JP2002088451A - Rare earth magnet and its manufacturing method - Google Patents

Rare earth magnet and its manufacturing method

Info

Publication number
JP2002088451A
JP2002088451A JP2001202124A JP2001202124A JP2002088451A JP 2002088451 A JP2002088451 A JP 2002088451A JP 2001202124 A JP2001202124 A JP 2001202124A JP 2001202124 A JP2001202124 A JP 2001202124A JP 2002088451 A JP2002088451 A JP 2002088451A
Authority
JP
Japan
Prior art keywords
alloy
atomic
rapidly solidified
rare earth
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001202124A
Other languages
Japanese (ja)
Other versions
JP3815983B2 (en
Inventor
Ko Ri
鋼 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001202124A priority Critical patent/JP3815983B2/en
Publication of JP2002088451A publication Critical patent/JP2002088451A/en
Application granted granted Critical
Publication of JP3815983B2 publication Critical patent/JP3815983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic iron-base alloy magnet manufactured by using a liquisol quenching method. SOLUTION: A rapidly solidified alloy is prepared by rapidly cooling and solidifying a molten alloy having a compositional formula which is represented by (Fe1-mTm)100-x-y-zQxRyMz (wherein, T is either or both of Co and Ni; Q is either or both of B and C; R is one or more kinds among rare-earth metal elements; and M is at least either of Nb and Mo) and in which composition ratios (x), (y), (z) and (m) satisfy 2<=x<=28 (atomic %), 8<=y<=30 (atomic %), 0.1<=z<1.0 (atomic %) and 0<=m<=0.5, respectively. Subsequently, the rapidly solidified alloy is pulverized and passed through a sintering stage to manufacture the rare-earth permanent magnet. Cooling rate is controlled to 102 to 104 K/s in the rapid solidification stage to uniformly refine the alloy structure and uniformly disperse the additive elements M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類磁石および
その製造方法に関する。
The present invention relates to a rare earth magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、R−Fe−B型希土類焼結磁石を
製造する場合において、焼結体の結晶粒径を微細化する
とともに磁石の耐熱性を向上させることを目的として、
Nb(ニオブ)を原料合金に添加することが提案されて
いた。Nbは、焼結時における結晶粒の粗大化を抑制
し、磁石の着磁特性を改善することが知られている。
2. Description of the Related Art Conventionally, in the production of R-Fe-B type rare earth sintered magnets, the purpose of the present invention is to reduce the crystal grain size of the sintered body and improve the heat resistance of the magnet.
It has been proposed to add Nb (niobium) to a raw material alloy. Nb is known to suppress the coarsening of crystal grains during sintering and improve the magnetizing characteristics of the magnet.

【0003】特開平7−94311号公報は、Nd−F
e−Co−B型焼結磁石に0.1〜2.0重量%のNb
を添加し、磁石特性および耐熱性を改善する技術を開示
している。
[0003] Japanese Patent Application Laid-Open No. 7-94311 discloses an Nd-F
0.1-2.0 wt% Nb in e-Co-B type sintered magnet
To improve magnet properties and heat resistance.

【0004】また、特公平6−69003号公報は、超
急冷法によって希土類磁石合金を作製する場合におい
て、1〜10原子%の金属元素(Ti、Zr、Hf、N
bなどの金属元素)を原料合金に添加すれば、保磁力な
どの磁石特性を改善できることを開示している。
Further, Japanese Patent Publication No. 6-69003 discloses that when a rare earth magnet alloy is produced by a rapid quenching method, 1 to 10 atomic% of a metal element (Ti, Zr, Hf, N
It discloses that by adding a metal element (such as b) to the raw material alloy, magnet properties such as coercive force can be improved.

【0005】[0005]

【発明が解決しようとする課題】特開平7−94311
号公報に記載されている従来技術によれば、インゴット
鋳造方法によって合金を作製しているため、原料合金の
溶湯を冷却する際、冷却速度が遅い。そのため、NbF
eB2などの非磁性ホウ化物が粗大に形成されやすい。
このような非磁性ホウ化物が生成されると、焼結プロセ
ス後における希土類磁石が硬化するため、切断加工や表
面研磨加工などの処理能率が大きく低下してしまう。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 7-94311
According to the prior art described in Japanese Patent Application Laid-Open Publication No. H11-107, since the alloy is manufactured by the ingot casting method, the cooling rate is low when cooling the melt of the raw material alloy. Therefore, NbF
Non-magnetic borides such as eB 2 are likely to be formed coarsely.
When such a nonmagnetic boride is generated, the rare-earth magnet after the sintering process is hardened, so that the processing efficiency such as cutting and surface polishing is greatly reduced.

【0006】一方、特公平6−69003号公報に記載
されている従来技術では、添加するNbなどの金属量が
多いため、NbFeB2などの非磁性ホウ化物が生成さ
れやすい。その結果、焼結プロセス後における希土類磁
石の残留磁束密度が低下するとともに、磁石の加工能率
も低下してしまう。
On the other hand, in the prior art described in Japanese Patent Publication No. 6-69003, non-magnetic borides such as NbFeB 2 are easily generated because the amount of metal such as Nb is large. As a result, the residual magnetic flux density of the rare earth magnet after the sintering process decreases, and the processing efficiency of the magnet also decreases.

