JP2002085946A - Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same - Google Patents

Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same

Info

Publication number
JP2002085946A
JP2002085946A JP2000284648A JP2000284648A JP2002085946A JP 2002085946 A JP2002085946 A JP 2002085946A JP 2000284648 A JP2000284648 A JP 2000284648A JP 2000284648 A JP2000284648 A JP 2000284648A JP 2002085946 A JP2002085946 A JP 2002085946A
Authority
JP
Japan
Prior art keywords
catalyst
ceramic membrane
gas
oxygen
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000284648A
Other languages
Japanese (ja)
Inventor
Hideki Kurimura
英樹 栗村
Shoichi Kaganoi
彰一 加賀野井
Yohei Suzuki
洋平 鈴木
Ishin Yo
維慎 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Teikoku Oil Co Ltd
Original Assignee
Dalian Institute of Chemical Physics of CAS
Teikoku Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS, Teikoku Oil Co Ltd filed Critical Dalian Institute of Chemical Physics of CAS
Priority to JP2000284648A priority Critical patent/JP2002085946A/en
Publication of JP2002085946A publication Critical patent/JP2002085946A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a technique related to an oxygen-permeable ceramic membrane-type reactor, by which a gas containing hydrogen as a main component is stably, efficiently and inexpensively produced under low pressure conditions using gaseous light hydrocarbons and air as raw materials. SOLUTION: A perovskite-type oxide, BaxSr1-xCoyFe1-yO3-δ(wherein, x=0.3 to 0.7 and y=0.6 to 1.0) having a high permeability to oxygen and being highly stable is used as a dense ceramic membrane material selectively permeable to oxygen. As a catalyst for partially oxidizing light hydrocarbons, a catalyst having a composition expressed by formula: Nix/CaySr1-yTiO3 (wherein, x=0.1 to 0.3 and y=0.8 or 0.0) or Nix/BaTiO3 (wherein, x=0.1 to 0.3) or a catalyst obtained by loading rhodium, platinum or ruthenium to the catalyst mentioned above in an amount of 0.1 to 1,000 ppm by weight, based on the weight of the catalyst, is used. At the upstream region of the stream of gaseous raw materials, the catalyst is arranged flatly against the ceramic membrane, and at the downstream region, the catalyst is arranged stereoscopically against the ceramic membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気からの酸素分
離とメタン部分酸化反応をシングルユニットにて実現す
るセラミックス膜式反応器に関するもので、省エネルギ
ー及び設備のコンパクト化技術である。又、セラミック
ス膜式反応器を用いる低圧水素製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic membrane reactor for realizing separation of oxygen from air and partial oxidation of methane in a single unit, and relates to a technique for saving energy and reducing the size of equipment. The present invention also relates to a low-pressure hydrogen production method using a ceramic membrane reactor.

【0002】[0002]

【従来の技術】メタンからの水素製造方法には、水蒸気
改質、部分酸化、二酸化炭素改質がある。800℃以上で
進行する水蒸気改質(CH4 + H2O → CO + 3H2 ΔH = -
206.3kJ/mol)は、COシフト反応(CO + H2O → CO2 + H
2)と組合わせることによって、メタン1モルから水素4
モルを得ることができ最も水素収率の高い方法とされて
いる。しかし、同改質は大きな吸熱反応である為、反応
管外部から原料あるいは生成水素の相当部分を燃焼させ
ることによって熱供給を行う必要があり、又、触媒上で
の炭素析出抑制を図る為に化学量論比に対して2〜3倍以
上の過剰量の水蒸気を投入する必要があり、低エネルギ
ー効率且つ反応器が複雑となるといった問題を有する。
水蒸気改質と同様に800℃以上で進行する二酸化炭素改
質(CH4 + CO2→ 2CO + 2H2 ΔH = -246.9kJ/mol)に
ついては、水素収率が低レベルであること、及び触媒上
での炭素析出条件が極めて厳しいこと、から水素製造方
法に適していない。部分酸化(CH4 + 1/2O2 → CO + 2H
2 ΔH = 35.6kJ/mol)は、COシフト反応と組合わせて
も水蒸気改質に比し低水素収率となるが、発熱反応であ
る為熱供給面で極めて有利となる。しかしながら、大規
模プラントの場合、深冷蒸留方式による空気分離装置か
ら高濃度の酸素を供給することが経済的に可能となる
が、定置型燃料電池向け等小規模低圧水素製造の場合、
経済性の観点から空気を直接供給せざるを得ず、窒素の
混入により例えば燃料電池発電効率の低下に繋がる水素
濃度の低下を招く。
2. Description of the Related Art Methods for producing hydrogen from methane include steam reforming, partial oxidation, and carbon dioxide reforming. Steam reforming that proceeds at 800 ° C or higher (CH 4 + H 2 O → CO + 3H 2 ΔH =-
206.3 kJ / mol) is the CO shift reaction (CO + H 2 O → CO 2 + H
2 ) can be combined with 1 mole of methane to 4
It is considered to be the method with the highest hydrogen yield since it can obtain moles. However, since the reforming is a large endothermic reaction, it is necessary to supply heat by burning a substantial portion of the raw material or generated hydrogen from the outside of the reaction tube, and to suppress carbon deposition on the catalyst. It is necessary to supply an excess amount of water vapor that is at least two to three times the stoichiometric ratio, which causes problems such as low energy efficiency and a complicated reactor.
For steam reforming as well as carbon dioxide reforming to proceed at 800 ° C. or higher (CH 4 + CO 2 → 2CO + 2H 2 ΔH = -246.9kJ / mol), a hydrogen yield is low, and the catalyst Since the above carbon deposition conditions are extremely severe, they are not suitable for a hydrogen production method. Partial oxidation (CH 4 + 1 / 2O 2 → CO + 2H
(2 ΔH = 35.6 kJ / mol) has a lower hydrogen yield than steam reforming when combined with a CO shift reaction, but is extremely advantageous in terms of heat supply because it is an exothermic reaction. However, in the case of a large-scale plant, it is economically possible to supply high-concentration oxygen from an air separation device using a cryogenic distillation method, but in the case of small-scale low-pressure hydrogen production such as for stationary fuel cells,
From the viewpoint of economy, air must be supplied directly, and the incorporation of nitrogen causes a decrease in hydrogen concentration, which leads to a decrease in fuel cell power generation efficiency, for example.

