
幅51.0mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 12 μm by a knife edge coater so as to be 78 g / m 2 , and dried. After that, it is pressed and slit to a thickness of 116 μm,
A strip-shaped negative electrode having a width of 51.0 mm was produced.

【0127】得られた実施例6〜10および比較例3,
4の薄型リチウムイオン二次電池について、実施例1と
同様に初期容量、85℃の環境下に48時間放置した後
における容量維持率および容量回復率、90℃の環境下
に24時間放置した後における容量維持率および容量回
復率、20℃および60℃の環境下における500サイ
クル後の容量維持率をそれぞれ求めた。これらの結果を
下記表2に示す。
The obtained Examples 6 to 10 and Comparative Example 3,
As for the thin lithium ion secondary battery of No. 4, the initial capacity was the same as in Example 1, the capacity retention rate and capacity recovery rate after being left for 48 hours in an environment of 85 ° C., and after being left for 24 hours in an environment of 90 ° C. , And the capacity retention rate after 500 cycles in an environment of 20 ° C. and 60 ° C., respectively. The results are shown in Table 2 below.

【0128】[0128]

【表2】 [Table 2]

【0129】前記表2から明らかなように、実施例6〜
9の薄型リチウムイオン二次電池と比較例3,4の薄型
リチウムイオン二次電池とは、初期容量および20℃の
環境下での500サイクル目の容量維持率の点で大きな
差異がないものの、特定の炭素材料を含む負極を備えた
実施例6〜9の二次電池は60℃の環境下での500サ
イクル目の容量維持率および90℃の環境下に48時間
放置後の容量回復率数が比較例3,4の二次電池に比べ
て著しく優れていることがわかる。
As is clear from Table 2 above, Examples 6 to
Although the thin lithium ion secondary battery of No. 9 and the thin lithium ion secondary batteries of Comparative Examples 3 and 4 have no significant difference in the initial capacity and the capacity retention ratio at the 500th cycle in an environment of 20 ° C., The secondary batteries of Examples 6 to 9 provided with the negative electrode containing the specific carbon material had the capacity retention rate at the 500th cycle in a 60 ° C environment and the capacity recovery rate after being left in a 90 ° C environment for 48 hours. It can be seen that is significantly superior to the secondary batteries of Comparative Examples 3 and 4.

【0130】一方、実施例10の二次電池は初期容量が
比較例3,4の二次電池に比べて若干劣るものの、60
℃の環境下での500サイクル目の容量維持率および9
0℃の環境下に48時間放置後の容量回復率数がいずれ
も優れていることがわかる。
On the other hand, although the secondary battery of Example 10 had a slightly lower initial capacity than the secondary batteries of Comparative Examples 3 and 4,
500% cycle capacity retention rate in an environment of
It can be seen that all the capacity recovery rates after being left for 48 hours in an environment of 0 ° C. are excellent.

【0131】なお、前述した実施例1〜10では角型、
薄型のリチウムイオン二次電池について説明したが、本
発明は前述した図1の円筒型リチウムイオン二次電池に
適用しても同様な優れた高温充放電サイクル特性および
高温保存回復特性を有する。
It should be noted that in Examples 1 to 10 described above, a square
Although the thin lithium-ion secondary battery has been described, the present invention has the same excellent high-temperature charge / discharge cycle characteristics and high-temperature storage / recovery characteristics even when applied to the above-described cylindrical lithium-ion secondary battery of FIG.

【0132】[0132]

【発明の効果】以上詳述したように、本発明によれば負
極を改良することによって高温充放電サイクル特性の向
上および高温保存回復特性の改善を図ることができ、例
えば夏場に携帯電話機を自動車内に放置する等、過酷な
環境におかれた場合でも正常に作動する高信頼性、高性
能の非水系電解液二次電池を提供することができる。
As described above in detail, according to the present invention, by improving the negative electrode, the high-temperature charge / discharge cycle characteristics and the high-temperature storage recovery characteristics can be improved. It is possible to provide a highly reliable and high-performance non-aqueous electrolyte secondary battery that normally operates even in a harsh environment such as being left inside.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水系電解液二次電池の一形態あ
る円筒型非水系電解液二次電池(円筒型リチウムイオン
二次電池)を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery (cylindrical lithium ion secondary battery) as one embodiment of the non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明に係る非水系電解液二次電池の他の形態
ある角型非水系電解液二次電池(角型リチウムイオン二
次電池)を示す部分切欠斜視図。
FIG. 2 is a partially cutaway perspective view showing a prismatic nonaqueous electrolyte secondary battery (square lithium ion secondary battery) as another embodiment of the nonaqueous electrolyte secondary battery according to the present invention.

