JP2002086609A - Gas barrier multilayered film and packaging material consisting of the same - Google Patents

Gas barrier multilayered film and packaging material consisting of the same

Info

Publication number
JP2002086609A
JP2002086609A JP2000279023A JP2000279023A JP2002086609A JP 2002086609 A JP2002086609 A JP 2002086609A JP 2000279023 A JP2000279023 A JP 2000279023A JP 2000279023 A JP2000279023 A JP 2000279023A JP 2002086609 A JP2002086609 A JP 2002086609A
Authority
JP
Japan
Prior art keywords
film
gas barrier
thermoplastic resin
barrier multilayer
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000279023A
Other languages
Japanese (ja)
Inventor
Noritoshi Mishina
紀年 三品
Akira Nomoto
晃 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohcello Co Ltd
Original Assignee
Tohcello Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohcello Co Ltd filed Critical Tohcello Co Ltd
Priority to JP2000279023A priority Critical patent/JP2002086609A/en
Publication of JP2002086609A publication Critical patent/JP2002086609A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a gas barrier multilayered film suitable as a packaging film for food, medicines or the like excellent in bending resistance, easy to manufacture and reduced in the lowering of moisture permeability. SOLUTION: The gas barrier multilayered film, which his excellent in moisture impermeability and bending resistance, easy to manufacture and reduced in the lowering of moisture permeability, is constituted by laminating a thermoplastic resin film (D), of which the initial elastic modulus is 60 MPa, on the thin film comprising an inorganic compound (B), which is formed on at least the single surface of a stretched film (A) comprising a thermoplastic resin, through an adhesive (C). The packaging material, wherein a heat-fusible layer is laminated on at least the single surface of the gas barrier multilayered film, is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐屈曲性、耐摩擦
性に優れ且つ製造が容易な透湿度の低下が少ないガスバ
リア性多層フィルム及びそれからなる包装材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas barrier multilayer film which is excellent in bending resistance and abrasion resistance, is easy to manufacture, and has a small decrease in moisture permeability, and a packaging material comprising the same.

【0002】[0002]

【従来の技術】食品や薬品などの包装分野では、外気か
らの酸素などの侵入による内容物の変質を防ぐために、
ガスバリア性をもった包装材の開発が広く行われてい
る。 かかるガスバリア性を有する包装材としては、ポ
リ塩化ビニリデン、ポリアクリロニトリル、ポリビニル
アルコールなどの極性高分子が知られている。
2. Description of the Related Art In the field of packaging of foods and medicines, in order to prevent deterioration of contents due to intrusion of oxygen or the like from the outside air,
BACKGROUND ART Packaging materials having gas barrier properties have been widely developed. As such packaging materials having gas barrier properties, polar polymers such as polyvinylidene chloride, polyacrylonitrile, and polyvinyl alcohol are known.

【0003】しかし、ポリ塩化ビニリデンは塩素原子、
ポリアクリロニトリルは−CN基を含有しているため、
廃棄の際に環境に対する問題が近年持ち上がっている。
また、ポリビニルアルコールは−OH基を含有している
ため、ガスバリア性の湿度依存性が大きく、高湿度では
ガスバリア性が著しく低下してしまうという欠点を有し
ている。又、ポリビニルアルコールの湿度依存性を改良
したエチレンービニルアルコール共重合体においても、
高湿度でのガスバリア性は未だ十分とは言えない。
[0003] However, polyvinylidene chloride has a chlorine atom,
Since polyacrylonitrile contains -CN groups,
Environmental problems at the time of disposal have been raised in recent years.
In addition, since polyvinyl alcohol contains an -OH group, the gas barrier property has a large humidity dependency, and has a disadvantage that the gas barrier property is significantly reduced at high humidity. Also, in an ethylene-vinyl alcohol copolymer with improved humidity dependence of polyvinyl alcohol,
Gas barrier properties at high humidity are not yet sufficient.

【0004】一方、湿度依存性がないガスバリア性素材
としてアルミニウム、亜鉛、酸化アルミニウム、シリ
カ、酸化マグネシウム等の無機化合物を蒸着したフィル
ムが使用されている。特に無機酸化物を蒸着したフィル
ムは透明性にも優れているので包装材料として適してい
る。しかしながら、かかる無機化合物はクラックが発生
し易くその結果、耐酸素透過性は然程低下しないが、透
湿度が著しく低下し、包装材料として用いた場合に高湿
度下では内容物が吸湿するという欠点がある。
On the other hand, a film on which an inorganic compound such as aluminum, zinc, aluminum oxide, silica, magnesium oxide or the like is deposited is used as a gas barrier material having no humidity dependency. In particular, a film on which an inorganic oxide is deposited is suitable for a packaging material because it has excellent transparency. However, such inorganic compounds are liable to cracks and, as a result, the oxygen permeability resistance does not decrease so much, but the moisture permeability decreases significantly, and when used as a packaging material, the contents absorb moisture under high humidity. There is.