【0003】該状況下、酸素製造技術の新機軸として、
近年、特に欧米にて研究開発が急速に活発化している緻
密混合導電性セラミックス膜を利用した高温(〜850
℃)酸素分離技術が、コンパクトな設備で且つ省エネル
ギーに繋がる可能性を有する為、大きく注目を集めてい
る。混合導電性セラミックス膜では、膜の両側の酸素分
圧差を駆動力として、空気中の酸素が選択的に膜表面に
てイオン化され結晶格子中を透過する。この時、電子は
酸素イオンと逆方向に移動し、電気的中性が保たれる。
空気側の反対側に触媒を配置し炭化水素等の酸化反応を
させる(酸素が消費され酸素分圧がほぼゼロとなる)こ
とによりメタン側の酸素分圧を最小限とすることがで
き、結果的に酸素分圧差、即ち酸素選択的透過の駆動力
を最大限とすることができる。又、同セラミックス材料
は800〜900℃の高温にて混合導電性を発現するため、炭
化水素等の部分酸化反応を空気分離と同時に、即ちシン
グルユニットにて行うことができ、コンパクト且つ安価
な反応器となる可能性を有する。これらの観点から、同
セラミックス膜を利用したに関する基礎的研究、即ちメ
タン酸化カップリング、メタンからの合成ガス製造等に
関する研究、が各方面で実施されている。特に、メタ
ン、即ち天然ガスからの合成ガス製造については、大幅
なコスト削減、省エネルギーに繋がる可能性があること
から、米国エネルギー省支援大型研究プロジェクトが進
行中である等、世界的に研究開発が活発化している。
[0003] Under such circumstances, as a revolutionary technology of oxygen production technology,
In recent years, particularly in Europe and the United States, research and development has been rapidly active, and high-temperature (~ 850
° C) Oxygen separation technology has attracted much attention because it has the potential to lead to energy saving with compact equipment. In a mixed conductive ceramics film, oxygen in the air is selectively ionized on the film surface and transmitted through the crystal lattice using the oxygen partial pressure difference on both sides of the film as a driving force. At this time, the electrons move in the opposite direction to the oxygen ions, and the electrical neutrality is maintained.
By placing a catalyst on the opposite side of the air side and oxidizing hydrocarbons (oxygen is consumed and the oxygen partial pressure becomes almost zero), the oxygen partial pressure on the methane side can be minimized, and as a result As a result, the partial pressure difference of oxygen, that is, the driving force for selective oxygen permeation can be maximized. In addition, since the ceramic material exhibits mixed conductivity at a high temperature of 800 to 900 ° C, a partial oxidation reaction of hydrocarbons and the like can be performed simultaneously with air separation, that is, in a single unit, and a compact and inexpensive reaction can be performed. It has the potential to become a container. From these viewpoints, basic research on the use of the ceramic film, that is, research on methane oxidation coupling, production of synthesis gas from methane, and the like has been carried out in various fields. In particular, production of synthesis gas from methane, that is, natural gas, has the potential to lead to significant cost reductions and energy savings. It is becoming active.

【0004】緻密酸素選択透過セラミックス膜を用い、
天然ガスから合成ガスを製造する膜式反応器に関して、
混合導電性セラミックス膜材料(特開平6―21986
1、8―173776、11―253769、WO99
/21649、等)、薄膜化等膜材料の形状(特開平6
―219861、6―135703、WO98/4139
4、等)、メタン改質触媒およびその配置等基本的反応
(WO99/21649、等)、セラミックス膜および金
属との接合部分のシール方法(US Patent No.5,725,21
8、等)、反応器形状および反応熱供給方法等反応器
(特開平9―175802、11―70314、特開2
000―26103、等)膜式反応器を含む合成ガス製
造プロセス(EP 08882670A1、0999180A2、等)、に関
するものが開示されている。これらは、合成ガス製造の
みならず水素製造へ応用できる技術ではあるが、低圧条
件ではあるが十分な還元雰囲気等での材料安定性を有し
且つ十分な酸素透過性能を有する緻密酸素選択透過セラ
ミックス膜を用いる膜式反応器に関する技術は未だ開示
されていない。また、同膜式反応器を用いる具体的な低
圧水素製造技術に関する技術についても未だ開示されて
いない。
[0004] Using a dense oxygen selectively permeable ceramic membrane,
Regarding the membrane reactor for producing synthesis gas from natural gas,
Mixed conductive ceramic film material (JP-A-6-21986)
1, 8-173776, 11-253768, WO99
/ 21649, etc.), and the shape of a thin film material such as a thin film (Japanese Unexamined Patent Publication No.
-219861, 6-135703, WO98 / 4139
4, etc.), a basic reaction such as a methane reforming catalyst and its arrangement (WO99 / 21649, etc.), a method for sealing a joint portion between a ceramic film and a metal (US Patent No. 5,725,21)
8, etc.), reactor shape and reaction heat supply method (JP-A-9-175802, 11-70314, JP-A-2
000-26103, etc.) are disclosed relating to synthesis gas production processes including membrane reactors (EP 08882670A1, 0999180A2, etc.). These are technologies that can be applied not only to synthesis gas production but also to hydrogen production, but are dense oxygen selective permeable ceramics that have material stability in a reducing atmosphere, etc., and have sufficient oxygen permeation performance even under low pressure conditions. The technology relating to a membrane reactor using a membrane has not yet been disclosed. Further, no specific technology relating to a low-pressure hydrogen production technology using the membrane reactor has been disclosed yet.

【0005】合成ガス製造プロセスでは、下流の液体燃
料合成プロセス等を考慮して高圧ガスを製造するのが望
ましいが、燃料電池向け等の水素製造には原料ガスの圧
力が常圧に近い為、低圧製造が好ましい。近年加速して
いる燃料電池技術開発により同技術の実用化が近未来に
迫ってきていることから、家庭用燃料電池向け等の安定
性の高い安価・高効率低圧水素製造技術の確立は喫緊の
課題である。即ち、オンサイト低圧水素市場は、現行半
導体工場向け等限定されているが、中長期的には燃料電
池向け等巨大市場となる可能性を有する。
In the synthesis gas production process, it is desirable to produce a high-pressure gas in consideration of the downstream liquid fuel synthesis process and the like. However, in the production of hydrogen for fuel cells and the like, the pressure of the raw material gas is close to normal pressure. Low pressure production is preferred. Due to the accelerated development of fuel cell technology in recent years, the practical application of this technology is approaching in the near future, so it is urgent to establish a stable, inexpensive, high-efficiency, low-pressure hydrogen production technology for household fuel cells, etc. It is an issue. That is, the on-site low-pressure hydrogen market is limited to current semiconductor factories and the like, but has the potential to become a huge market such as fuel cells in the medium to long term.

【0006】[0006]

【発明が解決しようとする課題】本発明では、軽質炭化
水素ガスおよび空気を原料として水素を主体とするガス
を、低圧条件下で安定して、高効率、安価に製造する酸
素透過型セラミックス膜式反応器に関する技術を提示す
る。又、同反応器を用いて高濃度水素ガスを製造する技
術も提示する。
SUMMARY OF THE INVENTION In the present invention, an oxygen-permeable ceramic film for producing a light hydrocarbon gas and a gas mainly containing hydrogen from air as a raw material stably under low pressure conditions with high efficiency and low cost. This paper presents the technology related to the type reactor. In addition, a technique for producing high-concentration hydrogen gas using the reactor is also presented.