【図3】本発明に係る非水系電解液二次電池のさらに他
の形態ある薄型非水系電解液二次電池(薄型リチウムイ
オン二次電池)を示す斜視図。
FIG. 3 is a perspective view showing a thin non-aqueous electrolyte secondary battery (thin lithium ion secondary battery) as still another embodiment of the non-aqueous electrolyte secondary battery according to the present invention.

【図4】図3のIV−IV線に沿う断面図。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;

【符号の説明】[Explanation of symbols]

1、21…外装缶、 3,23電極体、 4,24,48…負極、 5,25,45…セパレータ、 6,26,44…正極、 12…封口板、 28…蓋体、 41…発電要素、 43,46…集電体、 51…外装フィルム。 1, 21: exterior can, 3,23 electrode body, 4, 24, 48 ... negative electrode, 5, 25, 45 ... separator, 6, 26, 44 ... positive electrode, 12 ... sealing plate, 28 ... lid, 41 ... power generation Elements, 43, 46: current collector, 51: exterior film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 孝之 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 松本 浩一 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 上林 信一 神奈川県横浜市磯子区新杉田町8番地 東 芝電子エンジニアリング株式会社内 Fターム(参考) 5H029 AJ05 AK02 AK03 AK04 AK18 AL06 AL07 AL08 AL19 AM03 AM04 AM05 AM06 CJ02 DJ15 DJ16 DJ17 HJ01 HJ04 HJ05 HJ07 HJ08 HJ13 HJ14 5H050 AA05 AA07 AA10 BA17 CB07 CB08 CB09 CB30 DA18 FA16 FA17 FA19 GA02 HA01 HA04 HA05 HA07 HA08 HA13 HA14 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takayuki Nakajima 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside AT Battery Inc. (72) Inventor Koichi Matsumoto 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo No. 10 Inside AT Battery Co., Ltd. (72) Inventor Shinichi Kamibayashi F-term (reference) 5H029 AJ05 AK02 AK03 AK04 AK18 AL06 AL07 AL08 AL19 in Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture AM03 AM04 AM05 AM06 CJ02 DJ15 DJ16 DJ17 HJ01 HJ04 HJ05 HJ07 HJ08 HJ13 HJ14 5H050 AA05 AA07 AA10 BA17 CB07 CB08 CB09 CB30 DA18 FA16 FA17 FA19 GA02 HA01 HA04 HA05 HA07 HA08 HA13 HA14