【0005】かかる欠点を改良する方法として無機化合
物上にSiO2粒子を含有する樹脂の水および/またはア
ルコール溶液あるいは水性エマルジョンをコーティング
し、続いて乾燥する方法(特開平5−9317号公
報)、水溶性高分子と、(a)1種以上の金属アルコキ
シド及びその加水分解物又は(b)塩化錫の少なくとも
一方を含む水溶液等を塗布し、加熱乾燥する方法(特開
平7−164591号公報)等が提案されている。しか
しながら、かかる方法は何れも溶液を塗布した後乾燥を
必要とし、製造工程が煩雑であるという欠点がある。
As a method for remedying such a defect, a method of coating a water and / or alcohol solution or an aqueous emulsion of a resin containing SiO2 particles on an inorganic compound, followed by drying (JP-A-5-9317), (A) Japanese Patent Application Laid-Open No. Hei 7-16491, for example, applying a water-soluble polymer and / or an aqueous solution containing at least one of (a) one or more metal alkoxides and hydrolysates thereof and (b) tin chloride. Has been proposed. However, each of these methods requires drying after applying the solution, and has a drawback that the manufacturing process is complicated.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明者らは、
耐屈曲性に優れ且つ製造が容易な透湿度の低下が少ない
ガスバリア性多層フィルムを開発すべく種々検討した結
果、本発明に到達した。
SUMMARY OF THE INVENTION Accordingly, the present inventors
As a result of various studies to develop a gas barrier multilayer film having excellent bending resistance and having a small decrease in moisture permeability that is easy to produce, the present invention has been achieved.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

【発明の概要】本発明は、熱可塑性樹脂からなる延伸フ
ィルム(A)の少なくとも片面に形成された無機化合物
(B)からなる薄膜上に接着剤(C)を介して少なくと
も初期弾性率が60MPaの熱可塑性樹脂フィルム
(D)が積層されてなることを特徴とする耐屈曲性に優
れ且つ製造が容易な透湿度の低下が少ないガスバリア性
多層フィルム及びかかるガスバリア性多層フィルムの少
なくとも片面に熱融着層が積層されてなる包装材料であ
る。
SUMMARY OF THE INVENTION The present invention relates to a stretched film (A) made of a thermoplastic resin and a thin film made of an inorganic compound (B) formed on at least one surface of the stretched film (A). A gas-barrier multilayer film which is characterized by being laminated with the thermoplastic resin film (D) of the above, is excellent in bending resistance and easy to manufacture, and has a small decrease in moisture permeability. It is a packaging material in which a coating layer is laminated.

【0008】[0008]

【発明の具体的説明】熱可塑性樹脂からなる延伸フィル
ム(A) 本発明に係る熱可塑性樹脂からなる延伸フィルム(A)
は、ポリエチレン、ポリプロピレン、ポリ4−メチル・
ペンテン−1及びポリブテン等のポリオレフィン、ポリ
エチレンフタレート、ポリブチレンフタレート及びポリ
エチレンナフタレート等のポリエステル、ナイロン6、
ナイロン66及びポリメタキシレンアジパミド等のポリ
アミド無機化合物(B)並びにポリスチレン等の熱可塑
性樹脂フィルムを少なくと1方向に、好ましくは縦、横
方向に二軸延伸したフィルムである。かかる延伸フィル
ムとしては、二軸延伸ポリプロピレンフィルム、二軸延
伸ポリエチレンテレフタレートフィルム及び二軸延伸ポ
リアミドフィルムが後述の無機化合物(B)の形成加工
適性、性能安定性に優れるので好ましい。かかる延伸フ
ィルムの厚さは通常5〜50μm、好ましくは9〜30
μmの範囲にある。
DETAILED DESCRIPTION OF THE INVENTION A stretched film made of a thermoplastic resin
(A) Stretched film (A) comprising thermoplastic resin according to the present invention
Is polyethylene, polypropylene, poly 4-methyl
Polyolefins such as pentene-1 and polybutene, polyethylene phthalate, polyesters such as polybutylene phthalate and polyethylene naphthalate, nylon 6,
It is a film obtained by biaxially stretching a polyamide inorganic compound (B) such as nylon 66 and polymeta-xylene adipamide and a thermoplastic resin film such as polystyrene in at least one direction, preferably in the vertical and horizontal directions. As such a stretched film, a biaxially stretched polypropylene film, a biaxially stretched polyethylene terephthalate film, and a biaxially stretched polyamide film are preferable because they are excellent in forming processability and performance stability of the inorganic compound (B) described later. The thickness of such a stretched film is usually 5 to 50 μm, preferably 9 to 30 μm.
in the range of μm.

【0009】これら延伸フィルムの素材となる熱可塑性
樹脂には、本発明の目的を損なわない範囲で、通常用い
られる酸化防止剤、耐候安定剤、帯電防止剤、防曇剤等
の添加剤を必要に応じて配合することができる。
The thermoplastic resin used as the material of these stretched films needs additives such as antioxidants, weather stabilizers, antistatic agents and antifogging agents, as long as the object of the present invention is not impaired. Can be blended according to

【0010】又、これら延伸フィルムの片面あるいは両
面に、無機化合物、熱融着層との接着性を改良するため
にコロナ処理、火炎処理、プラズマ処理、アンダーコー
ト処理、プライマーコート処理等の表面処理を行ってお
いてもよい。
On one or both sides of the stretched film, a surface treatment such as a corona treatment, a flame treatment, a plasma treatment, an undercoat treatment, and a primer coat treatment is carried out in order to improve the adhesion to an inorganic compound and a heat-sealing layer. May be performed.

