JP2002088441A - Heat resistant cast steel and its production method - Google Patents

Heat resistant cast steel and its production method

Info

Publication number
JP2002088441A
JP2002088441A JP2000365258A JP2000365258A JP2002088441A JP 2002088441 A JP2002088441 A JP 2002088441A JP 2000365258 A JP2000365258 A JP 2000365258A JP 2000365258 A JP2000365258 A JP 2000365258A JP 2002088441 A JP2002088441 A JP 2002088441A
Authority
JP
Japan
Prior art keywords
equivalent
mass
less
heat
cast steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000365258A
Other languages
Japanese (ja)
Other versions
JP3998413B2 (en
Inventor
Ryuichi Ishii
龍一 石井
Yoichi Tsuda
陽一 津田
Masayuki Yamada
政之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000365258A priority Critical patent/JP3998413B2/en
Publication of JP2002088441A publication Critical patent/JP2002088441A/en
Application granted granted Critical
Publication of JP3998413B2 publication Critical patent/JP3998413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce heat resistant cast steel exhibiting excellent mechanical properties under the environment in which high temperature vapor circulates and also excellent in cost effectiveness. SOLUTION: This steel has a composition containing, by mass, 0.15 to 0.3% C, 0.1 to 0.30% Si, 0.01 to 0.1% Mn, 2.0 to 2.5% Cr, 0.3 to 0.8% Mo, 0.23 to 0.3% V, 1.6 to 2.6% W, 0.005 to 0.03% N and 0.001 to 0.004% B, in which, in impurity elements, the content of Ni is limited to <=0.2%, P to <=0.03% and S to <=0.01%, and each equivalent of B, Mo and C calculated by a prescribed formula is controlled and has a structure in which a precipitated phase composed of M23C6 type carbide, M7C3 type carbide and MX type carbonitride are finely precipitated into a base phase, and also, the ratio of the precipitated phase to its base phase is 0.6 to 1.0%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気タービン車室
材料、蒸気タービン弁箱材料等として有用な耐熱鋳鋼お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant cast steel useful as a steam turbine casing material, a steam turbine valve box material, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】火力発電プラントにおいて、蒸気タービ
ン車室や蒸気タービン弁箱などの高温部材に用いられる
耐熱鋳鋼材料として、従来から1.25Cr−0.5M
o鋳鋼や1Cr−1Mo−0.25V鋳鋼などの低合金
耐熱鋳鋼が多用されている。
2. Description of the Related Art In a thermal power plant, as a heat-resistant cast steel material used for high-temperature members such as a steam turbine casing and a steam turbine valve case, 1.25Cr-0.5M has been conventionally used.
Low alloy heat-resistant cast steels such as o-cast steel and 1Cr-1Mo-0.25V cast steel are frequently used.

【0003】一方、近年の火力発電プラントでは、蒸気
の高温化が急速に進められている。これに伴い、高温部
材の材料を高Cr系耐熱鋳鋼に変更する動きが活発化し
ている。この種の高Cr系耐熱鋳鋼は、例えば特公平4
−53928号公報や特公平3−80865号公報に開
示されている。高Cr系耐熱鋳鋼は、高強度かつ耐高温
環境特性などに優れた特性を有しているので、蒸気の高
温化に伴う高温部材の肉厚増加を抑制できる。また、蒸
気タービンの起動停止に伴う熱応力を低減できるので、
蒸気タービンの運用性向上に寄与する。
On the other hand, in recent thermal power plants, the temperature of steam is rapidly increasing. Along with this, the movement to change the material of the high temperature member to high Cr heat resistant cast steel has been activated. This kind of high Cr heat resistant cast steel is, for example,
No. 5,39,28 and Japanese Patent Publication No. 3-80865. Since the high Cr heat-resistant cast steel has characteristics such as high strength and high-temperature environment resistance, it is possible to suppress an increase in the thickness of a high-temperature member due to a high temperature of steam. In addition, since the thermal stress associated with starting and stopping the steam turbine can be reduced,
It contributes to improving the operability of the steam turbine.

【0004】ところで、近年の火力発電プラントは、高
い熱効率とともに優れた経済性が要求される傾向にあ
る。このため、プラント構成材料は、従来のものと同等
か又はそれ以上の機械的性質や製造性を有するものと
し、かつ経済性にも優れたものとすることが不可欠とな
りつつある。このような要求を満たし得るものとして、
特開平2−217438号公報や特開平8−26961
6号公報に開示された鋼を例示できる。
[0004] Recent thermal power plants tend to require high thermal efficiency and excellent economic efficiency. For this reason, it is becoming indispensable for the plant constituent materials to have mechanical properties and manufacturability equal to or higher than those of conventional ones and to be excellent in economic efficiency. In order to meet such demands,
JP-A-2-217438 and JP-A-8-26961
No. 6 discloses steel.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、厚肉の
鋳造品として製造される高温部材の材料には、特開平2
−217438号公報や特開平8−269616号公報
に記載された鋼よりも優れた高温強度特性と優れた経済
性とを兼ね備えることが要求される。
However, the material of the high-temperature member manufactured as a thick cast product is disclosed in
It is required that the steel has both high-temperature strength characteristics superior to steel described in JP-A-217438 and JP-A-8-269616 and excellent economic efficiency.

【0006】本発明はこのような事情を考慮してなされ
たものであって、その目的とするところは、高温蒸気が
流通する環境下で優れた機械的性質を発揮するとともに
経済性に優れた耐熱鋳鋼およびその製造方法を提供する
ことにある。
The present invention has been made in view of such circumstances, and it is an object of the present invention to exhibit excellent mechanical properties in an environment where high-temperature steam flows and to be economically efficient. An object of the present invention is to provide a heat-resistant cast steel and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高Cr系
鋳鋼に匹敵する高温強度特性を有する経済的な低合金耐
熱鋳鋼を開発すべく鋭意研究を積み重ねた結果、以下に
述べる本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to develop an economical low-alloy heat-resistant cast steel having high-temperature strength characteristics comparable to high Cr cast steels. Was completed.

【0008】本発明に係る耐熱鋳鋼は、質量%で、C:
0.15〜0.3%、Si:0.1〜0.30%、M
n:0.01〜0.1%、Cr:2.0〜2.5%、M
o:0.3〜0.8%、V:0.23〜0.3%、W:
1.6〜2.6%、N:0.005〜0.03%、B:
0.001〜0.004%を含有し、かつ不純物元素の
うちNi:0.2%以下と、P:0.03%以下と、
S:0.01%以下とに制限し、かつ下式(1)により
求められるB当量が0.02%以下と、下式(2)によ
り求められるMo当量が1.4〜2.0%と、下式
(3)により求められるC当量が0.65%以上とを満
たし、残部が鉄および不可避的不純物からなり、M23
型炭化物と、M型炭化物と、MX型炭窒化物
とからなる析出相が母相に微細析出した組織であり、か
つ母相に対する析出相の比が0.6〜1.0質量%であ
ることを特徴とする。
[0008] The heat-resistant cast steel according to the present invention has a C:
0.15 to 0.3%, Si: 0.1 to 0.30%, M
n: 0.01 to 0.1%, Cr: 2.0 to 2.5%, M
o: 0.3-0.8%, V: 0.23-0.3%, W:
1.6 to 2.6%, N: 0.005 to 0.03%, B:
0.001 to 0.004%, and among the impurity elements, Ni: 0.2% or less, P: 0.03% or less,
S: It is limited to 0.01% or less, and the B equivalent obtained by the following formula (1) is 0.02% or less, and the Mo equivalent obtained by the following formula (2) is 1.4 to 2.0%. When filled and C equivalent amount calculated by the following equation (3) is 0.65% or more, and the balance of iron and unavoidable impurities, M 23
A C 6 type carbides, and M 7 C 3 type carbide precipitation phase consisting of MX-type carbonitrides are tissue was finely precipitated in the parent phase, and the ratio of precipitated phase to matrix phase 0.6 to 1. 0% by mass.

【0009】 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3) この場合に、前記Vの含有量を0.23〜0.27質量%とし、さらに、Nb を0.01〜0.06質量%含有し、下式(4)により
求められるNb当量が0.15%以下を満たすようにし
てもよい。
B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3) In this case, V Is set to 0.23 to 0.27% by mass, Nb is further contained to 0.01 to 0.06% by mass, and the Nb equivalent determined by the following formula (4) satisfies 0.15% or less. It may be.

【0010】Nb当量=Nb+0.4C …(4) また、前記Vの含有量を0.23〜0.27質量%と
し、さらに、Ti:0.005〜0.01質量%を含有
するようにしてもよい。
Nb equivalent = Nb + 0.4C (4) Further, the content of V is set to 0.23 to 0.27% by mass, and the content of Ti is set to 0.005 to 0.01% by mass. You may.

【0011】さらに、前記Vの含有量を0.25〜0.
3%とするようにしてもよい。
Further, the content of V is set to 0.25 to 0.5.
You may make it 3%.

【0012】本発明に係る耐熱鋳鋼は、質量%で、C:
0.15〜0.3%、Si:0.1〜0.30%、M
n:0.4〜0.7%、Cr:2.0〜2.5%、M
o:0.3〜0.8%、V:0.23〜0.3%、W:
1.6〜2.6%、N:0.005〜0.03%、B:
0.001〜0.004%を含有し、かつ不純物元素の
うちNi:0.5%以下と、P:0.03%以下と、
S:0.01%以下とに制限し、かつ下式(1)により
求められるB当量が0.02%以下と、下式(2)によ
り求められるMo当量が1.4〜2.0%と、下式
(3)により求められるC当量が0.65%以上とを満
たし、残部が鉄および不可避的不純物からなり、M23
型炭化物と、M型炭化物と、MX型炭窒化物
とからなる析出相が母相に微細析出した組織であり、か
つ母相に対する析出相の比が0.6〜1.0質量%であ
ることを特徴とする。
[0012] The heat-resistant cast steel according to the present invention contains, by mass%, C:
0.15 to 0.3%, Si: 0.1 to 0.30%, M
n: 0.4 to 0.7%, Cr: 2.0 to 2.5%, M
o: 0.3-0.8%, V: 0.23-0.3%, W:
1.6 to 2.6%, N: 0.005 to 0.03%, B:
0.001 to 0.004%, and among the impurity elements, Ni: 0.5% or less, P: 0.03% or less,
S: It is limited to 0.01% or less, and the B equivalent obtained by the following formula (1) is 0.02% or less, and the Mo equivalent obtained by the following formula (2) is 1.4 to 2.0%. When filled and C equivalent amount calculated by the following equation (3) is 0.65% or more, and the balance of iron and unavoidable impurities, M 23
A C 6 type carbides, and M 7 C 3 type carbide precipitation phase consisting of MX-type carbonitrides are tissue was finely precipitated in the parent phase, and the ratio of precipitated phase to matrix phase 0.6 to 1. 0% by mass.

【0013】 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3) この場合に、前記Vの含有量を0.23〜0.27質量
%とし、さらに、Ti:0.005〜0.01質量%、
Nbを0.01〜0.06質量%含有し、下式(4)に
より求められるNb当量が0.15%以下を満たすよう
にしてもよい。
B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3) In this case, V Is set to 0.23 to 0.27% by mass, and further, Ti: 0.005 to 0.01% by mass,
Nb may be contained in an amount of 0.01 to 0.06% by mass, and the Nb equivalent obtained by the following formula (4) may satisfy 0.15% or less.

【0014】Nb当量=Nb+0.4C …(4) また、前記Vの含有量を0.23〜0.25質量%と
し、さらに、Ti:0.01〜0.025質量%を含有
するようにしてもよい。
Nb equivalent = Nb + 0.4C (4) Further, the content of V is set to 0.23 to 0.25% by mass, and the content of Ti is set to 0.01 to 0.025% by mass. You may.