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出可能な正極、リチ
ウムを吸蔵・放出可能な負極、セパレータおよび非水系
電解液を備え、 前記正極および前記負極は、集電体にそれぞれ正極材料
および負極材料を塗布した構造を有し、かつ前記負極材
料は、低温焼成炭素を含む2種以上の炭素質材を含有す
ることを特徴とする非水系電解液二次電池。
1. A positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode each include a positive electrode material and a negative electrode material as a current collector. A non-aqueous electrolyte secondary battery having a structure coated, and wherein the negative electrode material contains two or more types of carbonaceous materials including low-temperature fired carbon.
【請求項2】 前記低温焼成炭素は、石炭、石油系ピッ
チから得られた揮発性有機物、溶融溶解性有機物、不融
性繊維状有機物、フェノール樹脂、フルフラール樹脂を
原料として、1000℃以下の温度で焼成されたカーボ
ン材料であることを特徴とする請求項1記載の非水系電
解液二次電池。
2. The low-temperature calcined carbon is made of a volatile organic substance obtained from coal, petroleum pitch, a melt-soluble organic substance, an infusible fibrous organic substance, a phenol resin, a furfural resin, and has a temperature of 1000 ° C. or less. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a carbon material fired in the above.
【請求項3】 前記低温焼成炭素が、前記石油系ピッチ
からメソフェーズを経由して得られたメソフェーズ系低
温焼成炭素であることを特徴とする請求項2記載の非水
系電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 2, wherein the low-temperature fired carbon is a mesophase-based low-temperature fired carbon obtained from the petroleum pitch via a mesophase.
【請求項4】 前記低温焼成炭素以外の炭素質材は、繊
維状炭素質材であることを特徴とする請求項1記載の非
水系電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material other than the low-temperature fired carbon is a fibrous carbonaceous material.
【請求項5】 前記繊維状炭素質材は、平均繊維径8〜
18μm、平均繊維長10〜50μm、真密度2.24
g/cc以上、面間隔(d002)0.3356〜0.3
368nm、c軸方向の結晶子の大きさ(Lc)が40
nm以上であることを特徴とする請求項4記載の非水系
電解液二次電池。
5. The fibrous carbonaceous material has an average fiber diameter of 8 to 8.
18 μm, average fiber length 10-50 μm, true density 2.24
g / cc or more, surface spacing (d 002 ) 0.3356-0.3
368 nm, crystallite size (Lc) in the c-axis direction is 40
The non-aqueous electrolyte secondary battery according to claim 4, wherein
【請求項6】 前記低温焼成炭素以外の炭素質材は、鱗
片状、球状、球塊状または擬球状の黒鉛であることを特
徴とする請求項1記載の非水系電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material other than the low-temperature fired carbon is flaky, spherical, spherical, or pseudospherical graphite.
【請求項7】 前記鱗片状、球状、球塊状または擬球状
の黒鉛は、平均粒径2〜50μm、比表面積2〜20m
2/g、真密度2.23〜2.28g/cc、面間隔
(d002)0.3354〜0.3358nmであること
を特徴とする請求項6記載の非水系電解液二次電池。
7. The flaky, spherical, spherical or pseudo-spherical graphite has an average particle size of 2 to 50 μm and a specific surface area of 2 to 20 m.
2 / g, a true density 2.23~2.28g / cc, the nonaqueous electrolyte secondary battery according to claim 6, characterized in that the plane spacing (d 002) 0.3354~0.3358nm.
【請求項8】 前記低温焼成炭素は、前記炭素質材中に
1〜10重量%の割合で含有されることを特徴とする請
求項1ないし7いずれか記載の非水系電解液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the low-temperature fired carbon is contained in the carbonaceous material at a ratio of 1 to 10% by weight.
【請求項9】 前記鱗片状、球状、球塊状または擬球状
の黒鉛は、炭素質材中に10〜60重量%の割合で含有
されることを特徴とする請求項1ないし8記載の非水系
電解液二次電池。
9. The non-aqueous system according to claim 1, wherein said flaky, spherical, spherical or pseudo-spherical graphite is contained in the carbonaceous material at a ratio of 10 to 60% by weight. Electrolyte secondary battery.
【請求項10】 リチウムを吸蔵・放出可能な正極、リ
チウムを吸蔵・放出可能な負極、セパレータおよび非水
系電解液を備え、 前記正極および前記負極は、集電体にそれぞれ正極材料
および負極材料を塗布した構造を有し、かつ前記負極材
料は、球状のメソフェーズ低温焼成炭素を含む2種以上
の炭素質材を含有することを特徴とする非水系電解液二
次電池。
10. A positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode each include a positive electrode material and a negative electrode material as a current collector. A non-aqueous electrolyte secondary battery having a coated structure, wherein the negative electrode material contains two or more kinds of carbonaceous materials including spherical mesophase low-temperature fired carbon.
【請求項11】 前記球状のメソフェーズ低温焼成炭素
は、平均粒径8〜20μm、真密度1.50〜1.75
g/ccであることを特徴とする請求項10記載の非水
系電解液二次電池。
11. The spherical mesophase low-temperature calcined carbon has an average particle size of 8 to 20 μm and a true density of 1.50 to 1.75.
The non-aqueous electrolyte secondary battery according to claim 10, wherein the secondary battery is g / cc.
【請求項12】 前記球状のメソフェーズ低温焼成炭素
以外の炭素質材は、繊維状炭素質材であることを特徴と
する請求項10記載の非水系電解液二次電池。
12. The non-aqueous electrolyte secondary battery according to claim 10, wherein the carbonaceous material other than the spherical mesophase low-temperature fired carbon is a fibrous carbonaceous material.
【請求項13】 前記繊維状炭素質材は、平均繊維径8
〜18μm、平均繊維長10〜50μm、真密度2.2
4g/cc以上、面間隔(d002)0.3356〜0.
3368nm、c軸方向の結晶子の大きさ(Lc)が4
0nm以上であることを特徴とする請求項12記載の非
水系電解液二次電池。
13. The fibrous carbonaceous material has an average fiber diameter of 8
1818 μm, average fiber length 10-50 μm, true density 2.2
4 g / cc or more, face spacing (d 002 ) 0.3356-0.