【0011】無機化合物(B) 本発明に係る無機化合物(B)としては、アルミニウム
及び亜鉛等の金属、クロム、亜鉛、コバルト、アルミニ
ウム、錫及び珪素等の無機酸化物、窒化物、酸化インジ
ウム錫、チタン酸鉛等が挙げられる。中でも、酸化アル
ミニウム、シリカ(酸化珪素)が透明性に優れるので好
ましい。
Inorganic Compound (B) Examples of the inorganic compound (B) according to the present invention include metals such as aluminum and zinc, inorganic oxides such as chromium, zinc, cobalt, aluminum, tin and silicon, nitrides, and indium tin oxide. And lead titanate. Among them, aluminum oxide and silica (silicon oxide) are preferable because of their excellent transparency.

【0012】無機化合物(B)の薄膜を前記延伸フィル
ム(A)の少なくとも片面に形成させる方法としては、
化学蒸着(CVD)、低圧CVD及びプラズマCVD等
の化学蒸着法、真空蒸着(反応性真空蒸着)、スパッタ
リング(反応性スパッタリング)及びイオンプレーティ
ング(反応性イオンプレーティング)等の物理蒸着法
(PVD)、低圧プラズマスプレイ及びプラズマスプレ
イ等のプラズマスプレイ法とが例示できる。
A method for forming a thin film of the inorganic compound (B) on at least one surface of the stretched film (A) includes:
Chemical vapor deposition methods such as chemical vapor deposition (CVD), low pressure CVD and plasma CVD, and physical vapor deposition methods (PVD) such as vacuum deposition (reactive vacuum deposition), sputtering (reactive sputtering), and ion plating (reactive ion plating) ), Low pressure plasma spray and plasma spray method such as plasma spray.

【0013】形成される無機化合物(B)の薄膜の厚さ
は、通常50〜2000Å、好ましくは100〜800
Åの範囲である。2000Åを越えると透明性、耐屈曲
性が低下するとなる虞があり、一方、50Å未満では充
分な耐ガスバリア性が得られない虞がある。
The thickness of the formed inorganic compound (B) thin film is usually 50 to 2000 °, preferably 100 to 800 °.
範 囲 range. If it exceeds 2000 °, transparency and bending resistance may decrease, while if it is less than 50 °, sufficient gas barrier resistance may not be obtained.

【0014】接着剤(C) 本発明に係る接着剤(C)は、種々公知のラミネート接
着剤、例えば一液型、二液型のポリオールと多価イソシ
アネート、水系ウレタンアイオノマーと硬化剤等の組合
せからなるポリウレタン系接着剤に代表されるドライラ
ミネート接着剤、アクリル系、酢酸ビニル系、ウレタン
系、ポリエステル樹脂等を主原料とした水性ドライラミ
ネート接着剤、ポリウレタン系接着剤に代表される無溶
剤ラミネート接着剤を用い得る。
Adhesive (C) The adhesive (C) according to the present invention may be any of various known laminating adhesives, for example, a combination of a one-part or two-part polyol with a polyvalent isocyanate, an aqueous urethane ionomer and a curing agent. Dry laminating adhesives represented by polyurethane-based adhesives, aqueous dry laminating adhesives mainly composed of acrylic, vinyl acetate, urethane, polyester resins, etc., and solventless laminating represented by polyurethane-based adhesives An adhesive may be used.

【0015】熱可塑性樹脂フィルム(D) 本発明に用いる熱可塑性樹脂フィルム(D)は、少なく
とも初期弾性率が60MPa、好ましくは130MPa
以上のフィルムである。初期弾性率が60MPa未満の
ものは、耐屈曲性に劣り、その結果多層フィルムを印刷
あるいは他のフィルムと積層する際、あるいは包装材料
として被包装物を充填する際にガスバリア性が低下する
虞がある。一方、初期弾性率の上限が特に限定はされな
いが、通常1000MPaを越えると多層フィルムにし
た場合に硬すぎて柔軟性に欠け用途のよっては不都合を
生じる虞があるので、好ましくは700MPa以下のフ
ィルムがよい。
Thermoplastic resin film (D) The thermoplastic resin film (D) used in the present invention has an initial elastic modulus of at least 60 MPa, preferably 130 MPa.
The above is the film. Those having an initial elastic modulus of less than 60 MPa are inferior in bending resistance. As a result, when printing a multilayer film or laminating it with another film, or when filling an object to be packaged as a packaging material, gas barrier properties may be reduced. is there. On the other hand, the upper limit of the initial elastic modulus is not particularly limited, but when it is usually more than 1000 MPa, a multilayer film is too hard and lacks flexibility, and may cause inconvenience depending on the application. Is good.