【0007】本発明はかかる諸点に鑑みてなされたもの
であり、その主な目的は、永久磁石特性および加工性の
両方に優れた希土類磁石およびその製造方法を提供する
ことにある。
The present invention has been made in view of the above points, and a main object of the present invention is to provide a rare earth magnet excellent in both permanent magnet properties and workability, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明の急冷凝固合金
は、組成式が(Fe1-mm100-x-y-zxyz(Tは
CoおよびNiからなる群から選択された1種以上の元
素、QはBおよびCからなる群から選択された1種以上
の元素、Rは1種以上の希土類金属元素、MはNbおよ
びMoからなる群から選択された少なくとも1種の元
素)で表現され、組成比率x、y、zおよびmが、それ
ぞれ、2≦x≦28(原子%)、8≦y≦30(原子
%)、0.1≦z<1.0(原子%)、および0≦m≦
0.5を満足する。
Means for Solving the Problems] rapidly solidified alloys of the present invention, composition formula (Fe 1-m T m) 100-xyz Q x R y M z (T is selected from the group consisting of Co and Ni One or more elements, Q is one or more elements selected from the group consisting of B and C, R is one or more rare earth metal elements, and M is at least one element selected from the group consisting of Nb and Mo. And the composition ratios x, y, z, and m are 2 ≦ x ≦ 28 (atomic%), 8 ≦ y ≦ 30 (atomic%), and 0.1 ≦ z <1.0 (atomic %), And 0 ≦ m ≦
0.5 is satisfied.

【0009】原料合金の溶湯を急冷して製造する際の冷
却速度が102K/秒以上104K/秒以下の範囲内にあ
ることが好ましい。
[0009] It is preferable that the cooling rate when the molten alloy of the raw material alloy is rapidly cooled is in the range of 10 2 K / sec to 10 4 K / sec.

【0010】ある好ましい実施形態においては、Nbを
必須元素として含有する。
[0010] In a preferred embodiment, Nb is contained as an essential element.

【0011】ある好ましい実施形態においては、短軸方
向サイズが0.1μm以上100μm以下で長軸方向サ
イズが5μm以上500μm以下のR2Fe14B型化合
物結晶粒と、前記結晶粒の粒界に分散して存在するRリ
ッチ相とを含有しており、厚さが0.03mm以上10
mm以下である。
In a preferred embodiment, R 2 Fe 14 B type compound crystal grains having a minor axis size of 0.1 μm or more and 100 μm or less and a major axis size of 5 μm or more and 500 μm or less are provided. Containing an R-rich phase present in a dispersed state and having a thickness of 0.03 mm or more and 10
mm or less.

【0012】本発明による希土類磁石は、上記いずれか
の急冷凝固合金から形成されたことを特徴とする。
[0012] A rare earth magnet according to the present invention is characterized by being formed from any of the rapidly solidified alloys described above.

【0013】本発明の希土類磁石は、原子比率で0.1
%以上1.0%以下のNbおよび/またはMoが添加さ
れた急冷凝固合金から形成されている。
The rare earth magnet of the present invention has an atomic ratio of 0.1
% Of Nb and / or Mo of 1.0% or less.

【0014】本発明による希土類磁石の製造方法は、組
成式が(Fe1-mm100-x-y-zxyz(TはCoお
よびNiからなる群から選択された1種以上の元素、Q
はBおよびCからなる群から選択された1種以上の元
素、Rは1種以上の希土類金属元素、MはNbおよびM
oからなる群から選択された少なくとも1種の元素)で
表現され、組成比率x、y、z、およびmが、それぞ
れ、2≦x≦28(原子%)、8≦y≦30(原子
%)、0.1≦z<1.0原子%、および0≦m≦0.
5を満足する合金の溶湯を急冷し、凝固させることによ
って急冷凝固合金を作製する工程と、前記急冷凝固合金
から永久磁石を作製する工程とを包含する。
The method for producing a rare earth magnet according to the present invention is characterized in that the composition formula is (Fe 1 -m T m ) 100 -xyz Q x R y M z (T is at least one selected from the group consisting of Co and Ni). Element, Q
Is one or more elements selected from the group consisting of B and C, R is one or more rare earth metal elements, M is Nb and M
o, and the composition ratios x, y, z, and m are respectively 2 ≦ x ≦ 28 (atomic%) and 8 ≦ y ≦ 30 (atomic%). ), 0.1 ≦ z <1.0 at%, and 0 ≦ m ≦ 0.
The method includes a step of rapidly cooling and solidifying a molten alloy satisfying No. 5 to produce a rapidly solidified alloy, and a step of producing a permanent magnet from the rapidly solidified alloy.

【0015】前記急冷凝固合金を作製する工程におい
て、冷却速度を102K/秒以上104K/秒以下の範囲
内にすることが好ましい。
[0015] In the step of producing the rapidly solidified alloy, it is preferable that the cooling rate be in the range of 10 2 K / sec to 10 4 K / sec.

【0016】ある好ましい実施形態では、前記急冷凝固
合金を作製する工程において、前記合金の溶湯をストリ
ップキャスト法によって急冷する。
In a preferred embodiment, in the step of producing the rapidly solidified alloy, a molten metal of the alloy is rapidly cooled by a strip casting method.

【0017】ある好ましい実施形態では、前記急冷凝固
合金に水素を吸蔵させた後、前記水素を放出させる脆化
工程を包含する。
[0017] In a preferred embodiment, the method includes an embrittlement step of releasing hydrogen after absorbing the hydrogen into the rapidly solidified alloy.

【0018】[0018]

【発明の実施の形態】本発明者は、原料合金の溶湯を1
2〜104K/秒の冷却速度で急冷し、凝固合金を作製
する場合、NbやMoを僅かに(全体の1.0原子%未
満)添加しただけでも、それらの添加物が合金組織中に
均一に分散する結果、添加金属のホウ化物生成に起因し
た焼結磁石の残留磁束密度低下や加工性劣化を抑制しつ
つ、保磁力を増加させ、かつ、減磁曲線の角形性を良好
なものとすることができることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has prepared a
When quenching at a cooling rate of 0 2 to 10 4 K / sec to produce a solidified alloy, even if Nb or Mo is slightly added (less than 1.0 atomic% of the whole), the addition of the alloy causes an alloy structure. As a result, the coercive force is increased and the squareness of the demagnetization curve is improved while suppressing the reduction of the residual magnetic flux density and the deterioration of workability of the sintered magnet due to boride formation of the added metal It was found that it can be.