【0015】さらに、前記Vの含有量を0.25〜0.
3%とするようにしてもよい。
Further, the content of V is set to 0.25 to 0.5.
You may make it 3%.

【0016】上記の各成分の働きおよび組成範囲の限定
理由を以下の(a)項〜(p)項に説明する。なお、以
下の説明における%表示は、とくに断らない限り質量%
を意味する。
The functions of the above components and the reasons for limiting the composition range will be described in the following items (a) to (p). In the following description, “%” indicates mass% unless otherwise specified.
Means

【0017】(a)C:0.15〜0.3% Cは、焼入れ性の確保、フェライトの生成抑制、析出強
化に寄与する炭化物もしくは炭窒化物として析出する働
きを有する。焼入れ性の確保およびフェライト生成の抑
制は、特に大型鋳塊を鋳造する場合に、厚肉部の機械的
性質を確保する上で重要である。C含有量を0.15%
未満にすると、これらの働きが十分になされない可能性
がある。一方、0.3%を超えるC含有量にすると、析
出した炭化物の凝集を促進させるとともに溶接性を低下
させるおそれがある。
(A) C: 0.15 to 0.3% C has a function of securing hardenability, suppressing formation of ferrite, and precipitating as carbide or carbonitride which contributes to precipitation strengthening. Ensuring hardenability and suppressing the formation of ferrite are important for ensuring the mechanical properties of the thick part, especially when casting large ingots. 0.15% C content
If it is less than these, these functions may not be sufficiently performed. On the other hand, if the C content exceeds 0.3%, the aggregation of precipitated carbides may be promoted and weldability may be reduced.

【0018】(b)Si:0.1〜0.3% Siは、脱酸剤としての働きを有するとともに良好な鋳
造性の確保や耐水蒸気酸化特性を高める働きを有する。
Si含有量を0.1%未満にすると、これらの働きが十
分になされない可能性がある。一方、0.3%を超える
含有量にすると、靭性が低下して脆化を促進させるおそ
れがある。
(B) Si: 0.1 to 0.3% Si has a function as a deoxidizing agent, and also has a function to secure good castability and enhance steam oxidation resistance.
If the Si content is less than 0.1%, these functions may not be sufficiently performed. On the other hand, if the content is more than 0.3%, the toughness may be reduced and embrittlement may be promoted.

【0019】(c)Mn:0.01〜0.1%もしくは
0.4〜0.7% Mnは、脱硫剤としての働きを有する。Mn含有量を
0.01%未満にすると、脱硫効果を奏することが困難
となる。0.1%を超えるMn含有量にすると、クリー
プ強度を低下させるおそれがある。
(C) Mn: 0.01 to 0.1% or 0.4 to 0.7% Mn has a function as a desulfurizing agent. When the Mn content is less than 0.01%, it is difficult to exhibit a desulfurization effect. If the Mn content exceeds 0.1%, the creep strength may be reduced.

【0020】なお、本発明の耐熱鋳鋼を大型厚肉部品と
して使用する場合には、焼き入れ時の冷却速度の低下に
よって厚肉部におけるフェライトの生成傾向が高まるた
め、Mn添加量を増加させることが好ましい。厚肉部で
のフェライトの生成を完全に抑制するには0.4%以上
の添加が必要である。この場合に、Mn0.01〜0.
1%添加の鋳鋼に比べるとMn0.4%以上添加の鋳鋼
ではクリープ強度は若干低下するが、Mn添加量を0.
7%以下であればクリープ強度の著しい低下は回避でき
る。
When the heat-resistant cast steel of the present invention is used as a large-sized thick-walled part, the cooling rate at the time of quenching lowers the ferrite generation tendency in the thick-walled part. Is preferred. To completely suppress the formation of ferrite in the thick portion, it is necessary to add 0.4% or more. In this case, Mn is 0.01 to 0.1.
The creep strength of the cast steel containing 0.4% or more of Mn is slightly lower than that of the cast steel containing 1% of Mn.
If it is 7% or less, a significant decrease in creep strength can be avoided.

【0021】(d)Cr:2.0〜2.5% Crは、耐酸化性および耐食性を高める働きを有すると
ともに、析出強化に寄与する析出物として析出する働き
を有する。Cr含有量を2.0%未満にすると、これら
の働きが十分になされない可能性がある。2.5%を超
える含有量にすると、靭性および組織安定性を低下させ
るおそれがある。
(D) Cr: 2.0 to 2.5% Cr has a function of improving oxidation resistance and corrosion resistance and a function of precipitating as a precipitate contributing to precipitation strengthening. If the Cr content is less than 2.0%, these functions may not be sufficiently performed. If the content exceeds 2.5%, toughness and structure stability may be reduced.

【0022】(e)Mo:0.3〜0.8% Moは、固溶強化に寄与する働きおよび炭化物として析
出して析出強化に寄与する働きを有する。Mo含有量を
0.3%未満にすると、これらの働きが十分になされな
い可能性がある。0.8%を超えるMo含有量にする
と、靭性を低下させるおそれやフェライトの生成を促進
させるおそれがある。
(E) Mo: 0.3 to 0.8% Mo has a function of contributing to solid solution strengthening and a function of precipitating as carbide to contribute to precipitation strengthening. If the Mo content is less than 0.3%, these functions may not be sufficiently performed. If the Mo content is more than 0.8%, the toughness may be reduced or the formation of ferrite may be promoted.

【0023】(f)W:1.6〜2.6% Wは、上記のMoと同様に、固溶強化に寄与する働きお
よび炭化物として析出して析出強化に寄与する働きを有
する。また、このWは上記のMoとともに含有させるこ
とによって固溶強化作用をより顕著になすことができ
る。
(F) W: 1.6 to 2.6% W has a function of contributing to solid solution strengthening and a function of precipitating as carbides and contributing to precipitation strengthening, similarly to Mo described above. Further, when W is contained together with the above-mentioned Mo, the solid solution strengthening action can be made more remarkable.

【0024】固溶化W量を長期間にわたり高く維持する
ために、W含有量を1.6%以上とすることが必要であ
る。しかし、2.6%を超えるW含有量にすると、靭性
を低下させるおそれやフェライトの生成を促進させるお
それがある。
In order to keep the amount of solution W high for a long period of time, it is necessary to make the W content 1.6% or more. However, when the W content is more than 2.6%, there is a possibility that toughness may be reduced and the formation of ferrite may be promoted.

【0025】(g)B:0.001〜0.004% Bは、微量の添加で焼入れ性を高めるとともに、高温下
であっても、結晶粒界およびその近傍に析出する炭窒化
物を安定化させてそれらの粗大化を抑制する働きを有す
る。B含有量を0.001%未満にすると、これらの働
きが不十分となる。0.004%を超えるB含有量にす
ると、溶接性を損なうおそれがある。
(G) B: 0.001 to 0.004% B enhances hardenability by adding a small amount, and stabilizes carbonitrides deposited at and around crystal grain boundaries even at high temperatures. And has the function of suppressing their coarsening. If the B content is less than 0.001%, these functions become insufficient. If the B content exceeds 0.004%, the weldability may be impaired.

【0026】(h)N:0.005〜0.03% Nは、母相中に固溶して固溶強化に寄与する働きと窒化
物もしくは炭窒化物を生成して析出強化に寄与する働き
とを有する。N含有量を0.005%未満にすると、こ
れらの働きが十分になされない可能性がある。0.03
%を超えるN含有量にすると、窒化物もしくは炭窒化物
の粗大化が促進され、クリープ強度を低下させるととも
に粗大生成物の生成を促進させるおそれがある。このN
含有量は、0.01〜0.025%の範囲内とすること
が好ましい。これにより、組織をより安定化させてクリ
ープ強度をより高めることができる。
(H) N: 0.005 to 0.03% N contributes to solid solution strengthening by forming a solid solution in the matrix and contributes to precipitation strengthening by forming nitride or carbonitride. Have a function. If the N content is less than 0.005%, these functions may not be sufficiently performed. 0.03
If the N content exceeds%, the coarsening of the nitride or carbonitride is promoted, which may lower the creep strength and promote the generation of a coarse product. This N
The content is preferably in the range of 0.01 to 0.025%. Thereby, the structure can be further stabilized, and the creep strength can be further increased.

【0027】 (i)V:0.23〜0.3% (i−1)V:0.23〜0.27%(Nb又はTiと
の複合添加の場合) (i−2)V:0.25〜0.3%(V単独添加の場
合) (i−3)V:0.23〜0.25%(Tiとの複合添
加の場合で、かつ、Ti添加量が0.01〜0.025
%の場合) Vは、微細な炭窒化物として析出し、析出強化に寄与す
る働きを有する。Vと、後述のNb又はTiとを複合添
加する場合、V炭窒化物以外にNb又はTiの炭窒化物
が析出するため、V炭窒化物による析出強化の働きを補
完する。本発明では、VとNb又はTiとの複合添加の
場合、V含有量を0.23%以上とすることにより、N
b又はTi炭窒化物の析出とともに、V炭窒化物を高密
度にかつ適量析出させることができ、これにより回復が
起こるのを抑制できる。しかし、この場合に0.27%
を超えるV含有量にすると、V炭窒化物の粗大化傾向が
大きくなるおそれがある。
(I) V: 0.23 to 0.3% (i-1) V: 0.23 to 0.27% (in the case of complex addition with Nb or Ti) (i-2) V: 0 .25 to 0.3% (when V is added alone) (i-3) V: 0.23 to 0.25% (when combined with Ti and the amount of Ti added is 0.01 to 0) .025
%) V precipitates as fine carbonitrides and has a function of contributing to precipitation strengthening. When V and Nb or Ti, which will be described later, are added in a complex manner, Nb or Ti carbonitride precipitates in addition to V carbonitride, thereby complementing the function of precipitation strengthening by V carbonitride. In the present invention, in the case of a composite addition of V and Nb or Ti, the V content is set to 0.23% or more,
Along with the precipitation of b or Ti carbonitride, V carbonitride can be deposited at a high density and in an appropriate amount, whereby the occurrence of recovery can be suppressed. However, in this case 0.27%
If the V content exceeds the range, the tendency of V carbonitride to become coarse may increase.

【0028】また、Tiとの複合添加に限り、V含有量
を0.25%以下に抑制し、Ti含有量を増加させるこ
とにより充分な析出量を確保できる。
In addition, only in the case of the composite addition with Ti, a sufficient precipitation amount can be secured by suppressing the V content to 0.25% or less and increasing the Ti content.

【0029】一方、NbまたはTiを添加せずにVのみ
を単独添加する場合には、Nb又はTiの炭窒化物の析
出量に相等する分量のV炭窒化物を析出させるためにT
i又はNbとの複合添加の場合よりもV添加量を増加さ
せる必要がある。このため、V単独添加の場合には、V
含有量を0.25〜0.3%に規定した。
On the other hand, when only V is added without adding Nb or Ti, T is added in order to precipitate an amount of V carbonitride equivalent to the amount of Nb or Ti carbonitride.
It is necessary to increase the amount of V added as compared with the case of the composite addition with i or Nb. Therefore, when V alone is added, V
The content was defined as 0.25 to 0.3%.

【0030】(j)Nb:0.01〜0.06% Nbは、前述のVおよび後述のTiと同様に微細な炭窒
化物として析出して析出強化に寄与する働きを有する。
Nb含有量を0.01%未満にすると、上記の働きが十
分になされないおそれがある。0.06%を超えるNb
含有量にすると、粗大な炭窒化物が多量に析出し、析出
強化作用が認められなくなるおそれがある。
(J) Nb: 0.01 to 0.06% Nb has a function of contributing to precipitation strengthening by precipitating as fine carbonitrides, like V described above and Ti described later.
If the Nb content is less than 0.01%, the above function may not be sufficiently performed. Nb exceeding 0.06%
When the content is set, a large amount of coarse carbonitrides may precipitate, and the precipitation strengthening effect may not be recognized.