【0016】かかる特性を有するフィルムとしては、例
えば高密度ポリエチレン、ポリプロピレン、ポリ4−メ
チル・ペンテン−1等の無延伸フィルム、高密度ポリエ
チレン、ポリプロピレン、ポリ4−メチル・ペンテン−
1、ポリエチレンフタレート、ポリブチレンフタレート
及びポリエチレンナフタレート等のポリエステル、ナイ
ロン6、ナイロン66及びポリメタキシレンアジパミド
等のポリアミド並びにポリスチレン等の一軸若しくは二
軸延伸フィルムを例示できる。熱可塑性樹脂フィルム
(D)は、その表面に予め印刷層を形成しておいてもよ
い。
Examples of the film having such properties include non-stretched films such as high-density polyethylene, polypropylene, and poly-4-methylpentene-1, high-density polyethylene, polypropylene, and poly4-methylpentene.
1, uniaxial or biaxially stretched films such as polyesters such as polyethylene phthalate, polybutylene phthalate and polyethylene naphthalate, polyamides such as nylon 6, nylon 66 and polymeta-xylene adipamide, and polystyrene. The thermoplastic resin film (D) may have a printed layer formed on its surface in advance.

【0017】熱可塑性樹脂フィルム(D)の厚さは、用
いるフィルムの初期弾性率によって、多少異なるが、通
常1〜500μm、好ましくは3〜300μmの範囲に
ある。厚さが1μm未満では耐屈曲性が改良されない虞
があり、一方、500μmを越えると柔軟性に劣り用途
が限定される虞がある。
The thickness of the thermoplastic resin film (D) varies somewhat depending on the initial elastic modulus of the film used, but is usually in the range of 1 to 500 μm, preferably 3 to 300 μm. If the thickness is less than 1 μm, the bending resistance may not be improved. On the other hand, if it exceeds 500 μm, the flexibility may be poor and the application may be limited.

【0018】ガスバリア性多層フィルム 本発明のガスバリア性多層フィルムフィルムは、種々公
知の方法で製造し得る。例えば、コロナ放電処理等を行
った熱可塑性樹脂からなる延伸フィルム(A)に真空蒸
着等により無機化合物(B)に薄膜を形成し、当該薄膜
上に接着剤(C)を塗布した後、熱可塑性樹脂フィルム
(D)を積層することにより得られる。
Gas barrier multilayer film The gas barrier multilayer film of the present invention can be produced by various known methods. For example, a thin film is formed on an inorganic compound (B) by vacuum evaporation or the like on a stretched film (A) made of a thermoplastic resin that has been subjected to corona discharge treatment or the like, and an adhesive (C) is applied on the thin film. It is obtained by laminating a plastic resin film (D).

【0019】又、本発明のガスバリア性多層フィルムを
包装材料として用いる場合には、ヒートシール性を付与
するために熱可塑性樹脂フィルム(D)若しくは熱可塑
性樹脂からなる延伸フィルム(A)の表面に熱融着層を
積層しておくことが好ましい。かかる熱融着層として
は、通常熱融着層として公知のエチレン、プロピレン、
ブテン−1、ヘキセン−1、4−メチル・ペンテン−
1、オクテン−1等のα−オレフィンの単独若しくは共
重合体、高圧法低密度ポリエチレン、線状低密度ポリエ
チレン(所謂LLDPE)、高密度ポリエチレン、ポリ
プロピレン、ポリプロピレンランダム共重合体、ポリブ
テン、ポリ4−メチル・ペンテン−1、低結晶性あるい
は非晶性のエチレン・プロピレンランダム共重合体、エ
チレン・ブテン−1ランダム共重合体、プロピレン・ブ
テン−1ランダム共重合体等のポリオレフィンを単独若
しくは2種以上の組成物、エチレン・酢酸ビニル共重合
体(EVA)あるいはEVAとポリオレフィンとの組成
物等を用い得る。
When the gas barrier multilayer film of the present invention is used as a packaging material, the surface of the thermoplastic resin film (D) or the stretched film (A) made of a thermoplastic resin is applied to impart heat sealability. It is preferable that a heat-sealing layer is laminated. As such a heat fusion layer, ethylene, propylene, which is generally known as a heat fusion layer,
Butene-1, hexene-1,4-methylpentene-
1, homo- or copolymers of α-olefins such as octene-1, high-pressure low-density polyethylene, linear low-density polyethylene (so-called LLDPE), high-density polyethylene, polypropylene, polypropylene random copolymer, polybutene, poly-4- Polyolefins such as methyl pentene-1, low crystalline or amorphous ethylene / propylene random copolymer, ethylene / butene-1 random copolymer, propylene / butene-1 random copolymer, alone or in combination of two or more Or an ethylene-vinyl acetate copolymer (EVA) or a composition of EVA and polyolefin.