【0019】従来のインゴット鋳造法による場合、保磁
力増加のためには、比較的多くのNbなどを添加するこ
とが必要であると考えられていた。しかしながら、スト
リップキャスト法によって急冷凝固合金を作製する場
合、従来通り必要とされていた量だけNbを添加する
と、最終的に得られる焼結磁石の硬度が極めて上昇し、
焼結磁石に必須の表面研磨・切断などの加工が著しく困
難になることがわかった。
In the case of the conventional ingot casting method, it has been considered that it is necessary to add a relatively large amount of Nb or the like in order to increase the coercive force. However, when producing a rapidly solidified alloy by the strip casting method, if Nb is added in an amount required conventionally, the hardness of the finally obtained sintered magnet is extremely increased,
It has been found that processing such as surface polishing and cutting, which is essential for sintered magnets, becomes extremely difficult.

【0020】そこで、添加するNbなどの量を従来必要
とされていた量よりも少なくしたところ、インゴット鋳
造法による場合に比較して保磁力を画期的に増大させ、
しかも、残留磁束密度の低下や加工性の低下を極力抑え
ることに成功した。
Therefore, when the amount of Nb or the like to be added is made smaller than conventionally required, the coercive force is remarkably increased as compared with the case of the ingot casting method.
In addition, it succeeded in minimizing a decrease in residual magnetic flux density and a decrease in workability.

【0021】このように、添加すべきNbやMoの最適
量が合金溶湯の冷却速度に強く依存して変化する理由は
未だ解明されてはいないが、冷却速度の範囲を限定する
ことによって合金組織の微細化が実現する結果、微量で
あってもNbなどの添加による効果が充分に発揮される
ためであると考えられる。
Although the reason why the optimum amount of Nb or Mo to be added strongly depends on the cooling rate of the molten alloy has not been elucidated, it is not clear yet. It is considered that the effect of the addition of Nb or the like is sufficiently exerted even in a small amount as a result of the realization of finer particles.

【0022】本発明では、組成式が(Fe1-mm
100-x-y-zxyzで表現される原料合金の溶湯を用意
する。ここで、TはCoおよびNiからなる群から選択
された1種以上の元素、QはBおよびCからなる群から
選択された1種以上の元素、Rは1種以上の希土類金属
元素、MはNbおよびMoからなる群から選択された少
なくとも1種の元素である。そして、組成比率x、y、
z、およびmが、それぞれ、2≦x≦28(原子%)、
8≦y≦30(原子%)、0.1≦z<1.0原子%、
および0≦m≦0.5を満足する。
In the present invention, the composition formula is (Fe 1-m T m )
100-xyz Q x R y M z preparing a melt of the material alloy represented by. Here, T is one or more elements selected from the group consisting of Co and Ni, Q is one or more elements selected from the group consisting of B and C, R is one or more rare earth metal elements, M Is at least one element selected from the group consisting of Nb and Mo. And the composition ratio x, y,
z and m are respectively 2 ≦ x ≦ 28 (atomic%);
8 ≦ y ≦ 30 (atomic%), 0.1 ≦ z <1.0 atomic%,
And 0 ≦ m ≦ 0.5.

【0023】なお、保磁力向上のためには、Dyおよび
/またはTbを1.0at%以上含有することが好まし
い。
In order to improve coercive force, it is preferable that Dy and / or Tb be contained in an amount of 1.0 at% or more.

【0024】このように、NbやMoが添加された合金
の溶湯を公知のストリップキャスト装置などの液体急冷
装置を用いて冷却し、凝固させる。本発明では、このと
きの冷却速度を1.0×102K/秒以上1.0×104
K/秒以下の範囲内に制御する。この冷却速度は、合金
の溶湯が冷却ロールの表面に接触してから、合金温度が
約500℃くで低下する間に達成されることが望まし
い。より好ましい冷却速度の範囲は2×102K/秒以
上1×103K/秒以下であり、更に好ましい冷却速度
の範囲は、3×102K/秒以上6×102K/秒以下で
ある。
As described above, the melt of the alloy to which Nb or Mo is added is cooled and solidified by using a known liquid quenching device such as a strip casting device. In the present invention, the cooling rate at this time is set to 1.0 × 10 2 K / sec or more and 1.0 × 10 4 K / sec or more.
Control is performed within the range of K / sec or less. This cooling rate is desirably achieved during the time the alloy temperature drops to about 500 ° C. after the molten alloy contacts the surface of the chill roll. A more preferable range of the cooling rate is 2 × 10 2 K / sec to 1 × 10 3 K / sec, and a still more preferable range of the cooling rate is 3 × 10 2 K / sec to 6 × 10 2 K / sec. It is.

【0025】なお、添加するNbおよび/またはMoの
量の範囲は、後述する実験結果などを考慮すると、0.
1≦z<1.0(原子%)であることが好ましく、0.
20≦z<0.95(原子%)であることがより好まし
く、0.35≦z<0.75(原子%)であることが更
に好ましい。
Incidentally, the range of the amount of Nb and / or Mo to be added is set to 0.1 in consideration of the experimental results described later.
It is preferable that 1 ≦ z <1.0 (atomic%).
It is more preferable that 20 ≦ z <0.95 (atomic%), and it is even more preferable that 0.35 ≦ z <0.75 (atomic%).

【0026】以下、本発明による希土類磁石の製造方法
の一実施形態を詳細に説明する。
Hereinafter, an embodiment of the method for manufacturing a rare earth magnet according to the present invention will be described in detail.