【0007】[0007]

【課題を解決するための手段】上記の課題を達成するた
めに、本発明では、酸素選択透過緻密セラミックス膜材
料として、高酸素透過性を有し、且つ、低圧条件下では
材料安定性の高いペロブスカイト酸化物BaxSr1-xCoyFe
1-yO3-δ(x = 0.3〜0.7、y = 0.6〜1.0)を用いる。軽
質炭化水素部分酸化触媒には、 Nix/CaySr1-yTiO3(x =
0.1〜0.3、y =0.8又は0.0)またはNix/BaTiO3(x = 0.
1〜0.3)によって表される組成を有するもの、またはロ
ジウム、白金、又はルテニウムをこれら触媒重量に対し
て0.1〜1000重量ppm担持させた触媒を用いる。セラミッ
クス膜に対してこれら触媒を、原料ガスストリーム上流
部分には平面的に配置、下流部分には立体的に配置す
る。セラミックス膜式反応器の原料軽質炭化水素ガス中
に、水蒸気を含有炭素量に対し、0.0から1.5の比率で混
入させる。さらに、セラミックス膜式反応器出口の水素
主体ガスに水蒸気を添加し、これをCOシフト反応装置に
導入することにより高濃度水素を得る。
According to the present invention, as a material for an oxygen-selective dense ceramic film, the present invention has high oxygen permeability and high material stability under low pressure conditions. Perovskite oxide Ba x Sr 1-x Co y Fe
1-y O 3-δ (x = 0.3 to 0.7, y = 0.6 to 1.0) is used. Ni x / Ca y Sr 1-y TiO 3 (x =
0.1-0.3, y = 0.8 or 0.0) or Ni x / BaTiO 3 (x = 0.
1 to 0.3), or a catalyst in which rhodium, platinum or ruthenium is supported in an amount of 0.1 to 1000 ppm by weight based on the weight of the catalyst. These catalysts are arranged two-dimensionally in the upstream part of the raw material gas stream and three-dimensionally in the downstream part with respect to the ceramic film. Water vapor is mixed in the raw light hydrocarbon gas of the ceramic membrane reactor at a ratio of 0.0 to 1.5 with respect to the carbon content. Furthermore, high-concentration hydrogen is obtained by adding water vapor to the hydrogen-based gas at the outlet of the ceramic film reactor and introducing it into the CO shift reactor.

【0008】[0008]

【発明実施の形態】本発明では、酸素選択透過緻密セラ
ミックス膜材料として、高酸素透過性を有し、且つ、低
圧条件下では材料安定性の高いペロブスカイト酸化物Ba
xSr1-xCoyFe1-yO3-δ(x = 0.3〜0.7、y = 0.6〜1.0)
を用いる。好ましくは、x = 0.4〜0.6、y = 0.7〜0.9、
さらに好ましくは、x = 0.45〜0.55、y = 0.75〜0.85で
ある。同材料は、十分な酸素透過能を有する為、通常必
要とされる緻密膜部分の薄膜化を図る支持膜形状とする
必要がない為、製造コストの大幅な削減に繋がる。膜厚
は0.5〜1.5mm、好ましくは0.8〜1.2mm、さらに好ましく
は0.9〜1.1mmであり、自立膜形状にて使用する。本自立
膜は0.5mm以上の膜厚により、空気側と軽質炭化水素側
の圧力差を保持する十分な機械的強度を有する。又、常
圧下であれば、多くの高酸素透過能を有する材料にて発
生する還元雰囲気での相変化・膨潤による破壊が生じな
い。さらに、空気側表面での十分な酸素解離能を有する
為、酸素解離触媒の付加が不要であり、コスト削減に繋
がる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a perovskite oxide Ba having high oxygen permeability and high material stability under low pressure conditions is used as an oxygen selective permeable dense ceramic film material.
x Sr 1-x Co y Fe 1-y O 3-δ (x = 0.3 to 0.7, y = 0.6 to 1.0)
Is used. Preferably, x = 0.4-0.6, y = 0.7-0.9,
More preferably, x = 0.45 to 0.55 and y = 0.75 to 0.85. Since this material has a sufficient oxygen permeability, it is not necessary to form a supporting film for thinning a dense film portion which is usually required, which leads to a significant reduction in manufacturing cost. The film thickness is 0.5 to 1.5 mm, preferably 0.8 to 1.2 mm, more preferably 0.9 to 1.1 mm, and used in the form of a free-standing film. The self-supporting film has a thickness of 0.5 mm or more and has sufficient mechanical strength to maintain a pressure difference between the air side and the light hydrocarbon side. Further, under normal pressure, destruction due to phase change and swelling in a reducing atmosphere generated by many materials having high oxygen permeability does not occur. Furthermore, since it has sufficient oxygen dissociation ability on the air side surface, it is not necessary to add an oxygen dissociation catalyst, which leads to cost reduction.

【0009】軽質炭化水素部分酸化触媒には、 Nix/Cay
Sr1-yTiO3(x = 0.1〜0.3、y = 0.8又は0.0)またはNix
/BaTiO3(x = 0.1〜0.3)によって表される組成を有す
るもの、好ましくはx = 0.2、y = 0.8、またはロジウ
ム、白金、又はルテニウムをこれら触媒重量に対して0.
1〜500重量ppm、好ましくは1〜50重量ppm担持させた触
媒を用いる。セラミックス膜に対してこれら触媒を、原
料ガスストリーム上流部分には平面的に配置、下流部分
には立体的に配置する。平面的配置については、焼成後
の触媒を平均粒径10μm以下に微粉末化し、有機溶剤を
用いてスラリー状にしたものをセラミックス膜表面に塗
布し、高温にて焼き付ける。立体的配置については、焼
成後の触媒を反応規模に適したサイズ、形状とし、膜式
反応器の上部から下部への軽質炭化水素ガスの流れに対
し、下部の同流れスペースを同触媒によって充填する。
The light hydrocarbon partial oxidation catalyst includes Ni x / Ca y
Sr 1-y TiO 3 (x = 0.1 to 0.3, y = 0.8 or 0.0) or Ni x
/ BaTiO 3 (x = 0.1-0.3), preferably x = 0.2, y = 0.8, or rhodium, platinum, or ruthenium at 0.
A catalyst loaded with 1 to 500 ppm by weight, preferably 1 to 50 ppm by weight, is used. These catalysts are arranged two-dimensionally in the upstream part of the raw material gas stream and three-dimensionally in the downstream part with respect to the ceramic film. Regarding the planar arrangement, the fired catalyst is pulverized to an average particle size of 10 μm or less, and a slurry obtained by using an organic solvent is applied to the surface of the ceramic film and baked at a high temperature. Regarding the three-dimensional configuration, the catalyst after firing has a size and shape suitable for the reaction scale, and the same flow space at the bottom is filled with the same catalyst for the flow of light hydrocarbon gas from the upper part to the lower part of the membrane reactor I do.