【0020】かかる熱融着層は、予め熱可塑性樹脂から
なる延伸フィルム(A)及び/又は熱可塑性樹脂フィル
ム(D)に積層しておいても良いし、ガスバリア性多層
フィルムを製造した後、何れかの表面に積層しても良
い。熱融着層を積層する方法としては、熱融着層を形成
する熱可塑性樹脂と熱可塑性樹脂からなる延伸フィルム
(A)を形成する熱可塑性樹脂を共押出し成形した後一
軸若しくは二軸延伸する方法、熱可塑性樹脂からなる延
伸フィルム(A)を形成する熱可塑性樹脂を押出し一方
向に延伸した後、熱融着層を形成する熱可塑性樹脂を押
出しラミネートした後他方向に延伸する方法、熱融着層
を形成する熱可塑性樹脂と熱可塑性樹脂フィルム(D)
を形成する熱可塑性樹脂とを共押出し成形する方法、あ
るいは熱融着層を形成する熱可塑性樹脂と熱可塑性樹脂
フィルム(D)を形成する熱可塑性樹脂を共押出し成形
した後一軸若しくは二軸延伸する方法、熱可塑性樹脂フ
ィルム(D)を形成する熱可塑性樹脂を押出し一方向に
延伸した後、熱融着層を形成する熱可塑性樹脂を押出し
ラミネートした後他方向に延伸する方法等を用い得る。
Such a heat-sealing layer may be previously laminated on a stretched film (A) and / or a thermoplastic resin film (D) made of a thermoplastic resin, or after producing a gas barrier multilayer film, It may be laminated on any surface. As a method of laminating the heat-sealing layer, a thermoplastic resin for forming the heat-sealing layer and a thermoplastic resin for forming a stretched film (A) made of the thermoplastic resin are co-extruded and molded, and then uniaxially or biaxially stretched. A method in which a thermoplastic resin forming a stretched film (A) made of a thermoplastic resin is extruded and stretched in one direction, and then a thermoplastic resin forming a heat fusion layer is extruded and laminated, and then stretched in another direction. Thermoplastic resin forming thermoplastic layer and thermoplastic resin film (D)
Or co-extrusion molding of a thermoplastic resin forming a thermoplastic resin, or uniaxial or biaxial stretching after co-extrusion molding of a thermoplastic resin forming a heat-sealing layer and a thermoplastic resin forming a thermoplastic resin film (D) After extruding the thermoplastic resin forming the thermoplastic resin film (D) and stretching it in one direction, extruding and laminating the thermoplastic resin forming the heat-sealing layer, and then stretching it in the other direction may be used. .

【0021】かかる熱融着層を積層する前に、熱可塑性
樹脂フィルム(D)の表面に印刷層を形成しておいても
良い。熱融着層を積層する際には、前記接着剤(C)を
用いても良いし、又、コロナ放電処理等を施しておいて
も良い。
Before laminating such a heat-sealing layer, a printing layer may be formed on the surface of the thermoplastic resin film (D). When laminating the heat sealing layer, the adhesive (C) may be used, or a corona discharge treatment or the like may be performed.

【0022】[0022]

【発明の効果】本発明のガスバリア性多層フィルムは、
耐屈曲性、耐摩擦性に優れるので、当該ガスバリア性多
層フィルムの表面、例えば熱可塑性樹脂フィルム(D)
に印刷する際に、ガスバリア性多層フィルムが引張られ
たり、折り曲げられたり、擦れたりしても無機化合物
(B)からなる薄膜が割れる虞が極めて少ないので耐透
湿度性が損なわれる虞がなく、耐湿度依存性にも優れて
いる。又、本発明のガスバリア性多層フィルムは、無機
化合物(B)からなる薄膜上に接着剤(C)を介して少
なくとも初期弾性率が60MPaの熱可塑性樹脂フィル
ム(D)を積層する方法をとり得るので、水溶性高分子
溶液を塗布する方法に比べ成形が容易であるという特徴
を有している。
The gas barrier multilayer film of the present invention comprises:
Since it is excellent in bending resistance and friction resistance, the surface of the gas barrier multilayer film, for example, a thermoplastic resin film (D)
When printing, the thin film made of the inorganic compound (B) is extremely unlikely to be broken even if the gas barrier multilayer film is pulled, bent, or rubbed, so that there is no risk that the moisture resistance will be impaired. Also excellent in humidity resistance. Further, the gas barrier multilayer film of the present invention can adopt a method of laminating a thermoplastic resin film (D) having at least an initial elastic modulus of 60 MPa on a thin film made of an inorganic compound (B) via an adhesive (C). Therefore, it has a feature that molding is easier than a method of applying a water-soluble polymer solution.

【0023】したがって、本発明のガスバリア性多層フ
ィルム及びかかるガスバリア性多層フィルムの少なくと
も片面に熱融着層が積層されてなる包装材料は無機化合
物(B)からなる薄膜層に直接熱融着層がラミネートさ
れないため、耐熱性に優れた接着剤(C)を用いたもの
はボイル用、レトルト用の包装材料として好適に用い得
る。
Accordingly, the gas-barrier multilayer film of the present invention and the packaging material in which a heat-fusion layer is laminated on at least one surface of such a gas-barrier multilayer film have a direct heat-fusion layer on the thin film layer made of the inorganic compound (B). Since it is not laminated, those using an adhesive (C) having excellent heat resistance can be suitably used as a packaging material for boiling and retorting.

【0024】[0024]

【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はこれら実施例により何等限定され
るものではない。なお、実施例および比較例における物
性の測定方法および評価の基準は下記の通りである。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The methods for measuring physical properties and evaluation criteria in the examples and comparative examples are as follows.