【0027】まず、R(但しRはYを含む希土類元素の
うち、少なくとも1種):8〜30原子%、B:2〜2
8原子%、Nb:0.1〜1.0原子%、残部:Fe、
および不可避的不純物を含有するR−Fe−B系合金の
溶湯を作製する。ただし、Feの一部をCo、Niの1
種または2種にて置換してもよいし、Bの一部をCで置
換しても良い。さらに、Bの一部をSi、P、および/
またはSなとで置換してもよい。
First, R (where R is at least one of the rare earth elements including Y): 8 to 30 atomic%, B: 2-2
8 atomic%, Nb: 0.1 to 1.0 atomic%, balance: Fe,
In addition, a melt of an R-Fe-B-based alloy containing unavoidable impurities is produced. However, part of Fe is Co and Ni is 1
Species or two kinds may be substituted, or part of B may be substituted with C. Further, part of B is Si, P, and / or
Alternatively, it may be replaced with S.

【0028】次に、この合金溶湯をストリップキャスト
法によって102〜104K/秒の冷却速度にて厚さ0.
03mm〜10mmの薄板状に急冷凝固する。このよう
にしてR2Fe14B型正方晶を主たる相とし、Rリッチ
相が5μm以下の微細なサイズで分離した組織を有する
鋳片に鋳造した後、鋳片を吸排気可能な容器に収容す
る。更に、容器内を真空引きした後、容器内に圧力0.
03MPa〜1.0MPaのH2ガスを供給し、崩壊合
金粉を形成する。このような崩壊合金粉は、脱水素処理
後、不活性ガス気流中で微粉砕されることが好ましい。
Next, this alloy melt was subjected to a strip casting method at a cooling rate of 10 2 to 10 4 K / sec.
Rapid solidification into a thin plate of 03 mm to 10 mm. In this way, the R 2 Fe 14 B-type tetragonal crystal is used as a main phase, and the R-rich phase is cast into a slab having a microstructure separated at a fine size of 5 μm or less. I do. Further, after the inside of the container was evacuated, a pressure of 0.
Supplying a H 2 gas of 03MPa~1.0MPa, to form the disintegration alloy powder. It is preferable that such a disintegrated alloy powder is finely pulverized in an inert gas stream after the dehydrogenation treatment.

【0029】本発明で使用する磁石材料の鋳片は、特定
組成の合金溶湯を単ロール法または双ロール法によるス
トリップキャスト法によって急冷することにより、好適
に製造される。作製する鋳片の板厚に応じて、単ロール
法と双ロール法とを使い分けることができる。鋳片が厚
い場合は双ロール法を用いることが好ましく、薄い場合
は単ロール法を用いることが好ましい。
The slab of the magnetic material used in the present invention is preferably produced by quenching a molten alloy having a specific composition by a strip casting method using a single roll method or a twin roll method. The single roll method and the twin roll method can be used depending on the thickness of the cast slab to be produced. When the slab is thick, it is preferable to use the twin roll method, and when it is thin, it is preferable to use the single roll method.

【0030】鋳片の厚さが0.03mm未満になると急
冷効果が大きくなるため、結晶粒径が小さくなりすぎる
おそれがある。結晶粒径が小さすぎると、粉末化された
ときに粒子個々が多結晶化し、結晶方位を揃えられなく
なるため、磁気特性の劣化を招来する。逆に鋳片の厚さ
が10mmを超えると、冷却速度が遅くなるため、α−
Fe相が多量に析出しやすく、Ndリッチ相の偏在も生
じる。鋳片の厚さのより好ましい範囲は、0.1mm以
上5mm以下である。
If the thickness of the slab is less than 0.03 mm, the quenching effect becomes large, and the crystal grain size may be too small. If the crystal grain size is too small, the individual particles become polycrystallized when powdered, and the crystal orientation cannot be aligned, resulting in deterioration of magnetic properties. Conversely, when the thickness of the slab exceeds 10 mm, the cooling rate becomes slow, so that α-
A large amount of the Fe phase is likely to precipitate, and the Nd-rich phase is unevenly distributed. A more preferable range of the thickness of the slab is 0.1 mm or more and 5 mm or less.

【0031】水素吸蔵処理は、例えば、次のようにして
行われ得る。すなわち、所定の大きさに破断した鋳片を
原料ケース内に挿入した後、原料ケースを密閉可能な水
素炉に挿入し、その水素炉を密閉する。次に、その水素
炉内を十分に真空引きした後、圧力が30kPa〜1.
0MPaの水素ガスを容器内に供給し、鋳片に水素を吸
蔵させる。合金鋳片は水素の吸蔵によって自然崩壊す
る。
The hydrogen storage process can be performed, for example, as follows. That is, after the slab broken into a predetermined size is inserted into the raw material case, the raw material case is inserted into a sealable hydrogen furnace, and the hydrogen furnace is sealed. Next, after the inside of the hydrogen furnace is sufficiently evacuated, the pressure is set to 30 kPa to 1.
A hydrogen gas of 0 MPa is supplied into the container, and hydrogen is absorbed in the cast slab. The alloy slab spontaneously disintegrates due to the storage of hydrogen.

【0032】水素の吸蔵によって脆化した合金を冷却し
た後、真空中で脱水素処理を行う。脱水素処理によって
得られた合金粉末には微細亀裂が存在するため、その後
にボール・ミル、ジェットミル等で短時間で微粉砕さ
れ、2〜6μmの粒径(FSSSサイズ)を持った合金粉末
を作製することができる。水素粉砕処理の好ましい態様
については、特開平7−18366号公報に開示されて
いる。
After the alloy embrittled by the occlusion of hydrogen is cooled, a dehydrogenation treatment is performed in a vacuum. Since the alloy powder obtained by the dehydrogenation treatment has fine cracks, it is then finely pulverized in a short time using a ball mill, jet mill, etc., and has a particle size (FSSS size) of 2 to 6 μm. Can be produced. A preferred embodiment of the hydrogen crushing treatment is disclosed in JP-A-7-18366.