【0031】(k)Ti:0.005〜0.01%もし
くは0.01〜0.025% Tiは、脱酸作用を有するとともに、微細な炭窒化物と
して析出し、析出強化に寄与する働きを有する。Ti含
有量を0.005%以上とすることによりこれらの働き
を十分になすことができる。しかし、VとTiとの複合
添加において、0.01%を超えるTi含有量にする
と、粗大な炭窒化物を多量に析出し、析出強化作用が認
められなくなるおそれがある。ただし、複合添加される
V量を0.25%以下に抑制した場合には、微細な炭窒
化物の析出強化作用をより効果的に発揮させるために
0.01%を超えるTi添加が有効となる。0.025
%を超えると粗大な炭窒化物の多量析出を誘発し、析出
強化作用が認められなくなる。
(K) Ti: 0.005 to 0.01% or 0.01 to 0.025% Ti not only has a deoxidizing effect, but also precipitates as fine carbonitrides and contributes to precipitation strengthening. Having. By setting the Ti content to 0.005% or more, these functions can be sufficiently performed. However, if the content of Ti exceeds 0.01% in the composite addition of V and Ti, a large amount of coarse carbonitrides may precipitate, and the precipitation strengthening effect may not be recognized. However, when the amount of V added in combination is suppressed to 0.25% or less, it is effective to add more than 0.01% of Ti in order to more effectively exert the precipitation strengthening action of fine carbonitrides. Become. 0.025
%, Large amounts of coarse carbonitrides are induced, and no precipitation strengthening effect is observed.

【0032】(l)その他の元素 上記の各成分および主成分であるFe以外に、不可避的
に含有される不純物は極力低減することが望ましい。特
に、P、S、Niなどの不純物元素は原料からの混入が
避けられない。原料の厳選や高度な溶解・製鋼技術によ
りこれらの元素の含有を低減できるが、経済的なもので
はない。このような観点から、Ni:0.2%以下、
P:0.03%以下、S:0.01%以下とした。
(L) Other elements In addition to the above-mentioned components and Fe as the main component, it is desirable that impurities unavoidably contained be reduced as much as possible. In particular, impurity elements such as P, S, and Ni are inevitably mixed from the raw material. Although the content of these elements can be reduced by careful selection of raw materials and advanced melting and steelmaking techniques, it is not economical. From such a viewpoint, Ni: 0.2% or less,
P: 0.03% or less, S: 0.01% or less.

【0033】なお、本耐熱鋳鋼を大型肉厚部品として使
用する場合には、焼入れ時の冷却速度の低下によって肉
厚部におけるフェライトの生成傾向が高まるため、Ni
添加量を増加させることが好ましく、また、より経済的
な優位性を指向した場合には、原料に混入するNi量の
制限値は高い方が有効である。ただし、0.5%を超え
るとクリープ強度の低下を招くおそれがある。このよう
な観点から、Ni:0.2%以下もしくは0.5%以
下、P:0.03%以下、S:0.01%以下とした。
When the heat-resistant cast steel is used as a large-sized thick part, the cooling rate at the time of quenching lowers the ferrite generation tendency in the thick part.
It is preferable to increase the amount of addition, and when more economical advantage is aimed at, the higher the limit value of the amount of Ni mixed into the raw material, the more effective. However, if it exceeds 0.5%, the creep strength may decrease. From such a viewpoint, Ni: 0.2% or less or 0.5% or less, P: 0.03% or less, and S: 0.01% or less.

【0034】(m)B+0.5N≦0.2% Bは、特にNと化合しやすく、窒化ボロンとなりやす
い。この窒化ボロンは帯状又は粗大に鋳塊中に残存し、
機械的性質を低下させる。本発明では、B含有量とN含
有量の0.5倍量との和をB当量として定義し、このB
当量値の上限値を0.02%とすることによりBN化合
物の生成を抑制できる。
(M) B + 0.5N ≦ 0.2% B is particularly apt to be combined with N and is likely to be boron nitride. This boron nitride remains in the ingot in the form of a band or coarsely,
Decreases mechanical properties. In the present invention, the sum of the B content and 0.5 times the N content is defined as B equivalent,
By setting the upper limit of the equivalent value to 0.02%, generation of a BN compound can be suppressed.

【0035】(n)1.4%≦Mo+0.5W≦2.0
% 前述したようにMoとWとをともに含有させることによ
って固溶強化作用が顕著なものとなる。本発明では、M
o含有量とW含有量の0.5倍量との和をMo当量と定
義し、このMo当量値を1.4〜2.0%の範囲内に規
定することにより、固溶強化作用がより顕著なものとな
り、かつフェライト生成を有効に抑制できる。
(N) 1.4% ≦ Mo + 0.5W ≦ 2.0
% As described above, the inclusion of both Mo and W significantly enhances the solid solution strengthening action. In the present invention, M
The sum of the o content and 0.5 times the W content is defined as Mo equivalent, and by defining this Mo equivalent value in the range of 1.4 to 2.0%, the solid solution strengthening effect is improved. It becomes more remarkable, and generation of ferrite can be effectively suppressed.

【0036】(o)0.65%≦C+Mn/6+Si/
24+Ni/40+Cr/5+Mo/15+V/14 C元素で説明したように、焼入れ性確保およびフェライ
ト生成の抑制は、厚肉の鋳造物の機械的性質を向上させ
る上で重要である。本発明では、C含有量を(a)項に
示す成分範囲に限定するとともに、さらに、上記(3)
式「C+Mn/6+Si/24+Ni/40+Cr/5
+Mo/15+V/14」から求められる値をC当量と
定義し、このC当量値の下限値を0.65%と規定する
ことにより、溶接性を損なうことなく焼入れ性を確保で
き、かつフェライトの生成を抑制できる。
(O) 0.65% ≦ C + Mn / 6 + Si /
As described for the 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14C element, ensuring hardenability and suppressing ferrite formation are important for improving the mechanical properties of a thick cast product. In the present invention, the C content is limited to the component range shown in the item (a), and the C content is further reduced in the above (3).
Formula "C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5
+ Mo / 15 + V / 14 "is defined as C equivalent, and by defining the lower limit of the C equivalent value as 0.65%, hardenability can be ensured without impairing weldability, and ferrite can be obtained. Generation can be suppressed.

【0037】(p)Nb+0.4C≦0.15% Nbを含有させた場合、大型鋳塊の凝固時に粗大なNb
炭化物が析出し、このNb炭化物が残存した場合に機械
的性質に悪影響を及ぼすことが知られている。本発明で
はNb含有量とC含有量の0.4倍量との和をNb当量
と定義し、Nbを含有させる場合には、Nb当量値を
0.15%以下と規定することにより粗大なNb炭化物
の生成を抑制できる。
(P) Nb + 0.4C ≦ 0.15% When Nb is contained, coarse Nb
It is known that when carbides precipitate and this Nb carbide remains, it adversely affects mechanical properties. In the present invention, the sum of the Nb content and the 0.4-fold amount of the C content is defined as Nb equivalent, and when Nb is contained, the Nb equivalent value is defined as 0.15% or less, whereby coarseness is obtained. Generation of Nb carbide can be suppressed.

【0038】本発明の耐熱鋳鋼は、M23型炭化
物、M型炭化物およびMX型炭窒化物が母相に微
細析出した組織である。この場合に、MはCr、Mo、
W、V、Nb等の元素のうちから1種又は2種以上を組
み合わせたものからなり、XはC,N等の元素からなる
ものである。M23型炭化物、M型炭化物お
よびMX型炭窒化物がからなる析出相の母相に対する質
量比を0.6〜1.0%と規定した理由を以下に説明す
る。
The heat-resistant cast steel of the present invention has a structure in which M 23 C 6 type carbide, M 7 C 3 type carbide and MX type carbonitride are finely precipitated in the matrix. In this case, M is Cr, Mo,
It is composed of one or a combination of two or more of elements such as W, V and Nb, and X is composed of elements such as C and N. M 23 C 6 type carbide, explaining why the defined as 0.6 to 1.0 percent by mass ratio matrix of M 7 C 3 -type carbide and MX type carbonitrides consist precipitation phase below.

【0039】上記の各析出物は後述する製造方法の焼も
どし工程で母相に析出させる。このとき、母相に対する
析出相の比を0.6質量%未満にすると、クリープ強度
とシャルピー衝撃特性とを良好なものとして両立できな
いおそれがある。一方、1.0質量%を超える質量比に
すると、高温使用下で母相から新たに析出してクリープ
強度の維持に寄与するMX型炭窒化物の構成元素が母相
中から枯渇するため、高温下でのクリープ強度特性を安
定化させることが困難となる。
Each of the above-mentioned precipitates is deposited on the mother phase in the tempering step of the production method described later. At this time, if the ratio of the precipitated phase to the mother phase is less than 0.6% by mass, there is a possibility that the creep strength and the Charpy impact characteristics may not be good and compatible. On the other hand, when the mass ratio exceeds 1.0% by mass, the constituent elements of the MX-type carbonitride which newly precipitate from the mother phase and contribute to maintaining the creep strength under high temperature use are depleted from the mother phase. It becomes difficult to stabilize the creep strength characteristics at high temperatures.

【0040】以上説明した本発明の耐熱鋳鋼は、低合金
鋳鋼でありながら、定常運転時の最高使用温度が538
℃である蒸気タービン車室および蒸気タービン弁箱の材
料として優れた特性を示し、従来の1%CrMoV低合
金耐熱鋳鋼を上回るクリープ破断強度を有する。したが
って、本発明の耐熱鋳鋼を定常運転時の最高使用温度が
538℃である蒸気タービン車室および蒸気タービン弁
箱の材料として用いることにより、車室や弁箱の肉厚を
薄肉化できる。具体的には、従来の1%CrMoV低合
金耐熱鋳鋼を用いた場合に要する肉厚の約75%に薄肉
化できる。
The heat-resistant cast steel of the present invention described above is a low-alloy cast steel, but has a maximum operating temperature of 538 during steady operation.
It has excellent properties as a material for steam turbine casings and steam turbine valve cases at ℃, and has a creep rupture strength exceeding that of conventional 1% CrMoV low alloy heat-resistant cast steel. Therefore, by using the heat-resistant cast steel of the present invention as a material for a steam turbine casing and a steam turbine valve box having a maximum operating temperature of 538 ° C. during steady operation, the thickness of the casing and the valve box can be reduced. Specifically, the thickness can be reduced to about 75% of the wall thickness required when a conventional 1% CrMoV low alloy heat-resistant cast steel is used.

【0041】また、定常運転時の最高使用温度が566
℃である蒸気タービン車室および蒸気タービン弁箱の材
料として本発明の耐熱鋳鋼を従来の高Cr系耐熱鋳鋼の
代わりに用いることができる。さらに、定常運転時の最
高使用温度が593℃である蒸気タービン車室の材料と
しても本発明の耐熱鋳鋼を用いることができる。これに
より、従来の高Cr系耐熱鋳鋼を用いた場合よりも肉厚
を約25%増加させる必要が生じるものの、本発明の耐
熱鋳鋼は低合金であるため素材コストを大幅に低減でき
る。その結果、上記の車室および弁箱を従来よりも低コ
ストで製造できる。
The maximum operating temperature during steady operation is 566.
The heat-resistant cast steel of the present invention can be used in place of the conventional high Cr heat-resistant cast steel as a material for the steam turbine casing and the steam turbine valve case at a temperature of ° C. Further, the heat-resistant cast steel of the present invention can also be used as a material for a steam turbine casing having a maximum operating temperature of 593 ° C. during normal operation. Thus, although it is necessary to increase the wall thickness by about 25% as compared with the case of using the conventional high Cr heat-resistant cast steel, the heat-resistant cast steel of the present invention is a low alloy, so that the material cost can be significantly reduced. As a result, the vehicle compartment and the valve box described above can be manufactured at lower cost than before.