3368 nm, the crystallite size (Lc) in the c-axis direction is 4
The non-aqueous electrolyte secondary battery according to claim 12, wherein the thickness is 0 nm or more.
【請求項14】 前記炭素質材は、さらに鱗片状または
球塊状の黒鉛を含有することを特徴とする請求項10記
載の非水系電解液二次電池。
14. The non-aqueous electrolyte secondary battery according to claim 10, wherein the carbonaceous material further contains flaky or spherical graphite.
【請求項15】 前記鱗片状または球塊状の黒鉛は、平
均粒径2〜50μm、比表面積2〜20m2/g、真密
度2.23〜2.28g/cc、面間隔(d0 02)0.
3354〜0.3358nmであることを特徴とする請
求項14記載の非水系電解液二次電池。
15. The flaky or spherical graphite has an average particle size of 2 to 50 μm, a specific surface area of 2 to 20 m 2 / g, a true density of 2.23 to 2.28 g / cc, and a spacing (d 0 02 ). 0.
The non-aqueous electrolyte secondary battery according to claim 14, wherein the thickness is 3354 to 0.3358 nm.
【請求項16】 前記球状のメソフェーズ低温焼成炭素
は、前記炭素質材中に1〜10重量%の割合で含有され
ることを特徴とする請求項9ないし15いずれか記載の
非水系電解液二次電池。
16. The non-aqueous electrolyte solution according to claim 9, wherein the spherical mesophase low-temperature calcined carbon is contained in the carbonaceous material at a ratio of 1 to 10% by weight. Next battery.
【請求項17】 前記鱗片状または球塊状の黒鉛は、前
記炭素質材中に10〜60重量%の割合で含有されるこ
とを特徴とする請求項14記載の非水系電解液二次電
池。
17. The non-aqueous electrolyte secondary battery according to claim 14, wherein the flaky or spherical graphite is contained in the carbonaceous material at a ratio of 10 to 60% by weight.
【請求項18】 リチウムを吸蔵・放出可能な正極、リ
チウムを吸蔵・放出可能な負極、セパレータおよび非水
系電解液を備え、 前記正極および前記負極は、集電体にそれぞれ正極材料
および負極材料を塗布した構造を有し、かつ前記負極材
料は、メソフェーズ低温焼成炭素繊維を含む2種以上の
炭素質材を含有することを特徴とする非水系電解液二次
電池。
18. A positive electrode capable of storing and releasing lithium, a negative electrode capable of storing and releasing lithium, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode each include a positive electrode material and a negative electrode material as a current collector. A non-aqueous electrolyte secondary battery having a structure coated, and wherein the negative electrode material contains two or more types of carbonaceous materials including mesophase low-temperature fired carbon fibers.
【請求項19】 前記メソフェーズ低温焼成炭素繊維
は、平均繊維径8〜18μm、平均繊維長8〜20μ
m、真密度1.50〜1.75g/ccであることを特
徴とする請求項18記載の非水系電解液二次電池。
19. The mesophase low-temperature fired carbon fiber has an average fiber diameter of 8 to 18 μm and an average fiber length of 8 to 20 μm.
19. The non-aqueous electrolyte secondary battery according to claim 18, wherein the true density is 1.50 to 1.75 g / cc.
【請求項20】 前記メソフェーズ低温焼成炭素繊維以
外の炭素質材は、繊維状炭素材であることを特徴とする
請求項18記載の非水系電解液二次電池。
20. The non-aqueous electrolyte secondary battery according to claim 18, wherein the carbonaceous material other than the mesophase low-temperature fired carbon fiber is a fibrous carbon material.
【請求項21】 前記繊維状炭素材は、平均繊維径8〜
18μm、平均繊維長10〜50μm、真密度2.24
g/cc以上であることを特徴とする請求項20記載の
非水系電解液二次電池。
21. The fibrous carbon material has an average fiber diameter of 8 to
18 μm, average fiber length 10-50 μm, true density 2.24
21. The non-aqueous electrolyte secondary battery according to claim 20, which is at least g / cc.
【請求項22】 前記メソフェーズ低温焼成炭素繊維以
外の炭素質材は、鱗片状、球塊状または擬球状の黒鉛を
含有することを特徴とする請求項18記載の非水系電解
液二次電池。
22. The non-aqueous electrolyte secondary battery according to claim 18, wherein the carbonaceous material other than the mesophase low-temperature fired carbon fibers contains flaky, spherical or spheroidal graphite.
【請求項23】 前記メソフェーズ低温焼成炭素繊維
は、前記炭素質材中に1〜10重量%の割合で含有され
ることを特徴とする請求項18ないし22いずれか記載
の非水系電解液二次電池。
23. The non-aqueous electrolyte secondary solution according to claim 18, wherein the mesophase low-temperature fired carbon fibers are contained in the carbonaceous material at a ratio of 1 to 10% by weight. battery.
【請求項24】 前記非水系電解液の非水溶媒は、γ−
ブチロラクトンを10〜80重量%含有することを特徴
とする請求項18ないし23いずれか記載の非水系電解
液二次電池。
24. The non-aqueous solvent of the non-aqueous electrolyte solution is γ-
The non-aqueous electrolyte secondary battery according to any one of claims 18 to 23, comprising 10 to 80% by weight of butyrolactone.
【請求項25】 前記非水系電解液の非水溶媒は、γ−
ブチロラクトンを45〜70重量%含有することを特徴
とする請求項18ないし24いずれか記載の非水系電解
液二次電池。
25. The non-aqueous solvent of the non-aqueous electrolyte solution is γ-
The non-aqueous electrolyte secondary battery according to any one of claims 18 to 24, comprising 45 to 70% by weight of butyrolactone.
JP2000339498A 2000-07-21 2000-11-07 Nonaqueous electrolyte secondary battery Pending JP2002100410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339498A JP2002100410A (en) 2000-07-21 2000-11-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-220944 2000-07-21
JP2000220945 2000-07-21
JP2000220944 2000-07-21
JP2000-220945 2000-07-21
JP2000339498A JP2002100410A (en) 2000-07-21 2000-11-07 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002100410A true JP2002100410A (en) 2002-04-05