【0033】上述の微粉砕は、雰囲気ガスとして不活性
ガス(例えば、N2やArなど)を用いたジェット・ミ
ルによって行うことが好ましいが、有機溶媒(例えば、
ベンゼンやトルエン等)を用いたボールミルやアトライ
ターによって行っても良い。
The above-mentioned pulverization is preferably carried out by a jet mill using an inert gas (for example, N 2 or Ar) as an atmospheric gas.
It may be performed by a ball mill or an attritor using benzene or toluene.

【0034】なお、以上の粉砕工程に際して、粉末に含
有される酸素の量が低く抑えられるように不活性雰囲気
ガス中の酸素濃度を低く(例えば500ppm以下)に
管理してもよい。
In the above-mentioned pulverizing step, the oxygen concentration in the inert atmosphere gas may be controlled to be low (for example, 500 ppm or less) so that the amount of oxygen contained in the powder is kept low.

【0035】上記合金粉末には脂肪酸エステルなどを主
成分とする液体潤滑剤を添加することが好ましい。添加
量は例えば0.15〜5.0質量%である。脂肪酸エス
テルとしては、カプロン酸メチル、カプリル酸メチル、
ラウリン酸メチルなとが挙げられる。潤滑剤には結合剤
などの成分が含まれていても良い。重要な点は、後の工
程で潤滑剤が揮発し、除去され得ることにある。また、
潤滑剤それ自体が合金粉末と均一に混合しにくい固形状
のものである場合は、溶剤で希釈して用いれば良い。溶
剤としては、イソパラフィンに代表される石油系溶剤や
ナフテン系溶剤等を用いることができる。潤滑剤添加の
タイミングは任意であり、微粉砕前、微粉砕中、微粉砕
後のいずれであっても良い。液体潤滑剤は、粉末粒子の
表面を被覆し、粒子の酸化防止効果を発揮するととも
に、プレスに際して成形体の密度を均一化し、磁界中で
の配向度を向上させる機能を発揮する。
It is preferable to add a liquid lubricant mainly containing a fatty acid ester or the like to the alloy powder. The addition amount is, for example, 0.15 to 5.0% by mass. Fatty acid esters include methyl caproate, methyl caprylate,
Methyl laurate. The lubricant may include components such as a binder. The important point is that the lubricant can volatilize and be removed in a later step. Also,
If the lubricant itself is a solid that is difficult to mix uniformly with the alloy powder, it may be diluted with a solvent before use. As the solvent, a petroleum solvent represented by isoparaffin, a naphthene solvent, or the like can be used. The timing of adding the lubricant is arbitrary, and may be before, during, or after pulverization. The liquid lubricant covers the surfaces of the powder particles, exhibits an effect of preventing the particles from being oxidized, and also has a function of making the density of the molded body uniform during pressing and improving the degree of orientation in a magnetic field.

【0036】次に、プレス装置を用いて磁界配向および
圧縮成形を行う。磁性粉末の充填密度は、磁界配向を可
能にする範囲(真密度の例えば30〜40%)内に設定
される。
Next, magnetic field orientation and compression molding are performed using a press device. The packing density of the magnetic powder is set in a range (for example, 30 to 40% of the true density) that enables the magnetic field orientation.

【0037】成形体は、プレス装置から取り出された
後、脱バインダー工程、焼結工程、時効処理工程などの
公知の製造プロセスを経て最終的に永久磁石製品とな
る。
After the molded body is taken out of the pressing device, it undergoes a known manufacturing process such as a binder removal step, a sintering step, and an aging step, and finally becomes a permanent magnet product.

【0038】(実施例と比較例)まず、下記の表1の上
段側に示す組成を持つ薄片状合金(試料No.1〜8)
をストリップキャスト法によって作製した。このときの
合金溶湯の冷却速度は、ロール接触側と反対側とで異な
るが、2×102〜8×102K/秒程度の範囲内にあっ
た。また、下記表1の下段側に示す組成を持つ薄片状合
金(試料No.9〜16)をインゴット鋳造法によって
作製した。
(Examples and Comparative Examples) First, flaky alloys having the compositions shown in the upper part of Table 1 below (Sample Nos. 1 to 8)
Was produced by a strip casting method. The cooling rate of the molten alloy at this time was different between the roll contact side and the opposite side, but was in the range of about 2 × 10 2 to 8 × 10 2 K / sec. Further, flaky alloys (samples Nos. 9 to 16) having compositions shown in the lower part of Table 1 below were produced by ingot casting.

【0039】[0039]

【表1】 [Table 1]

【0040】上記表1において、各元素の組成比率の単
位は「原子%」である。試料No.1〜16では、Nb
の添加量が0.00原子%から2.87原子%までの範
囲で変化しているが、他の元素の組成比率は実質的に等
しく設定されている。なお、本発明の実施例および比較
例は、それぞれ、試料No.2〜5、および試料No.
1、6〜16に対応している。参考のため、上記試料N
o.1〜16の組成を重量%に換算した値を下記の表2
に示す。
In the above Table 1, the unit of the composition ratio of each element is “atomic%”. Sample No. In 1-16, Nb
Varies from 0.00 atomic% to 2.87 atomic%, but the composition ratios of the other elements are set to be substantially equal. Note that the examples and comparative examples of the present invention correspond to sample Nos. Nos. 2 to 5 and sample Nos.
1, 6 to 16. For reference, the sample N
o. Table 2 below shows the values obtained by converting the compositions of Nos. 1 to 16 into% by weight.
Shown in

【0041】[0041]

【表2】 [Table 2]