【0025】〈屈曲試験〉ガスバリア性多層フィルムか
ら幅90mm、長さ300mmの試料を採取し、試料の
一端を把持し、他端に荷重1.5kgの錘をぶら下げ、
試料の非薄膜積層面を先端幅が0.5mmの金属板で約
60度に折り曲げて300mmの長さを300mm/分
の速度で擦り連続的に非薄膜積層面を屈曲させた。 〈初期弾性率の測定〉オリエンテック社製のテンシロン
万能試験機を用い、(試験片形状)5mm/分の引張り
速度で試験片の伸び1%未満の弾性率を初期弾性率とし
た。 〈透湿度〉ガスバリア多層フィルムの熱融着層を内面と
して表面積100cm2の袋を作製し、この中に乾燥し
た塩化カルシウム約10g入れてヒートシールして密封
する。この袋を40℃、90%RHの条件下に数日間放
置した後、吸湿量を測定した。なお、透湿度の値は実測
値と、構成するフィルムの透湿度を計算により除いて蒸
着膜単位の透湿度(蒸着膜値)を換算して求めた。 〈酸素透過性〉モダンコントロール社製 酸素透過率測
定装置(MOCON OX−TRAN2/20)を用
い、20℃、80%RHの条件下で測定した。
<Bending test> A sample having a width of 90 mm and a length of 300 mm was sampled from the gas barrier multilayer film, one end of the sample was gripped, and a 1.5 kg weight was hung on the other end.
The non-film laminated surface of the sample was bent at about 60 degrees with a metal plate having a tip width of 0.5 mm, and the length of 300 mm was rubbed at a speed of 300 mm / min to continuously bend the non-film laminated surface. <Measurement of Initial Elastic Modulus> Using a Tensilon universal testing machine manufactured by Orientec Co., Ltd., the elastic modulus of the test piece at an elongation of less than 1% at a tensile speed of 5 mm / min (test piece shape) was defined as the initial elastic modulus. <Moisture Permeability> A bag having a surface area of 100 cm 2 is prepared with the heat-sealing layer of the gas barrier multilayer film as the inner surface, and about 10 g of dried calcium chloride is put therein and heat-sealed. After the bag was left under a condition of 40 ° C. and 90% RH for several days, the moisture absorption was measured. In addition, the value of the moisture permeability was obtained by converting the measured value and the moisture permeability of the constituent films by calculation, and converting the moisture permeability (evaporated film value) in units of a deposited film. <Oxygen permeability> The oxygen permeability was measured under the conditions of 20 ° C. and 80% RH using an oxygen permeability measuring device (MOCON OX-TRAN 2/20) manufactured by Modern Control.

【0026】実施例1 〈酸化アルミニウム蒸着フィルムの製造〉真空槽内に酸
素を導入しながらアルミニウムをエレクトロンビーム法
により加熱蒸発させて12μmの二軸延伸ポリエチレン
テレフタレートフィルムの表面に厚さ約100Åの酸化
アルミニウムの薄膜を形成させて酸化アルミニウム蒸着
フィルム(蒸着PETフィルム)を得た。 〈ガスバリア性多層フィルムの製造〉前記蒸着PETフ
ィルムの薄膜面上に二液硬化型ポリウレタン系接着剤
(武田薬品工業製:A310/A3)を3g/m2塗布
し、初期弾性率が455.8MPa、厚さ12μmの二
軸延伸ポリエチレンテレフタレートフィルム(O−PE
Tフィルム)をドライラミネートし、更にその上に厚さ
50μm、密度0.920g/cm3の線状低密度ポリ
エチレンフィルム(LLDPE)を同じく二液硬化型ポ
リウレタン系接着剤(武田薬品工業製:A310/A
3)を3g/m2塗布しドライラミネートしてガスバリ
ア性多層フィルムを得た。得られたガスバリヤ性多層フ
ィルムを用いて屈曲試験を行い、屈曲試験を行う前の試
料と試験後の試料を用いて透湿度、酸素透過度の測定を
行った。結果を表―1及び表―2に示す。
Example 1 <Manufacture of Aluminum Oxide Deposited Film> Aluminum was heated and evaporated by an electron beam method while introducing oxygen into a vacuum chamber to oxidize the surface of a 12 μm biaxially stretched polyethylene terephthalate film to a thickness of about 100 °. An aluminum oxide deposited film (a deposited PET film) was obtained by forming an aluminum thin film. <Production of Gas Barrier Multilayer Film> A two-part curable polyurethane-based adhesive (A310 / A3: Takeda Pharmaceutical: A310 / A3) was applied at 3 g / m2 on the thin film surface of the above-deposited PET film, and the initial elastic modulus was 455.8 MPa. 12 μm thick biaxially stretched polyethylene terephthalate film (O-PE
T film), and a linear low-density polyethylene film (LLDPE) having a thickness of 50 μm and a density of 0.920 g / cm 3 is also formed thereon by a two-part curable polyurethane-based adhesive (A310 / Takeda Pharmaceutical: A310 / A
3) was applied at 3 g / m2 and dry-laminated to obtain a gas barrier multilayer film. A bending test was performed using the obtained gas barrier multilayer film, and moisture permeability and oxygen permeability were measured using a sample before the bending test and a sample after the test. The results are shown in Table-1 and Table-2.