【0010】原料となる軽質炭化水素ガスには、メタン
を含有するガスであり、天然ガス、石油系合成天然ガ
ス、石炭熱分解ガス、コークス炉ガス、及び/又は、LP
G、ナフサ、ガソリンの予備改質ガスを用いる。セラミ
ックス膜式反応器における触媒の選定、配置方法(平面
的配置と立体的配置との比率)、および水蒸気投入量
は、原料ガスの炭素析出性に依存する。即ち、原料ガス
中のエタン以上の重質炭化水素含有量が大きく炭素析出
性が高い場合、セラミックス膜式反応器にフィードされ
る軽質炭化水素ガスの予備加熱に制限があり、水蒸気投
入量を大きくすると、軽質炭化水素の部分酸化反応によ
る反応器の温度上昇が不十分となる為、水蒸気投入量の
低減を余儀なくされる。これにより、セラミックス膜式
反応器での炭素析出性が増大する為、対応策として炭素
析出性が低いロジウム、白金、又はルテニウムを含む触
媒の利用が必要となる。又、炭素析出による触媒層の閉
塞が発生しやすい触媒の立体的配置の比率を最小限とす
る必要がある。本発明では、この場合、触媒の平面的配
置の比率が高まり、触媒使用量の削減、即ち、高価な貴
金属を含有する触媒の使用量を最小限とすることができ
る。原料ガス中のエタン以上の重質炭化水素含有量が小
さく炭素析出性が低い場合、上記の逆となり、水蒸気投
入量を大きくし、高価なロジウム、白金、又はルテニウ
ムを使用しない触媒を用いることができ、安価触媒であ
る為立体的配置部分を大きくすることもできる。尚、水
蒸気投入量が過大になると、軽質炭化水素部分酸化反応
による熱供給が不十分になることに加え、外部加熱等に
よる追加的な熱供給があるとしてもセラミックス膜式反
応器の軽質炭化水素側で酸素分圧が増大することにより
酸素透過性能が低下するという問題が生じる。本発明で
は、以上の如く、原料ガスの炭素析出性に応じた、反応
器設計、操作条件の設定が可能である。
The light hydrocarbon gas used as a raw material is a gas containing methane, such as natural gas, petroleum-based synthetic natural gas, coal pyrolysis gas, coke oven gas, and / or LP.
Use pre-reformed gas of G, naphtha and gasoline. The selection, arrangement method (ratio between planar arrangement and three-dimensional arrangement) of the catalyst in the ceramic membrane reactor, and the amount of steam input depend on the carbon deposition property of the raw material gas. That is, when the content of heavy hydrocarbons higher than ethane in the raw material gas is large and the carbon deposition property is high, the preheating of the light hydrocarbon gas fed to the ceramic membrane reactor is limited, and the amount of steam input is increased. Then, the temperature rise of the reactor due to the partial oxidation reaction of light hydrocarbons becomes insufficient, so that the amount of steam input must be reduced. As a result, the carbon deposition in the ceramic membrane reactor increases, and as a countermeasure, it is necessary to use a catalyst containing rhodium, platinum, or ruthenium having a low carbon deposition. Further, it is necessary to minimize the ratio of the three-dimensional arrangement of the catalyst in which the catalyst layer is likely to be clogged by carbon deposition. In this case, in the present invention, the ratio of the planar arrangement of the catalyst is increased, and the amount of the catalyst used can be reduced, that is, the amount of the catalyst containing an expensive noble metal can be minimized. When the content of heavy hydrocarbons higher than ethane in the raw material gas is small and the carbon deposition property is low, the above is reversed, and the amount of steam input is increased, and it is possible to use a catalyst that does not use expensive rhodium, platinum, or ruthenium. Since the catalyst is inexpensive, the three-dimensional arrangement can be increased. If the amount of steam input is excessive, the heat supply by the light hydrocarbon partial oxidation reaction becomes insufficient, and even if there is additional heat supply by external heating, etc. When the oxygen partial pressure increases on the side, there is a problem that the oxygen permeability decreases. In the present invention, as described above, it is possible to design a reactor and set operating conditions in accordance with the carbon deposition property of a raw material gas.

【0011】本発明では、原料となる軽質炭化水素ガス
への水蒸気投入量は、上記の如く原料ガス性状に依存す
るが、原料ガス中の含有炭素量に対し0.0から1.5の比率
で混入させる。好ましくは、0.5から1.0の比率である。
セラミックス膜式反応器にフィードされる空気および軽
質炭化水素ガスは、同反応器から排出される酸素欠乏空
気および反応生成物である水素主体ガスにより、400〜6
00℃に昇温される。セラミックス膜式反応器の操作温度
は、軽質炭化水素の部分酸化反応により、セラミックス
膜における酸素透過および軽質炭化水素の部分酸化反応
進行に適した800〜950℃とする。
In the present invention, the amount of water vapor introduced into the light hydrocarbon gas as the raw material depends on the properties of the raw material gas as described above, but is mixed at a ratio of 0.0 to 1.5 with respect to the carbon content in the raw material gas. Preferably, the ratio is 0.5 to 1.0.
The air and light hydrocarbon gas fed to the ceramic membrane reactor are 400 to 6 depending on the oxygen-deficient air discharged from the reactor and the hydrogen-based gas which is a reaction product.
The temperature is raised to 00 ° C. The operating temperature of the ceramic membrane reactor is set to 800 to 950 ° C., which is suitable for oxygen permeation through the ceramic membrane and progress of the partial oxidation reaction of light hydrocarbons by the light hydrocarbon partial oxidation reaction.

【0012】セラミックス膜式反応器のセラミックス膜
における酸素透過量は、空気側の酸素分圧と軽質炭化水
素側の酸素分圧との比の自然対数に比例する。軽質炭化
水素側の酸素分圧は、通常、10-15気圧未満である為、
空気側の酸素分圧を空気の昇圧により高める必要はな
い。この為、フィードされる空気の圧力は、大気圧にプ
ロセス中での背圧を加えたもので十分となり、空気の圧
縮に伴うエネルギー消費は最小限となる。以上より、本
発明では、セラミックス膜式反応器へフィードされる空
気の圧力を1〜2気圧とする。本発明で使用する酸素選択
透過緻密セラミックス材料は、5気圧以上の軽質炭化水
素側の圧力では高水素分圧により相変化による膨潤・破
壊が生じるが、同圧力以下では材料安定性が確保され
る。この為、本発明では、セラミックス膜式反応器へフ
ィードされる軽質炭化水素の圧力を空気と同レベルの1
〜2気圧とする。これにより、空気側と軽質炭化水素側
の圧力差が小さくなる為、シールが容易となる等のメリ
ットがある。
The amount of oxygen permeated through the ceramic membrane of the ceramic membrane reactor is proportional to the natural logarithm of the ratio of the oxygen partial pressure on the air side to the oxygen partial pressure on the light hydrocarbon side. Since the oxygen partial pressure on the light hydrocarbon side is usually less than 10 -15 atm,
It is not necessary to increase the oxygen partial pressure on the air side by increasing the pressure of the air. For this reason, the pressure of the air to be fed is sufficient if the back pressure during the process is added to the atmospheric pressure, and the energy consumption accompanying the compression of the air is minimized. As described above, in the present invention, the pressure of the air fed to the ceramic membrane reactor is set to 1 to 2 atm. In the oxygen selective permeable dense ceramic material used in the present invention, swelling and destruction due to a phase change occurs due to a high hydrogen partial pressure at a light hydrocarbon side pressure of 5 atm or more, but material stability is ensured at the same pressure or less. . For this reason, in the present invention, the pressure of light hydrocarbons fed to the ceramic membrane reactor is set to 1
~ 2 atm. As a result, the pressure difference between the air side and the light hydrocarbon side is reduced, and there are advantages such as easy sealing.

【0013】[0013]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0014】(1)セラミックス膜調製例 純度99%以上のBaCO3、SrCO3、Fe2O3、及びCoOの各粉末
を、Ba0.5Sr0.5Co0.8Fe0.2O3-δを生ずる割合で配合
し、十分に混合した後、1050℃で30時間仮焼した。X線
回折による仮焼物の結晶構造は、立方晶ペロブスカイト
構造であり、単一相であった。仮焼物を粉砕し、プレス
機にてディスク状に圧縮成形し、成形体を1130℃で15時
間焼成して焼結させた。焼結ディスクに、ヘリウムを用
いて室温下約2気圧の差圧を付加したところ、漏れがな
く、同ディスクは十分に緻密であることを確認した。
(1) Preparation Example of Ceramic Film Each powder of BaCO 3 , SrCO 3 , Fe 2 O 3 , and CoO having a purity of 99% or more is blended at a ratio that produces Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ. After thoroughly mixing, the mixture was calcined at 1050 ° C. for 30 hours. The crystal structure of the calcined product by X-ray diffraction was a cubic perovskite structure, and was a single phase. The calcined product was pulverized, compression-molded into a disk shape by a press machine, and the molded body was fired and sintered at 1130 ° C. for 15 hours. When a pressure difference of about 2 atm was applied to the sintered disk at room temperature using helium, there was no leakage, and it was confirmed that the disk was sufficiently dense.

【0015】(2)比較セラミックス膜調製例 純度99%以上のLa2O3、SrCO3、及びCoOの各粉末を、La
0.5Sr0.5CoO3-δを生ずる割合で配合し、十分に混合し
た後、1100℃で30時間仮焼した。X線回折による仮焼物
の結晶構造は、立方晶ペロブスカイト構造であり、単一
相であった。仮焼物を粉砕し、プレス機にてディスク状
に圧縮成形し、成形体を1150℃で15時間焼成して焼結さ
せた。焼結ディスクに、ヘリウムを用いて室温下約2気
圧の差圧を付加したところ、漏れがなく、同ディスクは
十分に緻密であることを確認した。
(2) Comparative Ceramic Film Preparation Example Each powder of La 2 O 3 , SrCO 3 , and CoO having a purity of 99% or more was
0.5 Sr 0.5 CoO 3-δ was blended at a ratio that produced it, mixed well, and then calcined at 1100 ° C. for 30 hours. The crystal structure of the calcined product by X-ray diffraction was a cubic perovskite structure, and was a single phase. The calcined product was pulverized, compression-molded into a disk by a press machine, and the compact was fired at 1150 ° C. for 15 hours to be sintered. When a pressure difference of about 2 atm was applied to the sintered disk at room temperature using helium, there was no leakage, and it was confirmed that the disk was sufficiently dense.

【0016】(3)触媒調製例 クエン酸水溶液にエチレングリコールを加えたものに、
硝酸ニッケル(II)六水和物、炭酸バリウム、チタンテト
ラプロポキシドの各金属塩を個別に溶解させた各クエン
酸溶液を、触媒組成における各成分元素比(Ni/Ba/Ti =
0.2/1.0/1.0)で混合した。この混合溶液を80〜90℃で
攪拌しながら加熱し、水分を蒸発させ金属有機物錯塩を
含むゾルを調製した。これを200℃および500℃で各5時
間熱分解し、最後に空気中で900℃、10時間焼成して、N
i0.2/BaTiO3の組成で表される触媒を調製した。X線回折
により、ペロブスカイト構造であるBaTiO3と微量NiOを
同定した。
(3) Catalyst Preparation Example A solution prepared by adding ethylene glycol to a citric acid aqueous solution is:
Nickel (II) nitrate hexahydrate, barium carbonate, and titanium tetrapropoxide were individually dissolved in citric acid solutions, and the respective elemental ratios in the catalyst composition (Ni / Ba / Ti =
0.2 / 1.0 / 1.0). The mixed solution was heated with stirring at 80 to 90 ° C. to evaporate water, thereby preparing a sol containing a metal organic complex. This was pyrolyzed at 200 ° C and 500 ° C for 5 hours each, and finally calcined in air at 900 ° C for 10 hours to obtain N
A catalyst represented by a composition of i 0.2 / BaTiO 3 was prepared. BaTiO 3 and a trace amount of NiO, which are perovskite structures, were identified by X-ray diffraction.

【0017】(4)実施例1 セラミックス膜調製例に示したディスク形状のセラミッ
クス膜(直径:12mm、厚さ:1.3mm)を用い、触媒調製
例に示した軽質炭化水素部分酸化触媒を平均粒径10μm
に粉砕し、有機溶剤にてスラリー状としたものを同セラ
ミックス膜の片側に塗布、900℃にて焼き付けた。この
時、焼き付けられた触媒の重量は約33mgであった。触媒
を焼き付けたセラミックス膜を、図1に示す様に、触媒
側にメタン、反対側に空気をフィードする実験装置に設
置し、実験装置中央部が850℃になる様に電気炉にて外
部加熱し、常圧下、空気を150scc/min、メタンを20scc/
min、さらにメタン側に水蒸気を10scc/minフィードした
ところ、表1に示す実験結果が得られた。
(4) Example 1 Using the disk-shaped ceramic film (diameter: 12 mm, thickness: 1.3 mm) shown in the ceramic film preparation example, the average particle size of the light hydrocarbon partial oxidation catalyst shown in the catalyst preparation example was Diameter 10μm
The ceramic film was crushed into a slurry, and the slurry was formed using an organic solvent. At this time, the weight of the baked catalyst was about 33 mg. As shown in Fig. 1, the ceramic film on which the catalyst was baked was placed in an experimental device that feeds methane on the catalyst side and air on the opposite side, and was heated externally in an electric furnace so that the center of the experimental device reached 850 ° C. At normal pressure, 150 scc / min of air and 20 scc / min of methane
When the steam was fed at 10 scc / min to the min and further to the methane side, the experimental results shown in Table 1 were obtained.

【表1】 [Table 1]

【0018】(5)実施例2 図1に示す様に、触媒調製例に示した軽質炭化水素部分
酸化触媒の粉末を面圧約7ton/cm2にて一軸圧縮成形後20
/40メッシュに整粒したものをメタン側下流部分の石英
管中に石英ウールにて約300mg固定し、同じく触媒調製
例に示した触媒を約25mg実施例1に示した方法と同様に
焼き付け、メタン側への水蒸気フィードを行わないで、
以上の他は実施例1に示した方法と同様の実験を行っ
た。その結果、表1に示す結果が得られた。
(5) Example 2 As shown in FIG. 1, the light hydrocarbon partial oxidation catalyst powder shown in the catalyst preparation example was subjected to uniaxial compression molding at a surface pressure of about 7 ton / cm 2,
Approximately 300 mg of the particles sized to / 40 mesh was fixed in a quartz tube on the downstream side of the methane side with quartz wool, and about 25 mg of the catalyst shown in the catalyst preparation example was baked in the same manner as in Example 1. Do not feed steam to the methane side,
Other than the above, an experiment similar to the method shown in Example 1 was performed. As a result, the results shown in Table 1 were obtained.

【0019】(6)実施例3 セラミックス膜調製例に示したディスク形状のセラミッ
クス膜(直径:12mm、厚さ:1.1mm)を用い、触媒調製
例に示した軽質炭化水素部分酸化触媒の粉末を面圧約7t
on/cm2にて一軸圧縮成形後20/40メッシュに整粒したも
の約300mgを、図1に示す様に、同セラミックス膜上に
立体的に配置し、触媒側にメタン、反対側に空気をフィ
ードする実験装置に設置し、実験装置中央部が850℃に
なる様に電気炉にて外部加熱し、常圧下、空気を150scc
/min、メタンを20scc/min、さらにメタン側にヘリウム
を20scc/minフィードする実験を650時間実施したとこ
ろ、安定した酸素透過量(約10.0scc/min/cm2)、CH4
化率(98%以上)、CO選択率(96%以上)が得られた。
実験後、セラミックス膜のX線回折を行ったところ、メ
タン側の表面については、BaCO3、SrCO3ピークが同定さ
れたが、同表面を除く部分は、元のペロブスカイト構造
を維持していた。
(6) Example 3 Using the disk-shaped ceramic film (diameter: 12 mm, thickness: 1.1 mm) shown in the ceramic film preparation example, the light hydrocarbon partial oxidation catalyst powder shown in the catalyst preparation example was used. Surface pressure about 7t
Approximately 300 mg of uniaxial compression molded on / cm 2 and sized to 20/40 mesh were placed three-dimensionally on the same ceramic membrane as shown in Fig. 1, methane was placed on the catalyst side, and air was placed on the opposite side. Is installed in an experimental device that feeds the air, and externally heated with an electric furnace so that the temperature in the center of the experimental device becomes 850 ° C.
650 hours at methane, 20 scc / min of methane, and 20 scc / min of helium to the methane side. A stable oxygen permeation (about 10.0 scc / min / cm 2 ) and a CH 4 conversion rate (98 %) And CO selectivity (96% or more).
After the experiment, when the ceramic film was subjected to X-ray diffraction, BaCO 3 and SrCO 3 peaks were identified on the methane side surface, but the parts other than the surface maintained the original perovskite structure.

【0020】(7)実施例4 図2にセラミックス膜式反応器を含む低圧水素製造装置
の利用例を示す。図2に関して、フィードされる軽質炭
化水素をメタンとし、同メタンに水蒸気を炭素含有量に
対して1.0の比率で含有させる場合について、常圧条件
におけるプロセス計算を実施した。この時、COシフト反
応器上流に水蒸気を、セラミックス膜式反応器にフィー
ドさせるメタンの量に対して1.33の比率で、投入してい
る。計算の結果、表2に示す様に、分離器下流におい
て、H2: 68.7%、H2O: 7.3%、CO2:23.8%、CO: 0.2%
の高濃度水素ガスが得られた。
(7) Embodiment 4 FIG. 2 shows an application example of a low-pressure hydrogen production apparatus including a ceramic membrane reactor. Referring to FIG. 2, a process calculation was performed under normal pressure conditions when the light hydrocarbons to be fed were methane and water vapor was contained in the methane at a ratio of 1.0 to the carbon content. At this time, steam was supplied upstream of the CO shift reactor at a ratio of 1.33 to the amount of methane fed to the ceramic membrane reactor. As a result of the calculation, as shown in Table 2, downstream of the separator, H 2 : 68.7%, H 2 O: 7.3%, CO 2 : 23.8%, CO: 0.2%
Was obtained.

【表2】 [Table 2]

【0021】(8)比較例 比較セラミックス膜調製例に示したディスク形状のセラ
ミックス膜(直径:12mm、厚さ:1.2mm)を用い、実施
例1と同様に触媒約20mgを同セラミックス膜に焼き付け
た。同セラミックス膜を、実施例1と同様の実験装置に
設置し、実験装置中央部が850℃になる様に電気炉にて
外部加熱し、空気を150scc/min、メタンを30scc/minフ
ィードしたところ、表1に示す実験結果が得られた。80
時間の実験後、取り出されたセラミックス膜全体を粉末
化し、X線回折を行ったところ、元のペロブスカイト構
造に加えて、CoO相ピークが明瞭に観察され、材料の相
変化が顕著であることが判明した。
(8) Comparative Example Using the disk-shaped ceramic film (diameter: 12 mm, thickness: 1.2 mm) shown in the comparative ceramic film preparation example, about 20 mg of the catalyst was baked on the same ceramic film as in Example 1. Was. The same ceramic film was placed in the same experimental apparatus as in Example 1, and the central part of the experimental apparatus was externally heated in an electric furnace so that the temperature became 850 ° C., and air was fed at 150 scc / min and methane was fed at 30 scc / min The experimental results shown in Table 1 were obtained. 80
After the time experiment, the whole ceramic film taken out was powdered and subjected to X-ray diffraction.In addition to the original perovskite structure, the CoO phase peak was clearly observed, and the phase change of the material was remarkable. found.

【0022】[0022]

【発明の効果】本発明では、空気からの酸素分離とメタ
ン部分酸化反応をシングルユニットにて実現するセラミ
ックス膜式反応器を提示するとともに、同反応器を用い
る低圧水素製造方法を提示した。これらの技術により、
軽質炭化水素ガスおよび空気を原料として高濃度水素ガ
スを、低圧条件下で安定して、高効率、安価に製造する
ことができる。
According to the present invention, a ceramic membrane reactor which realizes oxygen separation from air and partial oxidation of methane in a single unit is presented, and a low-pressure hydrogen production method using the reactor is presented. With these technologies,
High-concentration hydrogen gas can be produced stably under low pressure conditions with high efficiency and low cost using light hydrocarbon gas and air as raw materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セラミックス膜を用いる酸素透過・メタン部分
酸化反応実験方法の模式図
FIG. 1 is a schematic diagram of an experimental method for oxygen permeation and partial oxidation of methane using a ceramic film.

【図2】セラミックス膜式反応器を含む低圧水素製造装
置の利用例
FIG. 2 Application example of low-pressure hydrogen production equipment including ceramic membrane reactor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01B 3/48 C01B 3/48 4G140 C04B 35/00 H01M 8/06 G 5H027 // H01M 8/06 C04B 35/00 Z (72)発明者 加賀野井 彰一 東京都渋谷区幡ヶ谷1丁目31番10号 帝国 石油株式会社 (72)発明者 鈴木 洋平 東京都渋谷区幡ヶ谷1丁目31番10号 帝国 石油株式会社 (72)発明者 楊 維慎 中華人民共和国大連市中山路457号 中国 科学院大連化学物理研究所催化基礎国家重 点実験室内 Fターム(参考) 4D006 GA41 KA15 KA17 KE06P KE06Q KE16Q KE16R LA10 MA03 MA31 MB04 MC03 MC03X NA39 NA63 PB17 PB62 PC69 4G030 AA08 AA09 AA10 AA16 AA27 AA28 AA29 AA61 BA32 BA34 4G040 EA03 EA06 EB16 EB22 EB31 EB32 EB46 4G069 AA02 AA03 AA08 AA11 BA13A BA13B BB06A BB06B BC13A BC13B BC50A BC50B BC68A BC68B CC29 CC32 DA06 EA07 EA14 EC23 FA06 FB06 4G075 AA03 BA01 BA05 BB05 CA54 DA01 EA02 EA06 4G140 EA03 EA06 EB16 EB22 EB31 EB32 EB46 5H027 BA01 BA17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C01B 3/48 C01B 3/48 4G140 C04B 35/00 H01M 8/06 G 5H027 // H01M 8/06 C04B 35 / 00 Z (72) Inventor Shoichi Kaganoi 1-31-10 Hatagaya, Shibuya-ku, Tokyo Teikoku Oil Co., Ltd. (72) Inventor Yohei Suzuki 1-31-10 Hatagaya, Shibuya-ku, Tokyo Teikoku Oil Co., Ltd. (72 Inventor Yang Wei-jin No. 457 Zhongshan Road, Dalian, China PRC F-term (Reference) 4D006 GA41 KA15 KA17 KE06P KE06Q KE16Q KE16R LA10 MA03 MA31 MB04 MC03 MC03X NA39 NA63 PB17 PB62 PC69 4G030 AA08 AA09 AA10 AA16 AA27 AA28 AA29 AA61 BA32 BA34 4G040 EA03 EA06 EB16 EB22 EB31 EB32 EB46 4G069 AA02 AA03 AA08 AA11 BA13A BA13B BB06A BB06B BC13A BC13B BC50A BC50B BC68A BC68B CC29 CC32 DA06 EA07 EA14 EC23 FA06 FB06 4G075 AA03 BA01 BA05 BB05 CA54 DA01 EA02 EA06 4G140 EA03 EB03 EB06 EB16 EB06 EB06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】BaxSr1-xCoyFe1-yO3-δ(x = 0.3〜0.7、y
= 0.6〜1.0)によって表され、ペロブスカイト構造を
有する複合酸化物材料により構成され、厚さ0.5〜1.5mm
の緻密酸素選択透過セラミックス膜の片側に空気、もう
一方に炭化水素部分酸化触媒を配置し軽質炭化水素ガス
を接触させ、セラミックス膜を選択的に透過して得られ
る純酸素によって軽質炭化水素の部分酸化を行うセラミ
ックス膜式反応器。
(1) Ba x Sr 1-x Co y Fe 1-y O 3-δ (x = 0.3 to 0.7, y
= 0.6 to 1.0), composed of a composite oxide material having a perovskite structure, and having a thickness of 0.5 to 1.5 mm.
Air is placed on one side of the dense oxygen selective permeable ceramic membrane, and a hydrocarbon partial oxidation catalyst is placed on the other side, and light hydrocarbon gas is brought into contact with it. A ceramic membrane reactor that performs oxidation.
【請求項2】炭化水素部分酸化触媒として、Nix/CaySr
1-yTiO3(x = 0.1〜0.3、y = 0.8又は0.0)またはNix/B
aTiO3(x = 0.1〜0.3)によって表される組成を有する
もの、またはロジウム、白金、又はルテニウムをこれら
触媒重量に対して0.1〜1000重量ppm担持させた触媒を用
い、これらのうち1種または複数種をセラミックス膜に
対して平面的及び又は立体的に配置する請求項1記載の
セラミックス膜式反応器。
2. A catalyst for partial oxidation of hydrocarbons comprising Ni x / Ca y Sr
1-y TiO 3 (x = 0.1-0.3, y = 0.8 or 0.0) or Ni x / B
aTiO 3 (x = 0.1 to 0.3) having a composition represented by, or a catalyst in which rhodium, platinum, or ruthenium is supported in an amount of 0.1 to 1000 ppm by weight based on the weight of the catalyst, one or more of these are used. The ceramic membrane reactor according to claim 1, wherein a plurality of types are arranged two-dimensionally and / or three-dimensionally with respect to the ceramic membrane.
【請求項3】軽質炭化水素ガスとして、メタンを含有す
る天然ガス、 石油系合成天然ガス、石炭熱分解ガス、
コークス炉ガス、その他メタンを主成分とするガス、及
び/又は、LPG、ナフサ、ガソリンの予備改質ガスを用
い、同ガスに水蒸気を含有炭素量に対し0.0から1.0の比
率で混入させる請求項1及び2に記載のセラミックス膜
式反応器。
3. The light hydrocarbon gas includes natural gas containing methane, petroleum-based synthetic natural gas, coal pyrolysis gas,
Using coke oven gas, other gas containing methane as a main component, and / or pre-reforming gas of LPG, naphtha, gasoline, and mixing steam into the gas at a ratio of 0.0 to 1.0 with respect to carbon content. 3. The ceramic membrane reactor according to 1 or 2.
【請求項4】フィードされる空気及び軽質炭化水素ガス
が、酸素欠乏空気及びメタン部分酸化ガスによって400
〜600℃に昇温され、操作温度がメタン部分酸化反応に
より800〜950℃となる請求項1から3に記載のセラミッ
クス膜式反応器。
4. The feed air and light hydrocarbon gas are supplied by oxygen-deficient air and methane partial oxidation gas.
The ceramic membrane reactor according to claim 1, wherein the temperature is raised to 600 ° C., and the operating temperature is 800-950 ° C. due to a partial oxidation reaction of methane.
【請求項5】フィードされる空気および軽質炭化水素ガ
スの圧力が、それぞれ、1から2気圧および1から2気圧で
ある請求項1から4に記載のセラミックス膜式反応器。
5. The ceramic membrane reactor according to claim 1, wherein the pressures of the air and the light hydrocarbon gas to be fed are 1 to 2 atm and 1 to 2 atm, respectively.
【請求項6】請求項1から5に記載のセラミックス膜式
反応器および同反応器出口ガスに水蒸気を添加したもの
がフィードされるCO変成(シフト反応)装置により構成
される低圧水素製造方法。
6. A low-pressure hydrogen production method comprising the ceramic membrane reactor according to claim 1 and a CO shift (shift reaction) apparatus to which a gas obtained by adding steam to the outlet gas of the reactor is fed.
JP2000284648A 2000-09-20 2000-09-20 Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same Withdrawn JP2002085946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284648A JP2002085946A (en) 2000-09-20 2000-09-20 Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284648A JP2002085946A (en) 2000-09-20 2000-09-20 Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same

Publications (1)

Publication Number Publication Date
JP2002085946A true JP2002085946A (en) 2002-03-26

Family

ID=18768825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284648A Withdrawn JP2002085946A (en) 2000-09-20 2000-09-20 Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same

Country Status (1)

Country Link
JP (1) JP2002085946A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033431A1 (en) * 2001-10-15 2003-04-24 Nippon Steel Corporation Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
JP2005015320A (en) * 2003-06-30 2005-01-20 Jfe Steel Kk Mixed conductive complex oxide and method for producing the same, and method for producing oxygen and method for reforming gas using the mixed conductive complex oxide
JP2005103490A (en) * 2003-10-01 2005-04-21 Jfe Steel Kk Method for designing mixed-conductive inorganic membrane, its manufacturing method, computer program, and recording medium readable by computer
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
JP2009057269A (en) * 2007-08-08 2009-03-19 Tdk Corp Oxygen permeation module and system for generating hydrogen
JP2009519195A (en) * 2005-12-14 2009-05-14 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Oxidation reactor and oxidation method
JP2011212603A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing reforming catalyst and method for reforming tar-containing gas
JP2012206009A (en) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd Oxygen concentrator and method for manufacturing the same
JP2013237049A (en) * 2013-07-22 2013-11-28 Nippon Steel & Sumitomo Metal Corp Modifying catalyst for tar-containing gas, method for manufacturing the same, and modifying method for tar-containing gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033431A1 (en) * 2001-10-15 2003-04-24 Nippon Steel Corporation Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
US7151067B2 (en) 2001-10-15 2006-12-19 Nippon Steel Corporation Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
JP2005015320A (en) * 2003-06-30 2005-01-20 Jfe Steel Kk Mixed conductive complex oxide and method for producing the same, and method for producing oxygen and method for reforming gas using the mixed conductive complex oxide
JP2005103490A (en) * 2003-10-01 2005-04-21 Jfe Steel Kk Method for designing mixed-conductive inorganic membrane, its manufacturing method, computer program, and recording medium readable by computer
JP2009519195A (en) * 2005-12-14 2009-05-14 ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング Oxidation reactor and oxidation method
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
JP2009057269A (en) * 2007-08-08 2009-03-19 Tdk Corp Oxygen permeation module and system for generating hydrogen
JP2011212603A (en) * 2010-03-31 2011-10-27 Nippon Steel Corp Reforming catalyst for tar-containing gas, method for manufacturing reforming catalyst and method for reforming tar-containing gas
JP2012206009A (en) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd Oxygen concentrator and method for manufacturing the same
JP2013237049A (en) * 2013-07-22 2013-11-28 Nippon Steel & Sumitomo Metal Corp Modifying catalyst for tar-containing gas, method for manufacturing the same, and modifying method for tar-containing gas

Similar Documents

Publication Publication Date Title
CA2252539C (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
Luo et al. Performance of a ceramic membrane reactor with high oxygen flux Ta-containing perovskite for the partial oxidation of methane to syngas
JP4953546B2 (en) Methane partial oxidation method using dense oxygen permselective ceramic membrane
Balachandran et al. Dense ceramic membranes for partial oxidation of methane to syngas
Tsai et al. Dense perovskite membrane reactors for partial oxidation of methane to syngas
CA2307005C (en) Hydrogen permeation through mixed protonic-electronic conducting materials
JP3212304B2 (en) Novel solid multi-component membranes, electrochemical reactors, and use of membranes and reactors for oxidation reactions
US6949230B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US7479242B2 (en) Complex mixed conductor containing Pr-doped cerium oxide and spinel-type ferrite and its preparation method
Fang et al. CO2-resistant hydrogen permeation membranes based on doped ceria and nickel
EP1027149A1 (en) Catalytic membrane reactor with two component - three dimensional catalysis
EP0984826A1 (en) Autothermic reactor comprising oxygen ion conducting dense ceramic membrane and process using the autothermic reactor for producing synthesis gas
Zhang et al. Coupling water splitting and partial oxidation of methane (POM) in Ag modified La0. 8Ca0. 2Fe0. 94O3-δ hollow fiber membrane reactors for co-production of H2 and syngas
Liu et al. High-performance oxygen permeation membranes: cobalt-free Ba0. 975La0. 025Fe1-xCuxO3-δ ceramics
Cho et al. Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane
CN101479021A (en) Oxygen separation membrane
JP2002085946A (en) Ceramic membrane-type reactor and method of producing hydrogen at low pressure using the same
CN109734438B (en) Cobalt-and-iron-free titanium-based perovskite ceramic oxygen permeable membrane and preparation method and application thereof
Ngoensawat et al. Effect of La and Gd substitution in BaFeO3-δ perovskite structure on its catalytic performance for thermochemical water splitting
CN113332863A (en) Preparation method of biphase oxygen permeable membrane with high surface catalytic activity
Dong et al. SrAl2O4-improved SrCo0. 8Fe0. 2O3− δ mixed-conducting membrane for effective production of hydrogen from methane
Yao et al. Oxygen activity regulation over LaNiO3 perovskites by Ti substitution for chemical looping partial oxidation of methane
JP3914416B2 (en) Membrane reactor
Su et al. Permeability and stability enhancement of dual-phase membrane by nickel-based porous layer for water splitting
Dong et al. Partial oxidation of methane to syngas in a mixed-conducting oxygen permeable membrane reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080311

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401