【0042】さらに、定常運転時の最高使用温度が59
3℃である蒸気タービン車室を製造するにあたり、本発
明の耐熱鋳鋼と従来の高Cr系耐熱鋳鋼とを組み合わせ
て用いることができる。すなわち、蒸気タービン車室の
高温蒸気流入部であって570℃以上の蒸気に晒される
部位に本発明の耐熱鋳鋼を用い、それ以外の部位は従来
の高Cr系耐熱鋳鋼または低合金耐熱鋳鋼を用い、本発
明の耐熱鋳鋼と従来の高Cr系耐熱鋳鋼または低合金耐
熱鋳鋼とを突き合わせ溶接して構成された蒸気タービン
車室を提供できる。この場合に用いられる高Cr系耐熱
鋳鋼の一例として、質量%で、C:0.12〜0.16
%、Si:0.2〜0.35%、Mn:0.5〜0.7
%、Ni:0.3〜0.6%、Cr:9.6〜10.6
%、Mo:0.7〜1.0%、V:0.2〜0.35
%、Nb:0.07〜0.13%、N:0.03〜0.
06%、P:0.02%以下、S:0.02%以下、A
l:0.01%以下を含有し、残部が鉄および不可避的
不純物からなる耐熱鋳鋼を挙げることができる。また、
上記の低合金耐熱鋳鋼の一例としては、質量%で、C:
0.12〜0.18%、Si:0.2〜0.6%、M
n:0.5〜0.9%、Cr:1.0〜1.5%、M
o:0.9〜1.2%、V:0.2〜0.35%、P:
0.02%以下、S:0.012%以下、Ni:0.5
%以下、Al:0.01%以下を含有し、残部が鉄およ
び不可避的不純物からなる耐熱鋳鋼を挙げることができ
る。
Further, the maximum operating temperature during steady operation is 59
In manufacturing the steam turbine casing at 3 ° C., the heat-resistant cast steel of the present invention and the conventional high Cr heat-resistant cast steel can be used in combination. That is, the heat-resistant cast steel of the present invention is used in a high-temperature steam inflow portion of a steam turbine casing and is exposed to steam at 570 ° C. or higher, and the other portions are made of conventional high Cr heat-resistant cast steel or low alloy heat-resistant cast steel. It is possible to provide a steam turbine casing configured by butt-welding the heat-resistant cast steel of the present invention and a conventional high-Cr heat-resistant cast steel or low-alloy heat-resistant cast steel. As an example of the high Cr heat resistant cast steel used in this case, C: 0.12 to 0.16 by mass%.
%, Si: 0.2 to 0.35%, Mn: 0.5 to 0.7
%, Ni: 0.3 to 0.6%, Cr: 9.6 to 10.6
%, Mo: 0.7 to 1.0%, V: 0.2 to 0.35
%, Nb: 0.07 to 0.13%, N: 0.03 to 0.1%.
06%, P: 0.02% or less, S: 0.02% or less, A
l: Heat-resistant cast steel containing 0.01% or less, with the balance being iron and unavoidable impurities. Also,
As an example of the above low alloy heat resistant cast steel, C:
0.12-0.18%, Si: 0.2-0.6%, M
n: 0.5 to 0.9%, Cr: 1.0 to 1.5%, M
o: 0.9-1.2%, V: 0.2-0.35%, P:
0.02% or less, S: 0.012% or less, Ni: 0.5
% Or less, Al: 0.01% or less, with the balance being iron and unavoidable impurities.

【0043】次に、本発明に係る耐熱鋳鋼の製造方法に
ついて説明する。
Next, a method for producing a heat-resistant cast steel according to the present invention will be described.

【0044】本発明に係る耐熱鋳鋼の製造方法は、質量
%で、C:0.15〜0.30%、Si:0.1〜0.
3%、Mn:0.01〜0.1%、Cr:2.0〜2.
5%、Mo:0.3〜0.8%、V:0.23〜0.3
%、W:1.6〜2.6%、N:0.005〜0.03
%、B:0.001〜0.004%を含有し、かつ下式
(1)により求められるB当量が0.02%以下と、下
式(2)により求められるMo当量が1.4〜2.0%
と、下式(3)により求められるC当量が0.65%以
上とを満たし、かつ不純物元素のうちNi:0.2%以
下と、P:0.03%以下と、S:0.01%以下とに
制限し、残部が鉄および不可避的不純物からなる鋳造物
を1030〜1070℃の温度域に加熱保持した後に焼
入れる工程と、この工程の後に680〜740℃の温度
域に焼もどす工程と、を備えたことを特徴としている。
In the method for producing a heat-resistant cast steel according to the present invention, C: 0.15 to 0.30% and Si: 0.1 to 0.
3%, Mn: 0.01-0.1%, Cr: 2.0-2.
5%, Mo: 0.3-0.8%, V: 0.23-0.3
%, W: 1.6 to 2.6%, N: 0.005 to 0.03
%, B: 0.001 to 0.004%, and the B equivalent determined by the following formula (1) is 0.02% or less, and the Mo equivalent determined by the following formula (2) is 1.4 to 2.0%
And the C equivalent obtained by the following formula (3) satisfies 0.65% or more, and among the impurity elements, Ni: 0.2% or less, P: 0.03% or less, and S: 0.01 %, With the balance consisting of iron and unavoidable impurities being heated and maintained in a temperature range of 1030 to 1070 ° C., followed by quenching, and after this process, tempered to a temperature range of 680 to 740 ° C. And a process.

【0045】 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3) この場合に、前記Vの含有量を0.23〜0.27質量
%とし、さらに、Ti:0.005〜0.01質量%、
Nbを0.01〜0.06質量%含有し、下式(4)に
より求められるNb当量が0.15%以下を満たすよう
にしてもよい。
B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3) In this case, V Is set to 0.23 to 0.27% by mass, and further, Ti: 0.005 to 0.01% by mass,
Nb may be contained in an amount of 0.01 to 0.06% by mass, and the Nb equivalent obtained by the following formula (4) may satisfy 0.15% or less.

【0046】Nb当量=Nb+0.4C …(4) また、前記Vの含有量を0.23〜0.27質量%と
し、さらに、Ti:0.005〜0.01質量%を含有
し、焼もどし工程では720〜780℃の温度域に加熱
することとしてもよい。
Nb equivalent = Nb + 0.4C (4) Further, the content of V is set to 0.23 to 0.27% by mass, and Ti is further contained by 0.005 to 0.01% by mass. In the return step, heating may be performed to a temperature range of 720 to 780 ° C.

【0047】さらに、前記Vの含有量を0.25〜0.
3質量%とするようにしてもよい。
Further, the content of V is set to 0.25 to 0.5.
You may make it 3 mass%.

【0048】本発明の製造方法は、まず、前述の特定の
組成範囲を満たす各成分を含有した溶湯を砂型に鋳込ん
だ後、得られた鋳塊を焼鈍して鋳造物を得る。次いで、
この鋳造物を焼きならし処理(溶体化処理)する。
In the production method of the present invention, first, a molten metal containing each component satisfying the above specific composition range is cast into a sand mold, and the obtained ingot is annealed to obtain a casting. Then
This casting is subjected to normalizing treatment (solution treatment).

【0049】鋳造時の冷却過程においては、V、Ti、
Nbが粗大な炭窒化物として残存する。本発明では焼き
ならし処理によりこれらの粗大な炭窒化物をオーステナ
イト基地中に溶解させる。このとき、焼きならし処理時
の加熱保持温度を1030℃未満にすると、上記の粗大
な炭窒化物をオーステナイト基地中に溶解させることが
困難となる。一方、焼きならし処理時に1070℃を超
える加熱保持温度にすると、基地がオーステナイト単相
領域を外れ、焼入れ後に得られる金属組織が不均一とな
る。これらのことから、焼きならし処理時の加熱保持温
度を1030〜1070℃の範囲に規定した。
In the cooling process during casting, V, Ti,
Nb remains as coarse carbonitride. In the present invention, these coarse carbonitrides are dissolved in the austenitic matrix by normalizing. At this time, if the heating and holding temperature during the normalizing treatment is set to less than 1030 ° C., it becomes difficult to dissolve the coarse carbonitride in the austenite matrix. On the other hand, if the heating and holding temperature exceeds 1070 ° C. during the normalizing treatment, the matrix goes out of the austenitic single phase region, and the metal structure obtained after quenching becomes non-uniform. From these facts, the heating and holding temperature during the normalizing process was specified in the range of 1030 to 1070 ° C.

【0050】次に、焼きならし処理を施した鋳造物に焼
もどし熱処理を施す。本発明では、Ti又はNbを添加
せずにVを単独添加する場合には、焼もどし温度を68
0〜740℃の温度域とする。焼もどし温度を680℃
以上とすることによって、V炭窒化物を微細に析出で
き、かつその析出量を十分に確保することができる。し
かし、740℃を超える焼もどし温度にすると、V炭窒
化物の析出密度が低下するおそれがある。
Next, the cast material subjected to the normalizing process is subjected to a tempering heat treatment. In the present invention, when V is added alone without adding Ti or Nb, the tempering temperature is set to 68.
The temperature range is 0 to 740 ° C. 680 ℃ tempering temperature
With the above, V carbonitride can be finely precipitated and the amount of the precipitation can be sufficiently ensured. However, when the tempering temperature exceeds 740 ° C., the precipitation density of V carbonitride may decrease.

【0051】一方、VとTi又はNbとを複合添加する
場合には、焼もどし温度を720〜780℃の温度域と
する。これによりNb又はTiの炭窒化物を微細に析出
でき、かつその析出量を十分に確保することができる。
しかし、720℃未満の温度域にすると、Nb又はTi
の微細な炭窒化物の析出量を十分に確保できないおそれ
があり、780℃を超える温度域にすると、A変態点
に近づくか或いはこの変態点を超えるため、組織安定性
が低下するおそれがあるとともに、焼もどし処理が過剰
に施されて機械的性質を損なうおそれがある。これらの
ことからVとTi又はNbとを複合添加する場合には、
焼もどし温度を720〜780℃の温度域に規定した。
On the other hand, when V and Ti or Nb are added in combination, the tempering temperature is set to a temperature range of 720 to 780 ° C. As a result, Nb or Ti carbonitrides can be finely precipitated, and the amount of precipitation can be sufficiently ensured.
However, when the temperature range is set lower than 720 ° C., Nb or Ti
Of there may not be sufficient precipitation amount of fine carbonitrides, when the temperature range exceeding 780 ° C., for more than or the transformation point closer to A 3 transformation point, possibly tissue stability decreases In addition, there is a possibility that the tempering treatment is excessively performed and mechanical properties are impaired. From these facts, when V and Ti or Nb are added in combination,
The tempering temperature was specified in a temperature range of 720 to 780 ° C.

【0052】[0052]

【発明の実施の形態】以下、本発明の種々の好ましい実
施例について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various preferred embodiments of the present invention will be described below.