【0042】表1および表2に示す組成を有する各急冷
合金に対し、水素吸蔵/放出による脆化・粗粉砕を行な
った後、更にジェットミル粉砕装置により、平均粒径
(FSSSサイズ)が約3.5μmになるように微粉砕
した。こうして得た微粉砕粉をプレス装置で成形し、粉
末成形体を作製した後、低圧アルゴン雰囲気(100T
orr=およそ13.3kPa)中にて焼結した。この
焼結により、27mm×52mm×52mmのサイズを
持った焼結磁石が作製された。
After each of the quenched alloys having the compositions shown in Tables 1 and 2 was subjected to embrittlement and coarse pulverization by hydrogen absorption / release, the average particle size (FSSS size) was further reduced by a jet mill pulverizer. It was pulverized to 3.5 μm. The finely pulverized powder thus obtained is molded by a press device to form a powder compact, and then is subjected to a low-pressure argon atmosphere (100T).
orr = about 13.3 kPa). By this sintering, a sintered magnet having a size of 27 mm × 52 mm × 52 mm was produced.

【0043】上記焼結磁石の各々について得られた保磁
力Hcjおよび残留磁束密度Brの測定値を表1に示す。
また、保磁力HcjのNb添加量(原子%)依存性、およ
び残留磁束密度BrのNb添加量(原子%)依存性を、
それぞれ、図1および図2に示す。参考のため、図1お
よび図2には比較例に関する測定データも表示されてい
る。この比較例は、実施例(試料No.2〜5)と同様
の合金組成を持ちながらインゴット鋳造法(合金溶湯の
冷却速度:5〜40K/秒)によって作製された試料
(No.10〜13)と、ストリップキャスト法によっ
て作製されたが、Nb添加量が本発明で規定する所定範
囲を外れている試料(No.1、6〜8)の両方を含ん
でいる。
[0043] Table 1 shows the measured values of the sintered coercive force obtained for each of the magnets H cj and remanence B r.
Further, Nb addition amount of the coercive force H cj (atomic%) dependent, and Nb amount of residual magnetic flux density B r (atomic%) dependent,
These are shown in FIGS. 1 and 2, respectively. For reference, FIGS. 1 and 2 also show measurement data for the comparative example. In this comparative example, samples (Nos. 10 to 13) produced by ingot casting (cooling rate of molten alloy: 5 to 40 K / sec) while having the same alloy composition as the examples (Samples Nos. 2 to 5). ) And samples (No. 1, 6 to 8) produced by the strip casting method, but the amount of Nb added is out of the predetermined range specified in the present invention.

【0044】図1からわかるように、ストリップキャス
ト法による場合は、Nb添加による保磁力増大の効果が
極めて顕著であった。より詳細には、Nb添加量が0.
1〜1.0原子%という範囲において保磁力の増加が急
激に進行し、Nb添加量が1.0原子%以上になると、
保磁力増加が飽和する傾向にあった。また、Nbの添加
によって磁石の耐熱性が向上することも確認できた。こ
れに対して、インゴット鋳造法による場合は、Nb添加
による保磁力増大の効果はほとんど生じていないことが
わかった。
As can be seen from FIG. 1, in the case of the strip casting method, the effect of increasing the coercive force by adding Nb was extremely remarkable. More specifically, the amount of Nb added is 0.
When the coercive force rapidly increases in the range of 1 to 1.0 at% and the Nb addition amount becomes 1.0 at% or more,
The increase in coercive force tended to be saturated. It was also confirmed that the heat resistance of the magnet was improved by the addition of Nb. On the other hand, in the case of the ingot casting method, it was found that the effect of increasing the coercive force by adding Nb hardly occurred.

【0045】残留磁束密度Brは、図2からわかるよう
に、合金溶湯の冷却方法によらずNb添加量の増加に伴
って減少した。
The residual magnetic flux density B r, as can be seen from FIG. 2, and decreases with increasing Nb addition amount regardless of the method of cooling the molten alloy.

【0046】図3は、ストリップキャスト法による急冷
合金の粉末から作製した焼結磁石について、研削抵抗と
Nb添加量との関係を示すグラフである。この研削抵抗
は、切断刃を駆動するモータの負荷電流から計算によっ
て求めた。研削抵抗は、図3からわかるように、Nbの
増加に伴って単調に増大している。このことは、Nbに
よって焼結磁石が硬化し、加工性低下を招くことを示し
ている。
FIG. 3 is a graph showing the relationship between the grinding resistance and the amount of Nb added for a sintered magnet produced from a quenched alloy powder by the strip casting method. This grinding resistance was obtained by calculation from the load current of the motor that drives the cutting blade. As can be seen from FIG. 3, the grinding resistance monotonically increases with an increase in Nb. This indicates that the sintered magnet is hardened by Nb, resulting in a reduction in workability.

【0047】以上のことから、原料合金に添加すべきN
bの量は、0.1原子%以上1.0原子%未満であるこ
とが好ましいことがわかる。Nbを1.0原子%以上添
加すると、Nbの硼化物生成が顕著となり、飽和磁化の
低下および加工性の低下が問題になるからである。ま
た、Nbの添加量が0.1原子%を下回ると、Nb添加
による保磁力増大効果などの発現が不充分となるので望
ましくない。Nb添加量のより好ましい範囲は、0.2
0原子%以上0.95原子%未満であり、更に好ましい
範囲は0.35原子%以上0.75原子%未満である。
From the above, N to be added to the raw material alloy
It is understood that the amount of b is preferably at least 0.1 atomic% and less than 1.0 atomic%. This is because if Nb is added in an amount of 1.0 atomic% or more, boride generation of Nb becomes remarkable, and a decrease in saturation magnetization and a decrease in workability become problems. On the other hand, if the addition amount of Nb is less than 0.1 atomic%, the effect of increasing the coercive force due to the addition of Nb becomes insufficient, which is not desirable. A more preferred range of the Nb addition amount is 0.2
0 atomic% or more and less than 0.95 atomic%, and a more preferable range is 0.35 atomic% or more and less than 0.75 atomic%.