【0027】実施例2 実施例1で用いたPETフィルムに代えて、初期弾性率
が287.4MPa、厚さ15μmの二軸延伸6ナイロ
ンフィルム(O−NYフィルム)を用いる以外は実施例
1と同様に行いガスバリア性多層フィルムを得た。得ら
れたガスバリヤ性多層フィルムの屈曲試験前後の透湿度
の測定結果を表―1に示す。
Example 2 The procedure of Example 1 was repeated except that the PET film used in Example 1 was replaced with a biaxially stretched 6-nylon film (O-NY film) having an initial elastic modulus of 287.4 MPa and a thickness of 15 μm. The same operation was performed to obtain a gas barrier multilayer film. Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0028】実施例3 実施例1で用いたPETフィルムに代えて、初期弾性率
が185.8MPa、厚さ20μmの二軸延伸ポリプロ
ピレンフィルム(OPPフィルム)を用いる以外は実施
例1と同様に行いガスバリア性多層フィルムを得た。但
し、OPPフィルムにはLLDPEを積層しなかった。
得られたガスバリヤ性多層フィルムの屈曲試験前後の透
湿度の測定結果を表―1に示す。
Example 3 In the same manner as in Example 1 except that a biaxially oriented polypropylene film (OPP film) having an initial elastic modulus of 185.8 MPa and a thickness of 20 μm was used instead of the PET film used in Example 1, A gas barrier multilayer film was obtained. However, LLDPE was not laminated on the OPP film.
Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0029】実施例4 実施例3で用いたOPPフィルムに代えて、初期弾性率
96.9MPa、厚さ25μmの無延伸ポリプロピレン
フィルム(CPPフィルム)を用いる以外は実施例3と
同様に行いガスバリア性多層フィルムを得た。得られた
ガスバリヤ性多層フィルムの屈曲試験前後の透湿度の測
定結果を表―1に示す。
Example 4 Gas barrier properties were obtained in the same manner as in Example 3 except that an unstretched polypropylene film (CPP film) having an initial elastic modulus of 96.9 MPa and a thickness of 25 μm was used instead of the OPP film used in Example 3. A multilayer film was obtained. Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0030】比較例1 実施例3で用いたOPPフィルムに代えて、初期弾性率
が14.3MPa、厚さ50μmの線状低密度ポリエチ
レン(LLDPE−1フィルム)を用いる以外は実施例
3と同様に行いガスバリア性多層フィルムを得た。得ら
れたガスバリヤ性多層フィルムを用いて屈曲試験を行
い、屈曲試験を行う前の試料と試験後の試料を用いて透
湿度、酸素透過度の測定を行った。結果を表―1及び表
―2に示す。
Comparative Example 1 The same as Example 3 except that a linear low-density polyethylene (LLDPE-1 film) having an initial elastic modulus of 14.3 MPa and a thickness of 50 μm was used instead of the OPP film used in Example 3. To obtain a gas barrier multilayer film. A bending test was performed using the obtained gas barrier multilayer film, and moisture permeability and oxygen permeability were measured using a sample before the bending test and a sample after the test. The results are shown in Table-1 and Table-2.

【0031】比較例2 実施例3で用いたOPPフィルムに代えて、初期弾性率
が40.0MPa、厚さ50μmの線状低密度ポリエチ
レン(LLDPE−2フィルム)を用いる以外は実施例
3と同様に行いガスバリア性多層フィルムを得た。得ら
れたガスバリヤ性多層フィルムの屈曲試験前後の透湿度
の測定結果を表―1に示す。
Comparative Example 2 The same as Example 3 except that a linear low-density polyethylene (LLDPE-2 film) having an initial elastic modulus of 40.0 MPa and a thickness of 50 μm was used instead of the OPP film used in Example 3. To obtain a gas barrier multilayer film. Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0032】実施例5 実施例1で用いた蒸着PETに代えて、表面に特殊コー
トした25μmの二軸延伸ポリプロピレンフィルムに表
面厚さ約150Åの酸化アルミニウムの薄膜を形成させ
て酸化アルミニウム蒸着フィルム(蒸着OPP)を用い
る以外は実施例1と同様に行った。得られたガスバリヤ
性多層フィルムの屈曲試験前後の透湿度の測定結果を表
―1に示す。
Example 5 Instead of the vapor-deposited PET used in Example 1, a thin film of aluminum oxide having a surface thickness of about 150 ° was formed on a biaxially oriented polypropylene film of 25 μm specially coated on the surface by depositing an aluminum oxide vapor-deposited film ( The same operation as in Example 1 was performed except that vapor-deposited OPP was used. Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0033】比較例3 実施例5で用いたLLDPEをドライラミネートしたO
−PETフィルムに代えて、比較例1で用いたLLDP
E−1フィルムを用いる以外は実施例5と同様に行っ
た。得られたガスバリヤ性多層フィルムの屈曲試験前後
の透湿度の測定結果を表―1に示す。
Comparative Example 3 Dry-laminated OLD of the LLDPE used in Example 5
LLDP used in Comparative Example 1 instead of PET film
The procedure was performed in the same manner as in Example 5 except that the E-1 film was used. Table 1 shows the measurement results of the moisture permeability of the obtained gas barrier multilayer film before and after the bending test.