【0053】(実施例1)電気炉にて組成を種々変化さ
せた溶湯を砂型に鋳込んで種々の鋳塊を得た後、得られ
た各鋳塊を焼鈍処理し、次いで焼きならし処理を施し、
つづいて焼もどし熱処理を施すことにより表1−1およ
び表1−2に示す鋼種P1〜P25および鋼種C1〜C
9の各組成の供試鋳鋼を得た。焼きならし処理は、特定
温度域内の1070℃に加熱保持した後に油冷すること
により行なった。焼もどし熱処理時の加熱温度は鋼種に
応じて変更した。すなわち、Vを単独添加した鋼種(P
8〜P13、P19〜P25、C1、C6、C7)の場
合には特定温度域内の740℃とし、VとTi又はNb
とを複合添加した鋼種(P1〜P7、P14〜P18、
C2〜C5、C8、C9)の場合には特定温度域内の7
60℃とした。鋼種P1〜P25は前述の特定範囲内の
組成であり、鋼種C1〜C25は前述の特定範囲を逸脱
した組成である。
(Example 1) A molten metal having a composition varied in an electric furnace was cast into a sand mold to obtain various ingots, and each of the obtained ingots was subjected to an annealing treatment and then a normalizing treatment. Subject to
Subsequently, by performing a tempering heat treatment, steel types P1 to P25 and steel types C1 to C shown in Table 1-1 and Table 1-2.
Test cast steels having the respective compositions of No. 9 were obtained. The normalizing process was performed by heating and holding at 1070 ° C. within a specific temperature range, followed by oil cooling. The heating temperature during the tempering heat treatment was changed according to the type of steel. That is, the steel type (P
8 to P13, P19 to P25, C1, C6, C7), the temperature is set to 740 ° C. within a specific temperature range, and V and Ti or Nb
(P1-P7, P14-P18,
In the case of C2 to C5, C8, C9), 7
60 ° C. Steel types P1 to P25 have compositions within the above-described specific range, and steel types C1 to C25 have compositions that deviate from the above-described specific range.

【0054】[0054]

【表1−1】 [Table 1-1]

【0055】[0055]

【表1−2】 [Table 1-2]

【0056】得られた各供試鋳鋼から試験片を採取し、
それぞれ常温引張強さを測定した結果、720〜770
MPaとなり、いずれの鋳鋼もほぼ同程度の常温引張強
さを有することが判明した。
A test piece was collected from each of the obtained test cast steels,
As a result of measuring the room temperature tensile strength, 720 to 770 was obtained.
MPa, and all the cast steels were found to have almost the same room temperature tensile strength.

【0057】次に、得られた鋳鋼から試験片を採取し、
600℃の加熱温度下、引張荷重147MPaでクリー
プ破断試験を行ない、破断に至るまでの時間(クリープ
破断時間)を調べた。また、得られた鋳鋼からJIS4
号2mmVノッチシャルピー衝撃試験片を採取して20
℃の温度下でシャルピー衝撃試験を行ない、衝撃吸収エ
ネルギー(J)を調べた。以上の評価試験の結果を表2
に示す。なお、各鋳鋼の常温引張強さ(MPa)の実測
値を表2に併記した。
Next, a test piece was collected from the obtained cast steel,
A creep rupture test was performed at a heating temperature of 600 ° C. under a tensile load of 147 MPa, and the time until rupture (creep rupture time) was examined. In addition, JIS4
No. 2 mm V notch Charpy impact test specimen was collected and 20
A Charpy impact test was conducted at a temperature of ° C. to determine the impact absorption energy (J). Table 2 shows the results of the above evaluation tests.
Shown in Table 2 also shows the measured values of the room temperature tensile strength (MPa) of each cast steel.

【0058】[0058]

【表2】 [Table 2]

【0059】表2の例1〜25(鋼種P1〜P25)の
各鋳鋼は、クリープ破断時間が3368〜6327時間
と長く、衝撃吸収エネルギーが52〜92Jと高い値を
示し、優れたクリープ強度特性を有するとともに優れた
耐衝撃性(靭性)を有することが判明した。これに対し
て、例26(鋼種C1)、例28(鋼種C3)および例
34(鋼種C9)の各鋳鋼は、クリープ破断時間がそれ
ぞれ512時間、684時間、2820時間と短く、衝
撃吸収エネルギーがそれぞれ29J、35J、35Jと
低い値を示し、クリープ強度特性および耐衝撃性(靭
性)が共に劣ることが判明した。また、例27(鋼種C
2)および例31(鋼種C6)の鋳鋼は、クリープ破断
時間がそれぞれ9312時間、3524時間となり長時
間ではあるものの、衝撃吸収エネルギーがそれぞれ48
J、34Jと低い値を示し、耐衝撃性(靭性)に劣るこ
とが判明した。さらに、例29(鋼種C4)、例30
(鋼種C5)、例32(鋼種C7)および例33(鋼種
C8)の各鋳鋼は、衝撃吸収エネルギーがそれぞれ80
J、82J、120J、80Jと高い値を示すものの、
クリープ破断時間がそれぞれ1756時間、2978時
間、2460時間、2128時間と短くなり、クリープ
強度特性に劣ることが判明した。
Each of the cast steels of Examples 1 to 25 (steel types P1 to P25) in Table 2 has a long creep rupture time of 3368 to 6327 hours, a high shock absorption energy of 52 to 92 J, and excellent creep strength characteristics. And excellent impact resistance (toughness). On the other hand, the cast steels of Example 26 (steel type C1), Example 28 (steel type C3) and Example 34 (steel type C9) have short creep rupture times of 512 hours, 684 hours and 2820 hours, respectively, and have a low shock absorption energy. The values were as low as 29 J, 35 J, and 35 J, respectively, and it was found that both the creep strength characteristics and the impact resistance (toughness) were inferior. Moreover, Example 27 (steel type C
The cast steels of 2) and 31 (steel type C6) had long creep rupture times of 9312 hours and 3524 hours, respectively, but had a shock absorbing energy of 48, respectively.
J and 34J, which were low values, were found to be inferior in impact resistance (toughness). Further, Example 29 (steel type C4), Example 30
(Steel type C5), the cast steels of Example 32 (Steel type C7) and Example 33 (Steel type C8) have a shock absorption energy of 80, respectively.
Although high values such as J, 82J, 120J and 80J are shown,
The creep rupture times were reduced to 1756 hours, 2978 hours, 2460 hours, and 2128 hours, respectively, indicating that the creep strength characteristics were poor.

【0060】以上のことから、焼きならし処理時の加熱
保持温度を特定温度域とし、かつ焼もどし温度を特定温
度域として耐熱鋳鋼を製造するにあたり、前述の特定範
囲の組成に調整された鋼種P1〜P25の場合(例1〜
25)には、特定範囲を逸脱した組成に調整された鋼種
C1〜C9の場合(例27〜34)と同程度の常温引張
強さを有するのみならず、優れたクリープ強度特性と優
れた耐衝撃性(靭性)とを両立できることが判明した。
From the above, when producing a heat-resistant cast steel with the heating and holding temperature during the normalizing process in the specific temperature range and the tempering temperature in the specific temperature range, the steel type adjusted to the above-described composition in the specific range is used. In the case of P1 to P25 (Example 1 to
25) has not only the same room temperature tensile strength as that of the steel types C1 to C9 adjusted to the composition deviating from the specific range (Examples 27 to 34), but also excellent creep strength characteristics and excellent resistance to heat. It has been found that both impact strength (toughness) can be achieved.

【0061】(実施例2)実施例2では、表1−1およ
び表1−2に示す鋼種P3(VとNbとの複合添加
鋼)、鋼種P11(V単独添加鋼)、鋼種P15(Vと
Tiとの複合添加鋼)および鋼種P20(V単独添加
鋼)の各組成の鋳鋼を製造するにあたり、焼きならし処
理時の加熱保持温度および焼もどし処理時の加熱温度を
表3に示すように種々変更した。
Example 2 In Example 2, steel types P3 (combined steel containing V and Nb), steel type P11 (steel with V alone), and steel type P15 (V) shown in Tables 1-1 and 1-2 were used. In the production of cast steels having the respective compositions of the steels with the composites of steel and Ti) and steel grade P20 (steel with V alone), the heating holding temperature during the normalizing process and the heating temperature during the tempering process are shown in Table 3. Was changed variously.

【0062】得られた各鋳鋼について組織観察を行な
い、フェライト生成の有無、未固溶の粗大析出物の有無
を調べた。また、室温(20℃)下で実施例1で説明し
たのと同様にシャルピー衝撃試験を行ない、衝撃吸収エ
ネルギー(J)を調べた。その評価結果を表3に示す。
The structure of each of the cast steels thus obtained was observed, and the formation of ferrite and the presence of undissolved coarse precipitates were examined. Further, a Charpy impact test was performed at room temperature (20 ° C.) in the same manner as described in Example 1, and the impact absorption energy (J) was examined. Table 3 shows the evaluation results.

【0063】[0063]

【表3】 [Table 3]

【0064】加熱保持温度を特定温度域の下限値を下回
る1020℃として焼きならし処理を施した例35〜3
8(鋼種P3、P11、P15、P20)では、フェラ
イトの生成が観察されなかったものの、粗大析出物が未
固溶のまま存在することが判明した。一方、加熱保持温
度を特定温度域の上限値を超える1080℃として焼き
ならし処理を施した例55〜58(鋼種P3、P11、
P15、P20)では、未固溶の粗大析出物が観察され
なかったものの、フェライトの生成が観察された。例3
5〜38および例55〜58では衝撃吸収エネルギーが
高い値を示すものもあるが、それらは組織が不均一とな
り、耐衝撃性(靭性)以外の機械的性質に劣ることが判
明した。
Examples 35 to 3 in which the heat-holding temperature was set to 1020 ° C. below the lower limit value of the specific temperature range and the normalizing treatment was performed.
In No. 8 (steel types P3, P11, P15, and P20), although formation of ferrite was not observed, it was found that coarse precipitates existed as undissolved. On the other hand, examples 55 to 58 (normal steel types P3, P11,
In P15 and P20), formation of ferrite was observed although no undissolved coarse precipitate was observed. Example 3
In some of Examples 5 to 38 and Examples 55 to 58, the impact absorption energy showed a high value, but it was found that these had an uneven structure and were inferior in mechanical properties other than impact resistance (toughness).

【0065】加熱保持温度を特定温度域内の1050℃
として焼きならし処理を施したが、特定温度域の下限値
を下回る加熱温度で焼もどし熱処理を施した例39(鋼
種P3)、例43(鋼種P3)、例47(鋼種P1
1)、例51(鋼種P15)では、フェライトの生成お
よび未固溶の粗大析出物が観察されなかったものの、衝
撃吸収エネルギーが45J、27J、25J、48Jと
低くなり、耐衝撃性(靭性)に劣ることが判明した。ま
た、加熱保持温度を特定温度域内の1050℃として焼
きならし処理を施したが、特定温度域の上限値を超える
加熱温度で焼もどし熱処理を施した例42(鋼種P
3)、例46(鋼種P11)、例50(鋼種P15)お
よび例54(鋼種P20)では、フェライトの生成およ
び未固溶の粗大析出物が観察されなかったものの、衝撃
吸収エネルギーがそれぞれ15J、12J、12J、1
5Jと著しく低下し、耐衝撃性(靭性)に極めて劣るこ
とが判明した。
The heating and holding temperature is set to 1050 ° C. within a specific temperature range.
Example 39 (steel type P3), Example 43 (steel type P3), and Example 47 (steel type P1) in which the normalizing treatment was performed as the heat treatment, but the tempering heat treatment was performed at a heating temperature lower than the lower limit of the specific temperature range.
1) In Example 51 (steel type P15), although the formation of ferrite and undissolved coarse precipitates were not observed, the shock absorption energy was low at 45 J, 27 J, 25 J, and 48 J, and the impact resistance (toughness) was low. Turned out to be inferior. Further, the normalizing treatment was performed with the heating holding temperature set to 1050 ° C. within the specific temperature range, but the tempering heat treatment was performed at a heating temperature exceeding the upper limit value of the specific temperature range.
3) In Example 46 (steel type P11), Example 50 (steel type P15) and Example 54 (steel type P20), although ferrite formation and undissolved coarse precipitates were not observed, the shock absorption energy was 15 J, respectively. 12J, 12J, 1
It was found to be remarkably reduced to 5 J and extremely poor in impact resistance (toughness).