【0048】なお、M元素として、NbやMoの代わり
に、または、これらの元素とともにら、VやZrを用い
ることもできる。ただし、VやZrは磁気特性を不安定
化するため、VやZrよりもNbやMoを添加すること
が好ましい。
As the M element, V or Zr can be used instead of Nb or Mo or together with these elements. However, since V and Zr destabilize the magnetic properties, it is preferable to add Nb or Mo rather than V or Zr.

【0049】[0049]

【発明の効果】本発明によれば、NbやMoを急冷合金
の微細組織中に均一に分散させることにより、僅かな添
加量(0.1原子%以上1.0原子%未満)であっても
焼結時の粒成長を効果的に抑制できるため、希土類焼結
磁石の残留磁束密度や加工性をほとんど低下させること
なく、保磁力を充分に増大させ、しかも、減磁曲線の角
形性を良好なものとすることが可能になる。
According to the present invention, Nb and Mo are uniformly dispersed in the microstructure of the quenched alloy so that a small amount (0.1 atomic% or more and less than 1.0 atomic%) can be obtained. Can effectively suppress the grain growth during sintering, so that the coercive force can be sufficiently increased and the squareness of the demagnetization curve can be increased without substantially reducing the residual magnetic flux density and workability of the rare earth sintered magnet. It becomes possible to be good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例について、保磁力
cjのNb添加量(原子%)依存性を示すグラフであ
る。
FIG. 1 is a graph showing the dependency of coercive force H cj on the amount of added Nb (atomic%) in Examples and Comparative Examples of the present invention.

【図2】本発明の実施例および比較例について、残留磁
束密度BrのNb添加量(原子%)依存性を示すグラフ
である。
For Examples and Comparative Examples of the present invention; FIG is a graph showing the residual Nb addition amount of the magnetic flux density B r (atomic%) dependent.

【図3】本発明の実施例に関して求めた研削抵抗(N:
ニュートン)のNb添加量(原子%)依存性を示すグラ
フである。
FIG. 3 shows the grinding force (N:
9 is a graph showing the dependence of Nb on the amount (atomic%) of Nb.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 組成式が(Fe1-mm100-x-y-zx
yz(TはCoおよびNiからなる群から選択された1
種以上の元素、QはBおよびCからなる群から選択され
た1種以上の元素、Rは1種以上の希土類金属元素、M
はNbおよびMoからなる群から選択された少なくとも
1種の元素)で表現され、組成比率x、y、z、および
mが、それぞれ、 2≦x≦28(原子%)、 8≦y≦30(原子%)、 0.1≦z<1.0(原子%)、および 0≦m≦0.5 を満足する急冷凝固合金。
1. The composition formula is (Fe 1 -m T m ) 100-xyz Q x R
y M z (T is 1 selected from the group consisting of Co and Ni
At least one kind of element, Q is at least one kind of element selected from the group consisting of B and C, R is at least one kind of rare earth metal element, M
Is represented by at least one element selected from the group consisting of Nb and Mo), and the composition ratios x, y, z, and m are respectively 2 ≦ x ≦ 28 (atomic%), 8 ≦ y ≦ 30 (At.%), 0.1 ≦ z <1.0 (at.%), And 0 ≦ m ≦ 0.5.
【請求項2】 原料合金の溶湯を急冷して製造する際の
冷却速度が102K/秒以上104K/秒以下の範囲内に
ある請求項1に記載の急冷凝固合金。
2. The rapidly solidified alloy according to claim 1, wherein a cooling rate in producing the melt of the raw material alloy by quenching is in the range of 10 2 K / sec to 10 4 K / sec.
【請求項3】 Nbを必須元素として含有する請求項1
に記載の急冷凝固合金。
3. The method according to claim 1, wherein Nb is contained as an essential element.
2. The rapidly solidified alloy according to item 1.
【請求項4】 短軸方向サイズが0.1μm以上100
μm以下で長軸方向サイズが5μm以上500μm以下
のR2Fe14B型化合物結晶粒と、前記結晶粒の粒界に
分散して存在するRリッチ相とを含有しており、厚さが
0.03mm以上10mm以下の請求項1に記載の急冷
凝固合金。
4. The minor axis direction size is 0.1 μm or more and 100
It contains R 2 Fe 14 B-type compound crystal grains having a major axis size of 5 μm or more and 500 μm or less, and an R-rich phase dispersed and present at grain boundaries of the crystal grains, and has a thickness of 0 μm or less. 2. The rapidly solidified alloy according to claim 1, having a length of 0.03 mm or more and 10 mm or less.
【請求項5】 請求項1から4のいずれかに記載の急冷
凝固合金から形成された希土類磁石。
5. A rare earth magnet formed from the rapidly solidified alloy according to claim 1.
【請求項6】 原子比率で0.1%以上1.0%以下の
Nbおよび/またはMoが添加された急冷凝固合金から
形成された希土類−鉄−ホウ素型磁石。
6. A rare earth-iron-boron type magnet formed from a rapidly solidified alloy to which Nb and / or Mo having an atomic ratio of 0.1% or more and 1.0% or less is added.
【請求項7】 組成式が(Fe1-mm100-x-y-zx
yz(TはCoおよびNiからなる群から選択された1
種以上の元素、QはBおよびCからなる群から選択され
た1種以上の元素、Rは1種以上の希土類金属元素、M
はNbおよびMoからなる群から選択された少なくとも
1種の元素)で表現され、組成比率x、y、z、および
mが、それぞれ、 2≦x≦28(原子%)、 8≦y≦30(原子%)、 0.1≦z<1.0(原子%)、および 0≦m≦0.5 を満足する合金の溶湯を急冷し、凝固させることによっ
て急冷凝固合金を作製する工程と、 前記急冷凝固合金から永久磁石を作製する工程と、を包
含する希土類磁石の製造方法。
7. The composition formula is (Fe 1-m T m ) 100-xyz Q x R
y M z (T is 1 selected from the group consisting of Co and Ni
At least one kind of element, Q is at least one kind of element selected from the group consisting of B and C, R is at least one kind of rare earth metal element, M
Is represented by at least one element selected from the group consisting of Nb and Mo), and the composition ratios x, y, z, and m are respectively 2 ≦ x ≦ 28 (atomic%), 8 ≦ y ≦ 30 (Atomic%), 0.1 ≦ z <1.0 (atomic%), and a step of producing a rapidly solidified alloy by rapidly cooling and solidifying a molten alloy satisfying 0 ≦ m ≦ 0.5; Producing a permanent magnet from the rapidly solidified alloy.
【請求項8】 前記急冷凝固合金を作製する工程におい
て、急冷速度を102K/秒以上104K/秒以下の範囲
内にする請求項7に記載の希土類磁石の製造方法。
8. The method for producing a rare earth magnet according to claim 7, wherein, in the step of producing the rapidly solidified alloy, the rapid cooling rate is set in a range from 10 2 K / sec to 10 4 K / sec.
【請求項9】 前記急冷凝固合金を作製する工程におい
て、前記合金の溶湯をストリップキャスト法によって急
冷する請求項8に記載の希土類磁石の製造方法。
9. The method for producing a rare earth magnet according to claim 8, wherein in the step of producing the rapidly solidified alloy, the molten metal of the alloy is rapidly cooled by a strip casting method.
【請求項10】 前記急冷凝固合金に水素を吸蔵させた
後、前記水素を放出させる脆化工程を包含する請求項7
から9のいずれかに記載の希土類磁石の製造方法。
10. An embrittlement step of releasing hydrogen after absorbing the hydrogen into the rapidly solidified alloy.
10. The method for producing a rare earth magnet according to any one of items 1 to 9.
JP2001202124A 2000-07-10 2001-07-03 Rare earth magnet and manufacturing method thereof Expired - Lifetime JP3815983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001202124A JP3815983B2 (en) 2000-07-10 2001-07-03 Rare earth magnet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000207675 2000-07-10
JP2000-207675 2000-07-10
JP2001202124A JP3815983B2 (en) 2000-07-10 2001-07-03 Rare earth magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002088451A true JP2002088451A (en) 2002-03-27
JP3815983B2 JP3815983B2 (en) 2006-08-30