【0034】[0034]

【表−1】 [Table-1]

【0035】[0035]

【表−2】 [Table-2]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E086 AB02 AD01 BA04 BA15 BA33 BA40 BB02 BB05 BB51 BB90 CA01 CA28 DA08 4F100 AA17B AA19 AK01A AK01C AK42 AK51G AK63 AR00D BA03 BA05 BA06 BA07 BA10A BA10C BA10D BA13 CB02 EJ38A GB16 GB23 GB66 HB31C JB16A JB16C JD02 JD04 JK04 JK07C JL12D JM02B YY00C  ──────────────────────────────────────────────────続 き Continued on front page F-term (reference) 3E086 AB02 AD01 BA04 BA15 BA33 BA40 BB02 BB05 BB51 BB90 CA01 CA28 DA08 4F100 AA17B AA19 AK01A AK01C AK42 AK51G AK63 AR00D BA03 BA05 BA06 BA07 BA10A BA10C BA10BBAB GBA CB63 JB16C JD02 JD04 JK04 JK07C JL12D JM02B YY00C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂からなる延伸フィルム(A)
の少なくとも片面に形成された無機化合物(B)からな
る薄膜上に接着剤(C)を介して少なくとも初期弾性率
が60MPaの熱可塑性樹脂フィルム(D)が積層され
てなることを特徴とするガスバリア性多層フィルム。
1. A stretched film (A) comprising a thermoplastic resin
A gas barrier characterized in that a thermoplastic resin film (D) having an initial elastic modulus of at least 60 MPa is laminated via an adhesive (C) on a thin film made of an inorganic compound (B) formed on at least one side of the above. Multi-layer film.
【請求項2】延伸フィルム(A)が二軸延伸フィルムで
ある請求項1記載のガスバリア性多層フィルム。
2. The gas barrier multilayer film according to claim 1, wherein the stretched film (A) is a biaxially stretched film.
【請求項3】無機化合物(B)が無機酸化物である請求
項1若しくは2記載のガスバリア性多層フィルム。
3. The gas barrier multilayer film according to claim 1, wherein the inorganic compound (B) is an inorganic oxide.
【請求項4】熱可塑性樹脂フィルム(D)の接着剤
(C)と接する面の反対面に印刷をしてなる請求項1な
いし3の何れかに記載のガスバリア性多層フィルム。
4. The gas barrier multilayer film according to claim 1, wherein the thermoplastic resin film (D) is printed on a surface opposite to a surface in contact with the adhesive (C).
【請求項5】請求項1ないし4記載のガスバリア性多層
フィルムの少なくとも片面に熱融着層が積層されてなる
包装材料。
5. A packaging material comprising the gas-barrier multilayer film according to claim 1 and a heat-sealing layer laminated on at least one surface.
JP2000279023A 2000-09-14 2000-09-14 Gas barrier multilayered film and packaging material consisting of the same Pending JP2002086609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279023A JP2002086609A (en) 2000-09-14 2000-09-14 Gas barrier multilayered film and packaging material consisting of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279023A JP2002086609A (en) 2000-09-14 2000-09-14 Gas barrier multilayered film and packaging material consisting of the same

Publications (1)

Publication Number Publication Date
JP2002086609A true JP2002086609A (en) 2002-03-26

Family

ID=18764094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279023A Pending JP2002086609A (en) 2000-09-14 2000-09-14 Gas barrier multilayered film and packaging material consisting of the same

Country Status (1)

Country Link
JP (1) JP2002086609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505422A (en) * 2012-01-06 2015-02-19 エルジー・ケム・リミテッド Sealing film
CN110144548A (en) * 2014-06-04 2019-08-20 琳得科株式会社 Gas barrier property lamilate and preparation method thereof, electronic device component and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505422A (en) * 2012-01-06 2015-02-19 エルジー・ケム・リミテッド Sealing film
US9698379B2 (en) 2012-01-06 2017-07-04 Lg Chem, Ltd. Encapsulation film
CN110144548A (en) * 2014-06-04 2019-08-20 琳得科株式会社 Gas barrier property lamilate and preparation method thereof, electronic device component and electronic device

Similar Documents

Publication Publication Date Title
JP4226781B2 (en) Oxygen barrier composite film structure
JP4865750B2 (en) Laminated body
JPWO2007036980A1 (en) Gas barrier laminated film
JPH09201897A (en) Gas barrier olefin resin laminate
JP2001121659A (en) Gas barrier film
JP2006205626A (en) Packaging material
JP4110884B2 (en) Method for producing high gas barrier film
JP3294440B2 (en) Composite vapor-deposited film and method for producing the same
JP4826054B2 (en) Gas barrier film laminate for boil and retort sterilization
JP2002086609A (en) Gas barrier multilayered film and packaging material consisting of the same
JP6433758B2 (en) Gas barrier laminate
JP3037797B2 (en) Gas barrier laminated film
JP6454130B2 (en) LAMINATED FILM AND METHOD FOR PRODUCING LAMINATED FILM
JP3120653B2 (en) Barrier laminate
JP3970457B2 (en) Gas barrier laminated film
JP4630606B2 (en) Laminated film
JP2001010003A (en) Gas barrier film
JP2001081216A (en) Barrier film and laminate material using the film
JP2003285389A (en) Gas-barrier plastic film laminate
JPH1120102A (en) Laminated film having gas barrier property
JP3000484B2 (en) Laminated sheet for packaging with transparency
JP2002079620A (en) Polyamide double-layered film
JP3745050B2 (en) Transparent barrier film
JP7463961B2 (en) Gas barrier polyamide film
JP4218323B2 (en) Gas barrier packaging film and package