【0066】これに対して、焼きならし処理時の加熱保
持温度を特定温度域内の1020℃とし、かつ焼もどし
熱処理時の加熱温度を特定温度域内とした例40,41
(鋼種P3)、例44,45(鋼種P11)、例48,
49(鋼種P15)、例52,53(鋼種P20)で
は、フェライトの生成および未固溶の粗大析出物が観察
されず、均一なベイナイト組織であり、衝撃吸収エネル
ギーがそれぞれ70J、85J、68J、75J、58
J、75J、76J、89Jと高くなり、優れた耐衝撃
性(靭性)を有することが判明した。このように、特定
範囲の組成であって、特定温度域に加熱保持する焼きな
らし処理を施し、かつ特定温度域に加熱する焼もどし熱
処理を施した鋳鋼は、未溶解の粗大生成物が残存せず、
フェライトの生成が防止された均一な組織を呈し、良好
な機械的性質を有している。
On the other hand, Examples 40 and 41 in which the heating and holding temperature during the normalizing treatment was set to 1020 ° C. within the specific temperature range, and the heating temperature during the tempering heat treatment was set within the specific temperature range.
(Steel type P3), Examples 44 and 45 (Steel type P11), Example 48,
In No. 49 (steel type P15) and Examples 52 and 53 (steel type P20), no formation of ferrite and undissolved coarse precipitates were observed, the bainite structure was uniform, and the impact absorption energy was 70 J, 85 J, 68 J, respectively. 75J, 58
J, 75J, 76J, and 89J, which proved to have excellent impact resistance (toughness). As described above, cast steel having a composition in a specific range, subjected to normalizing treatment for heating and holding in a specific temperature range, and subjected to tempering heat treatment for heating to a specific temperature range, has undissolved coarse products remaining. Without
It has a uniform structure in which the formation of ferrite is prevented, and has good mechanical properties.

【0067】(実施例3)実施例3では、表1−1およ
び表1−2に示す鋼種P3、P11、P15およびP2
0の各組成の鋳鋼を製造するにあたり、焼きならし処理
時の加熱保持温度を1050℃に固定し、焼もどし熱処
理時の加熱温度を種々変更した。
Example 3 In Example 3, steel types P3, P11, P15 and P2 shown in Tables 1-1 and 1-2 were used.
In producing cast steels having the respective compositions of No. 0, the heating and holding temperature during normalizing treatment was fixed at 1050 ° C., and the heating temperature during tempering heat treatment was variously changed.

【0068】得られた各供試鋳鋼から採取した試験片の
質量をあらかじめ測定した後、試験片を10体積%アセ
チルアセトン−1体積%塩化テトラメチルアンモニウム
が混合されたメタノール溶液中に浸漬し、つづいて電気
分解により母相をメタノール溶液中に溶解させ、残さを
回収してその質量を測定した。そして、メタノール溶液
に浸漬する前の試験片の質量から残さの質量を差し引い
て母相の質量を求め、残さの質量を母相の質量で除して
母相に対する析出相の質量比を算出した。
After measuring the mass of the test piece collected from each of the test cast steels obtained in advance, the test piece was immersed in a methanol solution containing 10% by volume of acetylacetone and 1% by volume of tetramethylammonium chloride. The mother phase was dissolved in a methanol solution by electrolysis, the residue was recovered, and its mass was measured. Then, the mass of the mother phase was obtained by subtracting the mass of the residue from the mass of the test piece before being immersed in the methanol solution, and the mass ratio of the precipitated phase to the mother phase was calculated by dividing the mass of the residue by the mass of the mother phase. .

【0069】また、得られた各供試鋳鋼につき、引張荷
重を196MPaとした以外は実施例1で説明したのと
同様なクリープ破断試験およびシャルピー衝撃試験を行
なってクリープ破断時間および衝撃吸収エネルギーを調
べた。その評価結果を表4に示す。
The obtained test cast steels were subjected to the same creep rupture test and Charpy impact test as described in Example 1 except that the tensile load was changed to 196 MPa, and the creep rupture time and the shock absorption energy were measured. Examined. Table 4 shows the evaluation results.

【0070】[0070]

【表4】 [Table 4]

【0071】特定温度域の下限値を下回る焼もどし温度
とした例59(鋼種P3;焼もどし温度690℃)、例
64(鋼種P11;焼もどし温度660℃)、例68
(鋼種P15;焼もどし温度670℃)および例73
(鋼種P20;焼もどし温度670℃)の鋳鋼は、母相
に対する析出相の質量比がそれぞれ0.55質量%、
0.49質量%、0.58質量%、0.51質量%とな
り、いずれも前述の特定範囲の下限値を下回ることが判
明した。これらの例59、例64、例68および例73
の鋳鋼は、クリープ破断時間がそれぞれ1830時間、
1451時間、1389時間、1562時間と長くな
り、優れたクリープ強度特性を有するものの、衝撃吸収
エネルギーがそれぞれ25J、27J、25J、28J
と著しく低くなり、耐衝撃性(靭性)に極めて劣ること
が判明した。
Example 59 (steel type P3; tempering temperature 690 ° C.), Example 64 (steel type P11; tempering temperature 660 ° C.), Example 68 in which the tempering temperature was lower than the lower limit of the specific temperature range.
(Steel type P15; tempering temperature 670 ° C) and Example 73
(Steel type P20; tempering temperature 670 ° C.) has a cast phase having a mass ratio of the precipitated phase to the matrix of 0.55 mass%,
It was 0.49% by mass, 0.58% by mass, and 0.51% by mass, all of which were found to be lower than the lower limit of the above specific range. These examples 59, 64, 68 and 73
The cast steel has a creep rupture time of 1830 hours each,
It becomes long as 1451 hours, 1389 hours, and 1562 hours, and has excellent creep strength characteristics, but the impact absorption energy is 25 J, 27 J, 25 J, and 28 J, respectively.
, And proved to be extremely poor in impact resistance (toughness).

【0072】また、特定温度域の上限値を超える焼もど
し温度とした例63(鋼種P3;焼もどし温度790
℃)、例67(鋼種P11;焼もどし温度780℃)、
例72(鋼種P15;焼もどし温度790℃)および例
76(鋼種P20;焼もどし温度780℃)の鋳鋼は、
母相に対する析出相の質量比がそれぞれ1.05質量
%、1.03質量%、1.10質量%、1.08質量%
となり、いずれも前述の特定範囲の上限値を超えること
が判明した。これらの例63、例67、例72および例
76の鋳鋼は、衝撃吸収エネルギーがそれぞれ115
J、150J、135J、120Jとなり、優れた耐衝
撃性(靭性)を有するものの、クリープ破断時間がそれ
ぞれ597時間、424時間、289時間、480時間
と著しく短くなり、クリープ強度特性に極めて劣ること
が判明した。
Further, Example 63 in which the tempering temperature exceeded the upper limit of the specific temperature range (steel type P3; tempering temperature 790)
° C), Example 67 (steel type P11; tempering temperature 780 ° C),
The cast steels of Example 72 (steel type P15; tempering temperature 790 ° C.) and Example 76 (steel type P20; tempering temperature 780 ° C.)
The mass ratio of the precipitated phase to the mother phase is 1.05% by mass, 1.03% by mass, 1.10% by mass, and 1.08% by mass, respectively.
It was found that both exceeded the upper limit of the above-mentioned specific range. The cast steels of Examples 63, 67, 72 and 76 have impact absorption energies of 115
J, 150J, 135J, and 120J, and although having excellent impact resistance (toughness), the creep rupture times are remarkably shortened to 597 hours, 424 hours, 289 hours, and 480 hours, respectively, and the creep strength characteristics are extremely poor. found.

【0073】これに対して、焼もどし温度を特定温度域
内とした例60〜62(鋼種P3;焼もどし温度:72
0,730,770℃)、例65,66(鋼種P11;
焼もどし温度:730,740℃)、例69〜71(鋼
種P15;焼もどし温度:730,770,775℃)
および例74,75(鋼種P20;焼もどし温度:73
0,740℃)の各鋳鋼は、母相に対する析出相の質量
比がそれぞれ0.63質量%、0.75質量%、0.9
2質量%、0.64質量%、0.88質量%、0.69
質量%、0.81質量%、0.95質量%、0.71質
量%、0.95質量%と特定の範囲内となることが判明
した。これらの例60〜62、例65,66、例69〜
71および例74,75の各鋳鋼は、クリープ破断時間
がそれぞれ1721時間、1656時間、1023時
間、1292時間、1201時間、1338時間、12
43時間、1033時間、1486時間、1178時間
と長くなり、かつ衝撃吸収エネルギーがそれぞれ65
J、70J、85J、68J、96J、58J、75
J、80J、76J、92Jと高い値を示すことから、
優れたクリープ強度特性を有するとともに優れた耐衝撃
性(靭性)を有することが判明した。
On the other hand, Examples 60 to 62 in which the tempering temperature was within a specific temperature range (steel type P3; tempering temperature: 72)
0,730,770 ° C), Examples 65,66 (steel type P11;
Tempering temperature: 730, 740 ° C), Examples 69 to 71 (steel type P15; tempering temperature: 730, 770, 775 ° C)
And Examples 74 and 75 (steel type P20; tempering temperature: 73)
0,740 ° C.), the mass ratio of the precipitated phase to the parent phase was 0.63% by mass, 0.75% by mass, 0.9% by mass, respectively.
2 mass%, 0.64 mass%, 0.88 mass%, 0.69
It turned out that it was in a specific range of mass%, 0.81 mass%, 0.95 mass%, 0.71 mass%, 0.95 mass%. These Examples 60 to 62, Examples 65 and 66, and Examples 69 to
The cast steels of Example 71 and Examples 74 and 75 had creep rupture times of 1721 hours, 1656 hours, 1023 hours, 1292 hours, 1201 hours, 1338 hours, and 12 hours, respectively.
43 hours, 1033 hours, 1486 hours, 1178 hours, and the shock absorption energy was 65
J, 70J, 85J, 68J, 96J, 58J, 75
Since J, 80J, 76J, and 92J show high values,
It has been found that it has excellent creep strength characteristics and excellent impact resistance (toughness).

【0074】(実施例4)電気炉にて組成を種々変化さ
せた溶湯を砂型に鋳込んで表5−1および表5−2に示
す鋼種P26〜P33および鋼種C10〜C12の各組
成の供試鋳鋼を得た。焼ならし処理は特定温度域内の1
040℃に過熱保持した後に空冷することにより行っ
た。焼戻し熱処理時の加熱温度は鋼種に応じて変更し
た。すなわち、Vを単独添加した鋼種(P26〜P2
9、C10〜C12)の場合には特定温度域内の730
℃とし、VとTiを複合添加した鋼種(P30〜P3
3)の場合には特定温度域内の740℃とした。鋼種P
26〜P33は前述の特定範囲内の組成であり、鋼種C
10〜C12は前述の特定範囲を逸脱した組成である。
(Example 4) A molten metal having various compositions changed in an electric furnace was cast into a sand mold to provide steel compositions P26 to P33 and steel compositions C10 to C12 shown in Tables 5-1 and 5-2. A test cast steel was obtained. Normalization is performed within a specific temperature range.
It carried out by air-cooling after holding overheating at 040 degreeC. The heating temperature during the tempering heat treatment was changed according to the type of steel. That is, the steel type to which V was independently added (P26 to P2
9, C10 to C12), 730 within the specific temperature range
° C and a steel type (P30-P3
In the case of 3), the temperature was set to 740 ° C. within a specific temperature range. Steel type P
26 to P33 are compositions within the specific range described above,
10 to C12 are compositions that deviate from the specific range described above.

【0075】得られた各供試鋳鋼から試験片を採取し、
それぞれ常温引張強さを測定した結果、720〜770
MPaとなり、いずれの鋳鋼もほぼ同程度の常温引張強
さを有することが判明した。また、得られた鋳鋼からJ
IS4号2mmVノッチシャルピー衝撃試験片を採取し
て20℃の温度下でシャルピー衝撃試験を行い、衝撃吸
収エネルギー(J)を調べた。
A test piece was collected from each of the test cast steels obtained,
As a result of measuring the room temperature tensile strength, 720 to 770 was obtained.
MPa, and all the cast steels were found to have almost the same room temperature tensile strength. In addition, J
An IS4 2 mm V notch Charpy impact test piece was sampled and subjected to a Charpy impact test at a temperature of 20 ° C. to examine the impact absorption energy (J).