Family

ID=26595655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001202124A Expired - Lifetime JP3815983B2 (en) 2000-07-10 2001-07-03 Rare earth magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3815983B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191607A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013191616A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269643A (en) * 1995-03-29 1996-10-15 Sumitomo Special Metals Co Ltd Cast strip for r-fe-b magnetic alloy and its production
JPH1022155A (en) * 1996-07-05 1998-01-23 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet and rare-earth permanent magnet
JPH10189320A (en) * 1996-12-25 1998-07-21 Daido Steel Co Ltd Anisotropic magnet alloy powder, and its manufacture
JPH10280010A (en) * 1997-04-08 1998-10-20 Hitachi Metals Ltd Production of rare earth permanent magnet alloy powder
JPH1197223A (en) * 1997-09-17 1999-04-09 Hitachi Metals Ltd R-fe-b sintered permanent magnet
JPH11233323A (en) * 1998-02-13 1999-08-27 Daido Steel Co Ltd Manufacture of anisotropic magnet material and manufacture of bond magnet using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269643A (en) * 1995-03-29 1996-10-15 Sumitomo Special Metals Co Ltd Cast strip for r-fe-b magnetic alloy and its production
JPH1022155A (en) * 1996-07-05 1998-01-23 Hitachi Metals Ltd Manufacture of rare-earth permanent magnet and rare-earth permanent magnet
JPH10189320A (en) * 1996-12-25 1998-07-21 Daido Steel Co Ltd Anisotropic magnet alloy powder, and its manufacture
JPH10280010A (en) * 1997-04-08 1998-10-20 Hitachi Metals Ltd Production of rare earth permanent magnet alloy powder
JPH1197223A (en) * 1997-09-17 1999-04-09 Hitachi Metals Ltd R-fe-b sintered permanent magnet
JPH11233323A (en) * 1998-02-13 1999-08-27 Daido Steel Co Ltd Manufacture of anisotropic magnet material and manufacture of bond magnet using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191607A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2013191616A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method of manufacturing the same
US9607760B2 (en) 2012-12-07 2017-03-28 Samsung Electronics Co., Ltd. Apparatus for rapidly solidifying liquid in magnetic field and anisotropic rare earth permanent magnet

Also Published As

Publication number Publication date
JP3815983B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US8287661B2 (en) Method for producing R-T-B sintered magnet
US9551052B2 (en) Rare earth sintered magnet and method for production thereof
US6527874B2 (en) Rare earth magnet and method for making same
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3724513B2 (en) Method for manufacturing permanent magnet
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JP3540438B2 (en) Magnet and manufacturing method thereof
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3367726B2 (en) Manufacturing method of permanent magnet
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0745412A (en) R-fe-b permanent magnet material
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH11297518A (en) Pare-earth magnet material
JP4415551B2 (en) Rare earth alloy, rare earth sintered magnet and manufacturing method thereof
JP3171640B2 (en) Method for producing magnet and method for producing magnet powder
JPS61143553A (en) Production of material for permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3815983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

EXPY Cancellation because of completion of term