Family

ID=27344129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339498A Pending JP2002100410A (en) 2000-07-21 2000-11-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002100410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135826A (en) * 2003-10-31 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
US9190661B2 (en) 2011-05-10 2015-11-17 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for producing secondary battery
US9997768B2 (en) 2010-12-06 2018-06-12 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method for manufacturing lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087885A (en) * 1994-06-15 1996-01-12 Toshiba Corp Lithium secondary battery
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
JP2000200624A (en) * 1999-01-06 2000-07-18 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery
JPH087885A (en) * 1994-06-15 1996-01-12 Toshiba Corp Lithium secondary battery
JP2000138061A (en) * 1998-08-27 2000-05-16 Nec Corp Nonaqueous electrolyte secondary battery, and its manufacture and carbon material composition
JP2000156230A (en) * 1998-11-18 2000-06-06 Samsung Sdi Co Ltd Carbonic active material for lithium ion secondary battery
JP2000200624A (en) * 1999-01-06 2000-07-18 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135826A (en) * 2003-10-31 2005-05-26 Toshiba Corp Nonaqueous electrolyte secondary battery
US9997768B2 (en) 2010-12-06 2018-06-12 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
US9190661B2 (en) 2011-05-10 2015-11-17 Toyota Jidosha Kabushiki Kaisha Secondary battery and method for producing secondary battery

Similar Documents

Publication Publication Date Title
JP3471244B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3980505B2 (en) Thin lithium ion secondary battery
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JP2002203562A (en) Non-aqueous electrolyte secondary battery
KR20000076975A (en) Secondary battery
JP2002203552A (en) Non-aqueous electrolyte battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3643522B2 (en) Nonaqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP2002110250A (en) Non-aqueous electrolyte secondary battery
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2004095306A (en) Non-aqueous electrolyte secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
KR20040098420A (en) Negative active material for large capacity rechargeable lithium battery and large capacity rechargeable lithium battery comprising thereof
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP3927211B2 (en) Thin non-aqueous electrolyte secondary battery
JP2002100410A (en) Nonaqueous electrolyte secondary battery
JP2002110233A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124