【0076】次に、得られた鋳鋼から試験片を採取し、
600℃の加熱温度下、引張荷重147MPaでクリー
プ破断試験を行い、クリープ破断時間を調べた。なお、
いずれの供試鋳鋼も肉厚500mmの中心部相当でのフ
ェライト生成は認められなかった。以上の評価試験の結
果を表6に示す。
Next, a test piece was obtained from the obtained cast steel,
A creep rupture test was performed at a heating temperature of 600 ° C. under a tensile load of 147 MPa, and the creep rupture time was examined. In addition,
In any of the test cast steels, formation of ferrite was not observed in the center portion having a thickness of 500 mm. Table 6 shows the results of the above evaluation tests.

【0077】表6の例77〜例84(鋼種P26〜P3
3)の各鋳鋼は、クリープ破断時間が3189〜430
1時間と長く、衝撃吸収エネルギーが72〜96Jと高
い値を示し、優れたクリープ強度特性を有するととも
に、優れた耐衝撃性(靭性)を有することが判明した。
これに対して、例85(鋼種C10)、例86(鋼種C
11)および例87(鋼種C12)の各鋳鋼は、衝撃吸
収エネルギーがそれぞれ120J、98J、105Jと
高いものの、クリープ破断時間がそれぞれ2145時
間、2196時間、2098時間と短くなり、クリープ
強度特性に劣ることが判明した。
Examples 77 to 84 of Table 6 (steel types P26 to P3
3) Each of the cast steels has a creep rupture time of 3189 to 430.
As long as one hour, the impact absorption energy showed a high value of 72 to 96 J, and it was found to have excellent creep strength characteristics and excellent impact resistance (toughness).
On the other hand, Example 85 (steel type C10) and Example 86 (steel type C10)
11) and the cast steels of Example 87 (steel type C12) have high impact absorption energies of 120 J, 98 J and 105 J, respectively, but have short creep rupture times of 2145 hours, 2196 hours and 2098 hours, respectively, and are inferior in creep strength characteristics. It has been found.

【0078】次に、P30の組成を有する鋳鋼につい
て、実施例3と同様の焼ならしを施した後、焼戻し熱処
理時の加熱温度を種々変更して、それらから抽出残渣を
回収し、焼戻し後の母相に対する析出相の質量比を算出
した。その結果を表7に示す。
Next, the cast steel having the composition of P30 was subjected to normalization in the same manner as in Example 3, and then the heating temperature during the tempering heat treatment was changed in various ways to collect the extracted residue therefrom. The mass ratio of the precipitated phase to the parent phase was calculated. Table 7 shows the results.

【0079】特定温度域の下限値を下回る焼戻し温度6
90℃とした例88の鋳鋼は、母相に対する析出相の質
量比が0.52%となり、いずれも前述の特定範囲の下
限値を下回ることが判明した。この鋳鋼のクリープ破断
時間は1722時間と長いものの、衝撃吸収エネルギー
が29Jと著しく低く、耐衝撃性に劣ることが判明し
た。
Tempering temperature below the lower limit of the specific temperature range 6
In the cast steel of Example 88 at 90 ° C., the mass ratio of the precipitated phase to the parent phase was 0.52%, and it was found that all were below the lower limit of the specific range described above. Although the creep rupture time of this cast steel was as long as 1722 hours, the impact absorption energy was extremely low at 29 J, and it was found that the impact resistance was poor.

【0080】また、特定温度域の上限値を越える焼戻し
温度790℃とした例91の鋳鋼は、母相に対する析出
相の質量比が1.10%となり、前述の特定範囲の上限
値を超えることが判明した。この鋳鋼は衝撃吸収エネル
ギーが150Jと優れた耐衝撃静質を有するものの、ク
リープ破断時間が508時間と著しく短くなり、クリー
プ強度に極めて劣ることが判明した。
Further, in the cast steel of Example 91 in which the tempering temperature was 790 ° C. exceeding the upper limit value of the specific temperature range, the mass ratio of the precipitated phase to the mother phase was 1.10%, which exceeded the upper limit value of the specific range described above. There was found. Although this cast steel had an excellent impact absorption static energy of 150 J, the creep rupture time was significantly shortened to 508 hours, and it was found that the creep strength was extremely poor.

【0081】これに対して、焼戻し温度を特定温度域内
とした例89(焼戻し温度720℃)および例90(焼
戻し温度740℃)の鋳鋼では、母相に対する析出相の
質量比がそれぞれ0.65%および0.89%となり、
優れたクリープ強度特性(1690時間、1329時
間)とともに、優れた耐衝撃性(72J、95J)を有
することが判明した。
On the other hand, in the cast steels of Example 89 (tempering temperature 720 ° C.) and Example 90 (tempering temperature 740 ° C.) in which the tempering temperature was within a specific temperature range, the mass ratio of the precipitated phase to the parent phase was 0.65, respectively. % And 0.89%,
It was found to have excellent creep strength characteristics (1690 hours, 1329 hours) as well as excellent impact resistance (72J, 95J).

【0082】以上のことから、焼ならし処理時の加熱保
持温度を特定温度域とし、かつ焼戻し温度を特定温度域
として耐熱鋳鋼を製造するにあたり、前述の特定範囲の
組成に調整された鋼種P26〜P33は、厚肉部であっ
てもフェライトの生成が生じず、特定範囲を逸脱した組
成に調整された鋼種C10〜C12と同程度の常温引張
強さを有するのみならず、優れたクリープ強度特性と優
れた靭性を両立できることが判明した。
From the above, when manufacturing a heat-resistant cast steel with the heating and holding temperature during the normalizing process in the specific temperature range and the tempering temperature in the specific temperature range, the steel type P26 adjusted to the composition in the above-described specific range was used. -P33 has no room temperature tensile strength of steel types C10-C12 adjusted to a composition that deviates from a specific range without producing ferrite even in a thick portion, and also has excellent creep strength It has been found that both characteristics and excellent toughness can be achieved.

【0083】[0083]

【表5−1】 [Table 5-1]

【0084】[0084]

【表5−2】 [Table 5-2]

【0085】[0085]

【表6】 [Table 6]

【0086】[0086]

【表7】 [Table 7]

【0087】[0087]

【発明の効果】以上詳述したとおり、本発明によれば、
高温蒸気が流通する環境下で優れた機械的性質を発揮す
るとともに経済性に優れた耐熱鋳鋼およびその製造方法
を提供することができる。このため、本発明の耐熱鋳鋼
を用いた蒸気タービン車室や蒸気タービン弁箱は、過酷
な高温蒸気条件下においても高い信頼性を発揮し、蒸気
タービンの性能、運用性、経済性の向上に貢献できる
等、有益な効果がもたらされる。
As described in detail above, according to the present invention,
It is possible to provide a heat-resistant cast steel which exhibits excellent mechanical properties in an environment where high-temperature steam flows and is economical, and a method for producing the same. For this reason, steam turbine casings and steam turbine valve casings using the heat-resistant cast steel of the present invention exhibit high reliability even under severe high-temperature steam conditions, and improve steam turbine performance, operability, and economic efficiency. Beneficial effects such as contribution can be obtained.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.15〜0.3%、S
i:0.1〜0.30%、Mn:0.01〜0.1%、
Cr:2.0〜2.5%、Mo:0.3〜0.8%、
V:0.23〜0.3%、W:1.6〜2.6%、N:
0.005〜0.03%、B:0.001〜0.004
%を含有し、かつ不純物元素のうちNi:0.2%以下
と、P:0.03%以下と、S:0.01%以下とに制
限し、かつ下式(1)により求められるB当量が0.0
2%以下と、下式(2)により求められるMo当量が
1.4〜2.0%と、下式(3)により求められるC当
量が0.65%以上とを満たし、残部が鉄および不可避
的不純物からなり、M23型炭化物と、M
炭化物と、MX型炭窒化物とからなる析出相が母相に微
細析出した組織であり、かつ母相に対する析出相の比が
0.6〜1.0質量%であることを特徴とする。 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3)
C. 0.15 to 0.3% by mass, S
i: 0.1 to 0.30%, Mn: 0.01 to 0.1%,
Cr: 2.0 to 2.5%, Mo: 0.3 to 0.8%,
V: 0.23-0.3%, W: 1.6-2.6%, N:
0.005 to 0.03%, B: 0.001 to 0.004
%, And among the impurity elements, Ni: 0.2% or less, P: 0.03% or less, S: 0.01% or less, and B obtained by the following equation (1). Equivalent 0.0
2% or less, the Mo equivalent determined by the following equation (2) satisfies 1.4 to 2.0%, and the C equivalent determined by the following equation (3) satisfies 0.65% or more, with the balance being iron and It becomes unavoidable impurities, and the M 23 C 6 type carbide, and M 7 C 3 type carbide precipitation phase consisting of MX-type carbonitrides are tissue was finely precipitated in the parent phase, and the precipitated phase to the matrix phase The ratio is 0.6 to 1.0% by mass. B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3)
【請求項2】 前記Vの含有量を0.23〜0.27質
量%とし、さらに、Nb:0.01〜0.06質量%を
含有し、下式(4)により求められるNb当量が0.1
5%以下を満たすことを特徴とする請求項1に記載の耐
熱鋳鋼。 Nb当量=Nb+0.4C …(4)
2. The method according to claim 1, wherein the content of V is 0.23 to 0.27% by mass, Nb: 0.01 to 0.06% by mass, and the Nb equivalent obtained by the following formula (4) is: 0.1
The heat-resistant cast steel according to claim 1, wherein 5% or less is satisfied. Nb equivalent = Nb + 0.4C (4)
【請求項3】 前記Vの含有量を0.23〜0.27質
量%とし、さらに、Ti:0.005〜0.01質量%
を含有することを特徴とする請求項1に記載の耐熱鋳
鋼。
3. The content of V is set to 0.23 to 0.27% by mass, and further, Ti: 0.005 to 0.01% by mass.
The heat-resistant cast steel according to claim 1, further comprising:
【請求項4】 前記Vの含有量を0.25〜0.3質量
%とすることを特徴とする請求項1に記載の耐熱鋳鋼。
4. The heat-resistant cast steel according to claim 1, wherein the V content is 0.25 to 0.3% by mass.
【請求項5】 耐熱鋳鋼は、質量%で、C:0.15〜
0.3%、Si:0.1〜0.30%、Mn:0.4〜
0.7%、Cr:2.0〜2.5%、Mo:0.3〜
0.8%、V:0.23〜0.3%、W:1.6〜2.
6%、N:0.005〜0.03%、B:0.001〜
0.004%を含有し、かつ不純物元素のうちNi:
0.5%以下と、P:0.03%以下と、S:0.01
%以下とに制限し、かつ下式(1)により求められるB
当量が0.02%以下と、下式(2)により求められる
Mo当量が1.4〜2.0%と、下式(3)により求め
られるC当量が0.65%以上とを満たし、残部が鉄お
よび不可避的不純物からなり、M23型炭化物と、
型炭化物と、MX型炭窒化物とからなる析出相
が母相に微細析出した組織であり、かつ母相に対する析
出相の比が0.6〜1.0質量%であることを特徴とす
る。 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3)
5. The heat-resistant cast steel has a C content of 0.15% by mass.
0.3%, Si: 0.1 to 0.30%, Mn: 0.4 to
0.7%, Cr: 2.0 to 2.5%, Mo: 0.3 to
0.8%, V: 0.23-0.3%, W: 1.6-2.
6%, N: 0.005 to 0.03%, B: 0.001 to
0.004%, and among the impurity elements, Ni:
0.5% or less, P: 0.03% or less, S: 0.01
% Or less and B determined by the following equation (1)
The equivalent is 0.02% or less, the Mo equivalent determined by the following formula (2) satisfies 1.4 to 2.0%, and the C equivalent determined by the following formula (3) satisfies 0.65% or more; The balance consisting of iron and unavoidable impurities, M 23 C 6 type carbides,
A structure in which a precipitated phase composed of M 7 C 3 type carbide and MX type carbonitride is finely precipitated in the matrix, and the ratio of the precipitated phase to the matrix is 0.6 to 1.0% by mass. It is characterized by. B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3)
【請求項6】 前記Vの含有量を0.23〜0.27質
量%とし、さらに、Ti:0.005〜0.01質量
%、Nb:0.01〜0.06質量%を含有し、下式
(4)により求められるNb当量が0.15%以下を満
たすことを特徴とする請求項5に記載の耐熱鋳鋼。 Nb当量=Nb+0.4C …(4)
6. The content of V is set to 0.23 to 0.27% by mass, and further, Ti: 0.005 to 0.01% by mass and Nb: 0.01 to 0.06% by mass. The heat-resistant cast steel according to claim 5, wherein the Nb equivalent obtained by the following equation (4) satisfies 0.15% or less. Nb equivalent = Nb + 0.4C (4)
【請求項7】 前記Vの含有量を0.23〜0.25質
量%とし、さらにTiを0.01〜0.025質量%含
有することを特徴とする請求項5に記載の耐熱鋳鋼。
7. The heat-resistant cast steel according to claim 5, wherein the content of V is 0.23 to 0.25% by mass, and 0.01 to 0.025% by mass of Ti is further contained.
【請求項8】 前記Vの含有量を0.25〜0.3質量
%とすることを特徴とする請求項5に記載の耐熱鋳鋼。
8. The heat-resistant cast steel according to claim 5, wherein the V content is 0.25 to 0.3% by mass.
【請求項9】質量%で、C:0.15〜0.3%、S
i:0.1〜0.30%、Mn:0.01〜0.1%、
Cr:2.0〜2.5%、Mo:0.3〜0.8%、
V:0.23〜0.3%、W:1.6〜2.6%、N:
0.005〜0.03%、B:0.001〜0.004
%を含有し、かつ不純物元素のうちNi:0.2%以下
と、P:0.03%以下と、S:0.01%以下とに制
限し、かつ下式(1)により求められるB当量が0.0
2%以下と、下式(2)により求められるMo当量が
1.4〜2.0%と、下式(3)により求められるC当
量が0.65%以上とを満たし、残部が鉄および不可避
的不純物からなる鋳造物を1030〜1070℃の温度
域に加熱保持した後に焼入れる工程と、この工程の後に
680〜780℃の温度域に焼きもどす工程と、を備え
たことを特徴とする耐熱鋳鋼の製造方法。 B等量=B+0.5N …(1) Mo等量=Mo+0.5W …(2) C等量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3)
9. In mass%, C: 0.15 to 0.3%, S
i: 0.1 to 0.30%, Mn: 0.01 to 0.1%,
Cr: 2.0 to 2.5%, Mo: 0.3 to 0.8%,
V: 0.23-0.3%, W: 1.6-2.6%, N:
0.005 to 0.03%, B: 0.001 to 0.004
%, And among the impurity elements, Ni: 0.2% or less, P: 0.03% or less, S: 0.01% or less, and B obtained by the following equation (1). Equivalent 0.0
2% or less, the Mo equivalent determined by the following equation (2) satisfies 1.4 to 2.0%, and the C equivalent determined by the following equation (3) satisfies 0.65% or more, with the balance being iron and A step of heating and holding the casting made of unavoidable impurities in a temperature range of 1030 to 1070 ° C. and then quenching, and after this step, a step of tempering to a temperature range of 680 to 780 ° C. Manufacturing method of heat-resistant cast steel. B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3)
【請求項10】 前記Vの含有量を0.23〜0.27
質量%とし、さらに、Nbを0.01〜0.06質量%
含有し、下式(4)により求められるNb当量が0.1
5%以下を満たし、前記焼もどし工程では、720〜7
80℃の温度域に加熱することを特徴とする請求項9に
記載の耐熱鋳鋼の製造方法。 Nb当量=Nb+0.4C …(4)
10. The content of V is from 0.23 to 0.27.
% By mass, and Nb is 0.01 to 0.06% by mass.
And the Nb equivalent determined by the following formula (4) is 0.1
5% or less, and 720 to 7 in the tempering step.
The method for producing a heat-resistant cast steel according to claim 9, wherein the steel is heated to a temperature range of 80 ° C. Nb equivalent = Nb + 0.4C (4)
【請求項11】 前記Vの含有量を0.23〜0.27
質量%とし、さらに、Ti:0.005〜0.01質量
%を含有し、前記焼もどし工程では、720〜780℃
の温度域に加熱することを特徴とする請求項9に記載の
耐熱鋳鋼の製造方法。
11. The content of V is from 0.23 to 0.27.
%, And further contains 0.005 to 0.01% by mass of Ti, and in the tempering step, 720 to 780 ° C.
The method for producing a heat-resistant cast steel according to claim 9, wherein the steel is heated to a temperature range of:
【請求項12】 前記Vの含有量を0.25〜0.3質
量%とし、前記焼きもどし工程では、680〜740℃
の温度域に加熱することを特徴とする請求項9に記載の
耐熱鋳鋼の製造方法。
12. The content of V is set to 0.25 to 0.3% by mass, and in the tempering step, 680 to 740 ° C.
The method for producing a heat-resistant cast steel according to claim 9, wherein the steel is heated to a temperature range of:
【請求項13】 耐熱鋳鋼の製造方法は、質量%で、
C:0.15〜0.3%、Si:0.1〜0.30%、
Mn:0.4〜0.7%、Cr:2.0〜2.5%、M
o:0.3〜0.8%、V:0.23〜0.3%、W:
1.6〜2.6%、N:0.005〜0.03%、B:
0.001〜0.004%を含有し、かつ不純物元素の
うちNi:0.5%以下と、P:0.03%以下と、
S:0.01%以下とに制限し、かつ下式(1)により
求められるB当量が0.02%以下と、下式(2)によ
り求められるMo当量が1.4〜2.0%と、下式
(3)により求められるC当量が0.65%以上とを満
たし、残部が鉄および不可避的不純物からなる鋳造物を
1030〜1070℃の温度域に加熱保持した後に焼入
れる工程と、この工程の後に680〜780℃の温度域
に焼きもどす工程と、を備えたことを特徴とする耐熱鋳
鋼の製造方法。 B当量=B+0.5N …(1) Mo当量=Mo+0.5W …(2) C当量=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/15 +V/14 …(3)
13. A method for producing a heat-resistant cast steel, comprising:
C: 0.15 to 0.3%, Si: 0.1 to 0.30%,
Mn: 0.4-0.7%, Cr: 2.0-2.5%, M
o: 0.3-0.8%, V: 0.23-0.3%, W:
1.6 to 2.6%, N: 0.005 to 0.03%, B:
0.001 to 0.004%, and among the impurity elements, Ni: 0.5% or less, P: 0.03% or less,
S: It is limited to 0.01% or less, and the B equivalent obtained by the following formula (1) is 0.02% or less, and the Mo equivalent obtained by the following formula (2) is 1.4 to 2.0%. And a step of quenching after heating and holding a cast comprising the iron equivalent and the unavoidable impurities in a temperature range of 1030 to 1070 ° C. in which the C equivalent obtained by the following formula (3) satisfies 0.65% or more. And a step of tempering to a temperature range of 680 to 780 ° C. after this step. B equivalent = B + 0.5N (1) Mo equivalent = Mo + 0.5W (2) C equivalent = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 15 + V / 14 (3)
【請求項14】 前記Vの含有量を0.23〜0.27
質量%とし、さらに、Ti:0.005〜0.01質量
%、Nbを0.01〜0.06質量%含有し、下式
(4)により求められるNb当量が0.15%以下を満
たし、前記焼もどし工程では、720〜780℃の温度
域に加熱することを特徴とする請求項13に記載の耐熱
鋳鋼の製造方法。 Nb当量=Nb+0.4C …(4)
14. The content of V is from 0.23 to 0.27.
%, And further contains 0.005 to 0.01% by mass of Ti and 0.01 to 0.06% by mass of Nb, and the Nb equivalent obtained by the following formula (4) satisfies 0.15% or less. 14. The method for producing a heat-resistant cast steel according to claim 13, wherein in the tempering step, heating is performed to a temperature range of 720 to 780C. Nb equivalent = Nb + 0.4C (4)
【請求項15】 前記Vの含有量を0.23〜0.25
質量%とし、さらにTi:0.01〜0.0025質量
%を含有し、前記焼もどし工程では、720〜780℃
の温度域に加熱することを特徴とする請求項13に記載
の耐熱鋳鋼の製造方法。
15. The content of V is from 0.23 to 0.25.
%, And further contains 0.01 to 0.0025% by mass of Ti, and in the tempering step, 720 to 780 ° C.
The method for producing a heat-resistant cast steel according to claim 13, wherein the steel is heated to a temperature range of:
【請求項16】 前記Vの含有量を0.25〜0.3質
量%とし、前記焼きもどし工程では、680〜740℃
の温度域に加熱することを特徴とする請求項13に記載
の耐熱鋳鋼の製造方法。
16. The content of V is set to 0.25 to 0.3% by mass, and in the tempering step, 680 to 740 ° C.
The method for producing a heat-resistant cast steel according to claim 13, wherein the steel is heated to a temperature range of:
JP2000365258A 2000-07-13 2000-11-30 Heat-resistant cast steel and method for producing the same Expired - Fee Related JP3998413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000365258A JP3998413B2 (en) 2000-07-13 2000-11-30 Heat-resistant cast steel and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000212916 2000-07-13
JP2000-212916 2000-07-13
JP2000365258A JP3998413B2 (en) 2000-07-13 2000-11-30 Heat-resistant cast steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002088441A true JP2002088441A (en) 2002-03-27
JP3998413B2 JP3998413B2 (en) 2007-10-24

Family

ID=26595976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000365258A Expired - Fee Related JP3998413B2 (en) 2000-07-13 2000-11-30 Heat-resistant cast steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3998413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167307A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Industries Compressor Corp Method for producing cast steel product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167307A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Industries Compressor Corp Method for producing cast steel product

Also Published As

Publication number Publication date
JP3998413B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3514182B2 (en) Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
JP4262414B2 (en) High Cr ferritic heat resistant steel
EP0828010B1 (en) High strength and high-toughness heat-resistant cast steel
WO2022021816A1 (en) Heat-resistant steel for steel pipe and casting
US20060054254A1 (en) Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
JP2001262286A (en) HIGH-PURITY HIGH-Cr FERRITIC HEAT RESISTING STEEL AND ITS MANUFACTURING METHOD
US20030185700A1 (en) Heat-resisting steel and method of manufacturing the same
JP3955719B2 (en) Heat resistant steel, heat treatment method of heat resistant steel and heat resistant steel parts
JP3539250B2 (en) 655 Nmm-2 class low C high Cr alloy oil country tubular good with high stress corrosion cracking resistance and method of manufacturing the same
JP3852248B2 (en) Manufacturing method of martensitic stainless steel with excellent stress corrosion cracking resistance
JP2000328198A (en) Austenitic stainless steel excellent in hot workability
JPH11209851A (en) Gas turbine disk material
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP3485034B2 (en) 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
JP3998413B2 (en) Heat-resistant cast steel and method for producing the same
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
US6494970B1 (en) Heat resistant steel casting and method of manufacturing the same
JP2000256803A (en) Austenitic stainless steel excellent in high temperature strength and ductility
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JP3775371B2 (en) Low alloy steel
JP3639155B2 (en) Heat-resistant cast steel and heat-resistant cast steel parts produced using the same
JPH07166303A (en) High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees