JP2002081339A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine

Info

Publication number
JP2002081339A
JP2002081339A JP2000303146A JP2000303146A JP2002081339A JP 2002081339 A JP2002081339 A JP 2002081339A JP 2000303146 A JP2000303146 A JP 2000303146A JP 2000303146 A JP2000303146 A JP 2000303146A JP 2002081339 A JP2002081339 A JP 2002081339A
Authority
JP
Japan
Prior art keywords
catalyst
air
fuel ratio
amount
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000303146A
Other languages
Japanese (ja)
Other versions
JP4636214B2 (en
Inventor
Hisayo Doda
久代 堂田
Nobuaki Ikemoto
池本  宣昭
Yukihiro Yamashita
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000303146A priority Critical patent/JP4636214B2/en
Priority to US09/866,804 priority patent/US20020011067A1/en
Publication of JP2002081339A publication Critical patent/JP2002081339A/en
Application granted granted Critical
Publication of JP4636214B2 publication Critical patent/JP4636214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably control air-fuel ratio considering a state in catalyst. SOLUTION: Change amount ΔOS(i) of quantity of state in the catalyst is calculated based on a deviation between an actual fuel excess ratio ϕ detected by an air-fuel sensor on the upstream side of the catalyst and a desired fuel excess ratio ϕref and an air amount Q, and the change amount is integrated to derive the present quantity of state OS(i) in the catalyst (step 101). At this time, as the air amount Q, a past air amount Q(i-d) before the delay time d from the fuel injection to the detection of the fuel excess ratio ϕ of exhaust gas is used. After a guard process of the calculated value of the quantity of state OS(i) in the catalyst, a deviation OSerror between the desired quantity of state OSref in the catalyst and the present quantity state OS(i) is calculated (steps 102 and 103). Then, gains kp, ki and kd are set and control parameters A1, A2, B1, B2, and B3 are calculated (steps 104 and 105), and the desired fuel excess ratio ϕref on the upstream side of the catalyst is calculated using the gains and the control parameters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、触媒内の状態を考
慮して空燃比を制御する内燃機関の空燃比制御装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine that controls an air-fuel ratio in consideration of a state in a catalyst.

【0002】[0002]

【従来の技術】近年の自動車は、排気管に三元触媒を設
置すると共に、この触媒の上流側に空燃比センサを設置
し、この空燃比センサの出力に基づいて排出ガスの空燃
比を触媒の浄化ウインドウ(理論空燃比付近)に制御す
るように燃料噴射量を制御することで、排出ガスを効率
良く浄化するようにしている。
2. Description of the Related Art Recent automobiles have a three-way catalyst installed in an exhaust pipe and an air-fuel ratio sensor installed upstream of the catalyst, and the air-fuel ratio of exhaust gas is determined based on the output of the air-fuel ratio sensor. By controlling the fuel injection amount so as to control the purification window (around the stoichiometric air-fuel ratio), the exhaust gas is efficiently purified.

【0003】[0003]

【発明が解決しようとする課題】ところで、触媒は、排
出ガス中のリーン成分(NOx,O2 等)とリッチ成分
(HC,H2 等)とを酸化還元反応させて無害の中性ガ
ス成分(CO2 ,H2 O,N2 等)に変化させる他に、
未反応のリーン成分やリッチ成分を一時的に触媒内に吸
着する作用もあり、これら酸化還元反応と吸着作用の両
方によって排出ガスを浄化するものである。エンジン運
転状態によっては、触媒に流入する排出ガスの空燃比が
理論空燃比からリッチ側又はリーン側にずれた状態が暫
く続くことがあるが、このように空燃比がずれた状態が
暫く続くと、触媒内のリーン成分吸着量又はリッチ成分
吸着量が増加して飽和状態になることがあり、その結
果、触媒の吸着能力が低下して排出ガス浄化率が低下す
る不具合が発生する。
[SUMMARY OF THE INVENTION Incidentally, the catalyst, the lean component (NOx, O 2, etc.) and the rich components (HC, H 2, etc.) harmless neutral gas components by oxidation-reduction reaction and in the exhaust gas (CO 2 , H 2 O, N 2 etc.)
The catalyst also has a function of temporarily adsorbing unreacted lean components and rich components into the catalyst, and purifies exhaust gas by both the oxidation-reduction reaction and the adsorption function. Depending on the engine operating state, the state in which the air-fuel ratio of the exhaust gas flowing into the catalyst deviates from the stoichiometric air-fuel ratio to the rich side or the lean side may continue for a while. In some cases, the amount of lean component adsorbed or the amount of rich component adsorbed in the catalyst increases, and the catalyst becomes saturated. As a result, there occurs a problem that the adsorption capacity of the catalyst is reduced and the exhaust gas purification rate is reduced.

【0004】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、触媒内の状態を考慮
して空燃比を適正に制御することで、排出ガス浄化率を
向上できる内燃機関の空燃比制御装置を提供することに
ある。
[0004] The present invention has been made in view of such circumstances, and accordingly, an object thereof is to improve the exhaust gas purification rate by appropriately controlling the air-fuel ratio in consideration of the state in the catalyst. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の空燃比制御装置は、
触媒の上流又は下流の排出ガスの空燃比を空燃比検出手
段により検出すると共に、内燃機関に吸入される空気量
を空気量検出手段により検出し、検出した排出ガスの空
燃比と空気量とに基づいて触媒内状態量を触媒内状態量
算出手段により算出し、この触媒内状態量と目標値との
偏差が小さくなるように燃料噴射量を噴射制御手段によ
り補正する。このようにすれば、触媒の吸着能力ができ
るだけ良好に維持されるように制御され、排出ガス浄化
率が向上する。
In order to achieve the above object, an air-fuel ratio control apparatus for an internal combustion engine according to a first aspect of the present invention is provided.
The air-fuel ratio of the exhaust gas upstream or downstream of the catalyst is detected by the air-fuel ratio detecting means, and the amount of air taken into the internal combustion engine is detected by the air amount detecting means. The in-catalyst state quantity is calculated by the in-catalyst state quantity calculation means on the basis of this, and the fuel injection amount is corrected by the injection control means so that the deviation between the in-catalyst state quantity and the target value is reduced. By doing so, the catalyst is controlled so that the adsorption capacity of the catalyst is maintained as good as possible, and the exhaust gas purification rate is improved.

【0006】この場合、触媒内状態量は排出ガスの空燃
比と空気量とに基づいて算出されるが、空気量を検出す
る位置(吸気管)と排出ガスの空燃比を検出する位置
(排気管)とが離れているため、空気量検出位置を通過
した空気が噴射燃料と混合して燃焼して空燃比検出位置
に到達するまでに時間遅れが生じる。このため、空気量
が変化する過渡運転時には、同時刻に検出した空燃比と
空気量を用いたのでは触媒内状態量を正確に算出するこ
とができない。
[0006] In this case, the state quantity in the catalyst is calculated based on the air-fuel ratio of the exhaust gas and the air amount, and a position for detecting the air amount (intake pipe) and a position for detecting the air-fuel ratio of the exhaust gas (exhaust gas). Because of the distance from the tube, the air that has passed through the air amount detection position mixes with the injected fuel and burns, and a time delay occurs before reaching the air-fuel ratio detection position. Therefore, during the transient operation in which the air amount changes, the state quantity in the catalyst cannot be accurately calculated by using the air-fuel ratio and the air amount detected at the same time.

【0007】そこで、請求項2のように、触媒内状態量
を算出する際に用いる空気量は、少なくとも燃料噴射か
ら排出ガスの空燃比を検出するまでの遅れ時間分過去の
空気量を用いると良い。このようにすれば、触媒内状態
量を算出する際に用いる空気量と空燃比との時間的なず
れを修正することができ、空気量が変化する過渡運転時
でも触媒内状態量を精度良く算出することができる。
Therefore, the amount of air used in calculating the state quantity in the catalyst may be at least the amount of air in the past corresponding to the delay time from the fuel injection to the detection of the air-fuel ratio of the exhaust gas. good. With this configuration, it is possible to correct a time lag between the air amount and the air-fuel ratio used when calculating the state amount in the catalyst, and accurately determine the state amount in the catalyst even during a transient operation in which the air amount changes. Can be calculated.

【0008】また、請求項3のように、所定の演算周期
で目標空燃比に対する排出ガスの空燃比のずれ量と空気
量とに基づいて触媒内状態量の変化量を算出し、この変
化量を積算して現在の触媒内状態量を求めるようにして
も良い。このようにすれば、簡単な演算処理で触媒内状
態量を精度良く算出することができる。
According to a third aspect of the present invention, a change amount of the state quantity in the catalyst is calculated based on a deviation amount of the air-fuel ratio of the exhaust gas with respect to the target air-fuel ratio and an air amount in a predetermined calculation cycle. May be integrated to obtain the current state quantity in the catalyst. In this way, the in-catalyst state quantity can be accurately calculated by a simple calculation process.

【0009】また、触媒内状態量が触媒の飽和吸着量に
達すると、それ以上はガス成分を吸着できなくなるた
め、請求項4のように、触媒内状態量の算出値をガード
処理手段によって触媒の飽和吸着量に相当するガード値
で制限するようにすると良い。このようにすれば、触媒
が飽和状態になったときに触媒内状態量の算出値の誤差
が拡大することを防止することができる。
Further, when the state quantity in the catalyst reaches the saturated adsorption amount of the catalyst, no more gas components can be adsorbed, so that the calculated value of the state quantity in the catalyst is determined by the guard processing means. Is preferably limited by a guard value corresponding to the saturated adsorption amount of. In this way, it is possible to prevent the error in the calculated value of the in-catalyst state quantity from increasing when the catalyst becomes saturated.

【0010】この場合、触媒内を流れる排出ガスの流速
が速くなるほど(空気量が多くなるほど)、触媒の飽和
吸着量が少なくなるという飽和吸着特性があるため、請
求項5のように、触媒内状態量の算出値に対するガード
値を空気量に応じて変化させるようにしても良い。この
ようにすれば、実際の触媒の飽和吸着特性に適合したガ
ード値を設定することができ、触媒内状態量の算出精度
を更に向上することができる。
In this case, the catalyst has a saturated adsorption characteristic in which the higher the flow rate of the exhaust gas flowing through the catalyst (the larger the amount of air), the smaller the saturated adsorption amount of the catalyst. The guard value for the calculated value of the state amount may be changed according to the air amount. In this way, a guard value suitable for the actual saturated adsorption characteristics of the catalyst can be set, and the accuracy of calculating the state quantity in the catalyst can be further improved.

【0011】尚、排出ガスの空燃比とガス濃度とは相関
関係があるため、請求項6のように触媒の上流又は下流
の排出ガスのガス濃度をガス濃度検出手段により検出す
ると共に、内燃機関に吸入される空気量を空気量検出手
段により検出し、検出した排出ガスのガス濃度と空気量
とに基づいて触媒内状態量を算出し、この触媒内状態量
と目標値との偏差が小さくなるように燃料噴射量を補正
するようにしても良い。このようにしても、請求項1と
同じく、触媒の吸着能力ができるだけ良好に維持される
ように制御され、排出ガス浄化率が向上する。
Since there is a correlation between the air-fuel ratio of the exhaust gas and the gas concentration, the gas concentration of the exhaust gas upstream or downstream of the catalyst is detected by the gas concentration detecting means and the internal combustion engine is detected. The amount of air sucked into the air is detected by the air amount detecting means, and the state amount in the catalyst is calculated based on the detected gas concentration of the exhaust gas and the air amount, and the deviation between the state amount in the catalyst and the target value is small. The fuel injection amount may be corrected so as to be as follows. Also in this case, similarly to the first aspect, the catalyst is controlled so that the adsorption capacity of the catalyst is maintained as good as possible, and the exhaust gas purification rate is improved.

【0012】ところで、触媒内状態量を算出する際に、
ある程度の誤差が生じることは避けられない。この触媒
内状態量の算出誤差(推定誤差)は、触媒下流側に設置
した空燃比センサ(又は酸素センサ)の出力を触媒上流
側の目標空燃比に反映させるサブフィードバックにより
補正できるが、サブフィードバックによる補正は、応答
遅れがある。
By the way, when calculating the state quantity in the catalyst,
It is inevitable that some error will occur. This calculation error (estimation error) of the in-catalyst state quantity can be corrected by sub-feedback that reflects the output of the air-fuel ratio sensor (or oxygen sensor) installed on the downstream side of the catalyst to the target air-fuel ratio on the upstream side of the catalyst. Correction has a response delay.

【0013】そこで、請求項7のように、触媒内状態量
を算出する際に、その算出値を実際の触媒内状態量に応
じて補正手段によって補正するようにしても良い。この
ようにすれば、触媒内状態量の算出誤差(推定誤差)を
少なくすることができ、その分、実際の触媒内状態量に
対する応答性の良い空燃比制御を実施することができ、
過渡時の排出ガス浄化性能を向上することができる。
Therefore, when calculating the state quantity in the catalyst, the calculated value may be corrected by the correction means according to the actual state quantity in the catalyst. In this way, the calculation error (estimation error) of the in-catalyst state quantity can be reduced, and the air-fuel ratio control with good responsiveness to the actual in-catalyst state quantity can be implemented accordingly.
Exhaust gas purification performance during transition can be improved.

【0014】この場合、実際の触媒内状態量に応じて、
触媒から流出する排出ガスの空燃比又はガス濃度が変化
する特性があるため、請求項8のように、実際の触媒内
状態量の情報は、触媒から流出する排出ガスの空燃比又
はガス濃度を検出する触媒下流側のセンサの出力を用い
るようにすれば良い。これにより、触媒下流側のセンサ
の出力から実際の触媒内状態量の情報を簡単に得ること
ができる。
In this case, according to the actual state quantity in the catalyst,
Since there is a characteristic that the air-fuel ratio or the gas concentration of the exhaust gas flowing out of the catalyst changes, the information on the actual state quantity in the catalyst indicates the air-fuel ratio or the gas concentration of the exhaust gas flowing out of the catalyst. What is necessary is just to use the output of the sensor downstream of the catalyst to be detected. This makes it possible to easily obtain information on the actual state quantity in the catalyst from the output of the sensor on the downstream side of the catalyst.

【0015】また、請求項9のように、触媒内状態量算
出手段により算出した触媒内状態量と実際の触媒内状態
量との偏差に応じて、触媒内状態量の目標値を制御する
パラメータをパラメータ可変手段により可変するように
しても良い。これにより、触媒内状態量の目標値を触媒
内状態量の偏差に応じて応答性良く設定することができ
る。
A parameter for controlling a target value of the in-catalyst state quantity according to a deviation between the in-catalyst state quantity calculated by the in-catalyst state quantity calculation means and the actual in-catalyst state quantity. May be varied by parameter varying means. Thereby, the target value of the in-catalyst state quantity can be set with good responsiveness according to the deviation of the in-catalyst state quantity.

【0016】この場合、請求項10のように、触媒内状
態量の目標値を制御するパラメータとして、触媒内状態
量を算出する式のパラメータを可変するようにしても良
く、或は、請求項11のように、触媒下流側の空燃比を
前記目標値に反映させるサブフィードバックの制御パラ
メータを可変するようにしても良い。いずれの方法で
も、触媒内状態量の目標値を触媒内状態量の偏差に応じ
て応答性良く可変することができる。
In this case, as a parameter for controlling the target value of the in-catalyst state quantity, a parameter of an equation for calculating the in-catalyst state quantity may be varied. As in 11, the sub-feedback control parameter for reflecting the air-fuel ratio on the downstream side of the catalyst to the target value may be varied. In either method, the target value of the in-catalyst state quantity can be varied with high responsiveness in accordance with the deviation of the in-catalyst state quantity.

【0017】また、実際の触媒内状態量の情報にもある
程度の誤差があることを考慮して、請求項12のよう
に、触媒内状態量算出手段により算出した触媒内状態量
と実際の触媒内状態量との偏差が所定値以下の場合に、
該偏差を0と見なすようにしても良い。このようにすれ
ば、実際の触媒内状態量の情報(触媒下流側のセンサの
出力)に含まれる誤差による過補正を回避することがで
き、安定した空燃比制御を行うことができる。
Also, in consideration of the fact that there is a certain error in the information on the actual state quantity in the catalyst, the catalyst state quantity calculated by the catalyst state quantity calculating means and the actual catalyst state quantity are calculated. When the deviation from the internal state quantity is equal to or less than the predetermined value,
The deviation may be regarded as 0. By doing so, it is possible to avoid overcorrection due to an error included in the information on the actual in-catalyst state quantity (output of the sensor on the downstream side of the catalyst), and to perform stable air-fuel ratio control.

【0018】[0018]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図5に基づいて説明する。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.

【0019】まず、図1に基づいてエンジン制御システ
ム全体の概略構成を説明する。内燃機関であるエンジン
11の吸気管12の最上流部には、エアクリーナ13が
設けられ、このエアクリーナ13の下流側には、吸入空
気量を検出するエアフローメータ14(空気量検出手
段)が設けられている。このエアフローメータ14の下
流側には、スロットルバルブ15とスロットル開度を検
出するスロットル開度センサ16とが設けられている。
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 of an engine 11 which is an internal combustion engine, and an air flow meter 14 (air amount detecting means) for detecting an intake air amount is provided downstream of the air cleaner 13. ing. Downstream of the air flow meter 14, a throttle valve 15 and a throttle opening sensor 16 for detecting a throttle opening are provided.

【0020】更に、スロットルバルブ15の下流側に
は、サージタンク17が設けられ、このサージタンク1
7に、吸気管圧力を検出する吸気管圧力センサ18が設
けられている。また、サージタンク17には、エンジン
11の各気筒に空気を導入する吸気マニホールド19が
設けられ、各気筒の吸気マニホールド19の吸気ポート
近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り
付けられている。
Further, on the downstream side of the throttle valve 15, a surge tank 17 is provided.
7, an intake pipe pressure sensor 18 for detecting an intake pipe pressure is provided. Further, the surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached near an intake port of the intake manifold 19 of each cylinder. I have.

【0021】一方、エンジン11の排気管21の途中に
は、排ガス中の有害成分(CO,HC,NOx等)を低
減させる三元触媒等の触媒22が設置されている。この
触媒22の上流側には、排出ガスの空燃比を検出するリ
ニアA/Fセンサ等の空燃比センサ23(空燃比検出手
段)が設けられている。また、エンジン11のシリンダ
ブロックには、冷却水温を検出する冷却水温センサ24
や、エンジン回転速度を検出するクランク角センサ25
が取り付けられている。
On the other hand, a catalyst 22 such as a three-way catalyst for reducing harmful components (CO, HC, NOx, etc.) in exhaust gas is provided in the exhaust pipe 21 of the engine 11. An air-fuel ratio sensor 23 (air-fuel ratio detecting means) such as a linear A / F sensor for detecting the air-fuel ratio of the exhaust gas is provided upstream of the catalyst 22. A cooling water temperature sensor 24 for detecting a cooling water temperature is provided in a cylinder block of the engine 11.
And a crank angle sensor 25 for detecting the engine speed.
Is attached.

【0022】これら各種のセンサ出力は、エンジン制御
回路(以下「ECU」と表記する)26に入力される。
このECU26は、マイクロコンピュータを主体として
構成され、内蔵されたROM(記憶媒体)に記憶された
図2及び図3の目標φ算出プログラムを実行すること
で、触媒内状態量OSを算出し、この触媒内状態量OS
に応じて触媒22上流側の目標燃料過剰率φref を算出
する。ここで、燃料過剰率φは、空気過剰率λの逆数で
あり(φ=1/λ)、空気過剰率λは、実空燃比と理論
空燃比との比である。 λ=実空燃比/理論空燃比 φ=理論空燃比/実空燃比
These various sensor outputs are input to an engine control circuit (hereinafter referred to as "ECU") 26.
The ECU 26 is configured mainly by a microcomputer, and executes the target φ calculation program of FIGS. 2 and 3 stored in a built-in ROM (storage medium) to calculate the state quantity OS in the catalyst. OS in the catalyst
The target excess fuel ratio φref on the upstream side of the catalyst 22 is calculated in accordance with the above equation. Here, the excess fuel ratio φ is the reciprocal of the excess air ratio λ (φ = 1 / λ), and the excess air ratio λ is the ratio between the actual air-fuel ratio and the stoichiometric air-fuel ratio. λ = actual air-fuel ratio / stoichiometric air-fuel ratio φ = stoichiometric air-fuel ratio / actual air-fuel ratio

【0023】ECU26は、図2及び図3の目標φ算出
プログラムで算出した目標燃料過剰率φref と実際の燃
料過剰率φとの偏差を小さくするように燃料噴射量をフ
ィードバック補正して、触媒内状態量OSを目標触媒内
状態量OSref 付近に制御する。この機能が特許請求の
範囲でいう噴射制御手段に相当する。
The ECU 26 performs feedback correction of the fuel injection amount so as to reduce the deviation between the target excess fuel ratio φref calculated by the target φ calculation program shown in FIGS. The state quantity OS is controlled near the target in-catalyst state quantity OSref. This function corresponds to the injection control means in the claims.

【0024】図2及び図3の目標φ算出プログラムは、
所定クランク角毎(例えば180℃A毎)又は所定時間
毎に起動され、まず、ステップ101で、次のようにし
て現在の触媒内状態量OS(i) を算出する。まず、触媒
22上流側の空燃比センサ23で検出した実際の燃料過
剰率φと目標燃料過剰率φref との偏差(φ−φref)
と、単位時間当たり触媒22に流入する空気量Qとに基
づいて触媒内状態量の変化量ΔOS(i) を算出する。 ΔOS(i) =(φ−φref )×Q(i-d) ……(1)
The target φ calculation program shown in FIGS.
It is started every predetermined crank angle (for example, every 180 ° C.) or every predetermined time. First, in step 101, the current state quantity OS (i) in the catalyst is calculated as follows. First, a deviation (φ−φref) between the actual excess fuel ratio φ detected by the air-fuel ratio sensor 23 on the upstream side of the catalyst 22 and the target excess fuel ratio φref.
Then, the amount of change ΔOS (i) of the state quantity in the catalyst is calculated based on the amount of air Q flowing into the catalyst 22 per unit time. ΔOS (i) = (φ−φref) × Q (id) (1)

【0025】ここで、空気量Qは、燃料噴射から排出ガ
スの燃料過剰率φを検出するまでの遅れ時間dを考慮し
て、現時点iよりも遅れ時間d前の過去の空気量Q(i-
d) を用いる。この際、遅れ時間dは、演算処理を簡単
にするために固定値としても良いが、空気量Qに応じて
遅れ時間dを変化させても良い。つまり、空気量Qが多
くなるほど、空気の流速が速くなって実際の遅れ時間d
が短くなるため、空気量Qが多くなるほど、遅れ時間d
を短くするように設定しても良い。
Here, in consideration of the delay time d from the fuel injection to the detection of the excess fuel ratio φ of the exhaust gas, the air amount Q is calculated based on the past air amount Q (i -
Use d). At this time, the delay time d may be a fixed value in order to simplify the arithmetic processing, but the delay time d may be changed according to the air amount Q. That is, as the air amount Q increases, the air flow velocity increases and the actual delay time d
Becomes shorter, the delay time d increases as the air amount Q increases.
May be set to be shorter.

【0026】上記(1)式で算出した触媒内状態量の変
化量ΔOS(i) を前回の触媒内状態量算出値OS(i-1)
に積算して現在の触媒内状態量OS(i) を求める。 OS(i) =ΔOS(i) +OS(i-1) ……(2) このステップ101の処理が特許請求の範囲でいう触媒
内状態量算出手段としての役割を果たす。
The change amount ΔOS (i) of the in-catalyst state amount calculated by the above equation (1) is used as the previous in-catalyst state amount calculation value OS (i-1).
To obtain the current state quantity OS (i) in the catalyst. OS (i) = ΔOS (i) + OS (i-1) (2) The process of step 101 plays a role as an in-catalyst state quantity calculating means described in the claims.

【0027】その後、ステップ102に進み、触媒内状
態量OS(i) の算出値を触媒22のリーン側/リッチ側
飽和吸着量に相当するガード値OSmin ,OSmax でガ
ード処理する。例えば、触媒内状態量OS(i) の算出値
がガード値OSmin ,OSmax の範囲内(OSmin ≦O
S(i) ≦OSmax )であれば、触媒内状態量OS(i)の
算出値をそのまま採用し、触媒内状態量OS(i) の算出
値がガード値OSmin(又はOSmax )を越えていれ
ば、触媒内状態量OS(i) の算出値をガード値OSmin
(又はOSmax )に置き換えて、OS(i) =OSmin
(又はOS(i) =OSmax )とする。この処理が特許請
求の範囲でいうガード処理手段としての役割を果たす。
Thereafter, the routine proceeds to step 102, where the calculated value of the in-catalyst state quantity OS (i) is subjected to guard processing with guard values OSmin, OSmax corresponding to the lean / rich saturated adsorption amount of the catalyst 22. For example, if the calculated value of the state quantity OS (i) in the catalyst falls within the range of the guard values OSmin and OSmax (OSmin ≦ O
If S (i) ≦ OSmax), the calculated value of the in-catalyst state quantity OS (i) is adopted as it is, and the calculated value of the in-catalyst state quantity OS (i) exceeds the guard value OSmin (or OSmax). If the calculated value of the in-catalyst state quantity OS (i) is
(Or OSmax), OS (i) = OSmin
(Or OS (i) = OSmax). This processing serves as a guard processing means referred to in the claims.

【0028】この際、ガード値OSmin ,OSmax は、
演算処理を簡単にするために固定値としても良いが、触
媒22内を流れる排出ガスの流速が速くなるほど(空気
量Qが多くなるほど)、触媒22の飽和吸着量が少なく
なるという飽和吸着特性があるため、図4に示すよう
に、ガード値OSmin ,OSmax を空気量Qに応じてマ
ップ等で変化させるようにしても良い。この場合は、空
気量Qが多くなるほど、ガード値OSmin ,OSmax が
小さくなるように設定すると良い。このようにすれば、
実際の触媒22の飽和吸着特性に適合したガード値OS
min ,OSmax を設定することができる。
At this time, the guard values OSmin and OSmax are:
Although a fixed value may be used to simplify the arithmetic processing, the saturated adsorption characteristic that the saturated adsorption amount of the catalyst 22 decreases as the flow velocity of the exhaust gas flowing in the catalyst 22 increases (the air amount Q increases). Therefore, as shown in FIG. 4, the guard values OSmin and OSmax may be changed on a map or the like according to the air amount Q. In this case, the guard values OSmin and OSmax may be set to be smaller as the air amount Q increases. If you do this,
Guard value OS suitable for the saturated adsorption characteristics of the actual catalyst 22
min and OSmax can be set.

【0029】その後、ステップ103に進み、目標触媒
内状態量OSref と現在の触媒内状態量OS(i) との偏
差OSerror を算出する。 OSerror =OSref −OS(i)
Thereafter, the routine proceeds to step 103, where a deviation OSerror between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i) is calculated. OSerror = OSref-OS (i)

【0030】そして、次のステップ104で、PIDコ
ントローラの比例ゲインkp、積分ゲインki、微分ゲ
インkdをマップ等により設定する。この際、各ゲイン
kp,ki,kdを吸入空気量又は吸気管圧力等のエン
ジン運転条件に応じて可変しても良い。
In the next step 104, the proportional gain kp, the integral gain ki, and the differential gain kd of the PID controller are set by using a map or the like. At this time, each of the gains kp, ki, kd may be varied according to engine operating conditions such as the intake air amount or the intake pipe pressure.

【0031】この後、ステップ105に進み、各ゲイン
kp,ki,kdと演算間隔dt(例えば180℃A回
転するのに要する時間)を用いて、PIDコントローラ
の制御パラメータA1,A2,B1,B2,B3を次式
により算出する。 A1=1 A2=0 B1=kp・(1+dt/ki+kd/dt) B2=kp・(1+2・kd/dt) B3=kp・kd/dt
Thereafter, the routine proceeds to step 105, where the control parameters A1, A2, B1, B2 of the PID controller are calculated using the gains kp, ki, kd and the calculation interval dt (for example, the time required for rotating at 180 ° C. A). , B3 are calculated by the following equations. A1 = 1 A2 = 0 B1 = kp · (1 + dt / ki + kd / dt) B2 = kp · (1 + 2 · kd / dt) B3 = kp · kd / dt

【0032】この後、図3のステップ106に進み、上
記各制御パラメータA1,A2,B1,B2,B3と触
媒内状態量偏差OSerror と過去の目標燃料過剰率φre
f を用いて今回の目標燃料過剰率φref を次のようにし
て算出する。まず、目標燃料過剰率補正量Δφref を次
式により算出する。 Δφref =B1・OSerror(i)−B2・OSerror(i-1)
+B3・OSerror(i-2)+A1・φref (i-1) −A2・
φref (i-2)
Thereafter, the routine proceeds to step 106 in FIG. 3, where the control parameters A1, A2, B1, B2, and B3, the in-catalyst state deviation OSerror, and the past target excess fuel ratio φre
Using f, the present target excess fuel ratio φref is calculated as follows. First, the target excess fuel ratio correction amount Δφref is calculated by the following equation. Δφref = B1 · OSerror (i) −B2 · OSerror (i-1)
+ B3 · OSerror (i-2) + A1 · φref (i-1) -A2 ·
φref (i-2)

【0033】そして、この目標燃料過剰率補正量Δφre
f をベース値“1”に加算して、触媒22上流側の目標
燃料過剰率φref を求めて、本プログラムを終了する。 φref =1+Δφref
Then, the target excess fuel ratio correction amount Δφre
By adding f to the base value “1”, the target excess fuel ratio φref on the upstream side of the catalyst 22 is obtained, and the program is terminated. φref = 1 + Δφref

【0034】次に、図5に基づいて、過渡運転時の燃料
過剰率φと触媒内状態量OSの挙動の一例を説明する。
例えば、触媒22上流側の燃料過剰率φがリッチ側に変
化すると、触媒22内にリッチ成分が吸着されて触媒内
状態量OSが増加する。しかし、触媒内状態量OSがリ
ッチ側のガード値OSmax (リッチ側の飽和吸着量)に
達すると、それ以上はリッチ成分を吸着できなくなるた
め、触媒内状態量OSの算出値がガード値OSmax でガ
ード処理され、触媒内状態量OSの算出値がガード値O
Smax に張り付いた状態となる。これにより、触媒22
が飽和状態になったときに触媒内状態量OSの算出値の
誤差が拡大することが防止される。
Next, an example of the behavior of the excess fuel ratio φ and the state quantity OS in the catalyst during the transient operation will be described with reference to FIG.
For example, when the excess fuel ratio φ on the upstream side of the catalyst 22 changes to the rich side, a rich component is adsorbed in the catalyst 22 and the state amount OS in the catalyst increases. However, when the in-catalyst state amount OS reaches the rich side guard value OSmax (rich side saturated adsorption amount), the rich component cannot be adsorbed any more, and the calculated value of the in-catalyst state amount OS becomes the guard value OSmax. The guard process is performed, and the calculated value of the state quantity OS in the catalyst is changed to the guard value O.
It is in a state of sticking to Smax. Thereby, the catalyst 22
Is increased, the error in the calculated value of the in-catalyst state quantity OS is prevented from increasing.

【0035】その後、燃料過剰率φがリーン側に変化す
ると、触媒22内に吸着されていたリッチ成分が排出ガ
ス中のリーン成分と酸化還元反応して消費されるため、
触媒内状態量OSが減少し始める。これにより、触媒内
状態量OSが目標触媒内状態量OSref 付近に戻され
る。その結果、触媒22の吸着能力が良好に維持され、
排出ガス浄化率が向上する。
Thereafter, when the excess fuel ratio φ changes to the lean side, the rich component adsorbed in the catalyst 22 is consumed by an oxidation-reduction reaction with the lean component in the exhaust gas.
The state quantity OS in the catalyst starts to decrease. As a result, the in-catalyst state quantity OS is returned to the vicinity of the target in-catalyst state quantity OSref. As a result, the adsorption capacity of the catalyst 22 is favorably maintained,
The exhaust gas purification rate is improved.

【0036】ところで、本実施形態(1)では、触媒内
状態量OSを排出ガスの燃料過剰率φと空気量Qとに基
づいて算出するが、空気量Qを検出する位置(吸気管1
2)と排出ガスの燃料過剰率φを検出する位置(排気管
21)とが離れているため、空気量検出位置を通過した
空気が噴射燃料と混合して燃焼して燃料過剰率φの検出
位置に到達するまでに時間遅れが生じる。このため、空
気量Qが変化する過渡運転時には、同時刻に検出した燃
料過剰率φ(i) と空気量Q(i) を用いたのでは触媒内状
態量OSを正確に算出することができない。
In this embodiment (1), the state quantity OS in the catalyst is calculated based on the excess fuel ratio φ of the exhaust gas and the air amount Q.
2) and the position for detecting the excess fuel ratio φ of the exhaust gas (exhaust pipe 21) is separated, so that the air passing through the air amount detection position mixes with the injected fuel and burns to detect the excess fuel ratio φ. There is a time delay before reaching the position. Therefore, during the transient operation in which the air amount Q changes, the in-catalyst state amount OS cannot be accurately calculated by using the excess fuel ratio φ (i) and the air amount Q (i) detected at the same time. .

【0037】そこで、本実施形態(1)では、触媒内状
態量OSを算出する際に用いる空気量は、燃料噴射から
排出ガスの燃料過剰率φを検出するまでの遅れ時間dを
考慮して、現時点iよりも遅れ時間d前の過去の空気量
Q(i-d) を用いる。これにより、触媒内状態量OSを算
出する際に用いる空気量Qと燃料過剰率φとの時間的な
ずれを修正することができ、空気量Qが変化する過渡運
転時でも触媒内状態量を精度良く算出することができ
る。
Therefore, in the present embodiment (1), the amount of air used in calculating the in-catalyst state amount OS is determined in consideration of the delay time d from the fuel injection to the detection of the excess fuel ratio φ of the exhaust gas. , The past air amount Q (id) before the delay time d before the current time i is used. This makes it possible to correct the time lag between the air amount Q used in calculating the in-catalyst state amount OS and the excess fuel ratio φ, and to reduce the in-catalyst state amount even during the transient operation in which the air amount Q changes. It can be calculated with high accuracy.

【0038】尚、本実施形態(1)では、燃料噴射から
排出ガスの燃料過剰率φを検出するまでの遅れ時間dを
考慮したが、空気が空気量検出位置から燃料過剰率φの
検出位置に到達するまでの遅れ時間d’を考慮して、現
時点iよりも遅れ時間d’前の過去の空気量Q(i-d')を
用いるようにしても良く、要は、少なくとも燃料噴射か
ら排出ガスの燃料過剰率φを検出するまでの遅れ時間分
過去の空気量を用いるようにすれば良い。
In this embodiment (1), the delay time d from the fuel injection to the detection of the excess fuel ratio φ of the exhaust gas is taken into consideration. May be used in consideration of the delay time d 'to reach the current time, and the past air amount Q (i-d') before the delay time d 'before the current time i may be used. The amount of air in the past corresponding to the delay time until the detection of the excess fuel ratio φ of the exhaust gas may be used.

【0039】また、本実施形態(1)では、PIDコン
トローラを用いて制御パラメータA1,A2,B1,B
2,B3を算出するようにしたが、図6に示す本発明の
他の実施形態では、PIDコントローラの代わりに、近
似微分を用いて制御パラメータA1,A2,B1,B
2,B3を算出するようにしている。その他の処理は、
図2及び図3の各ステップの処理と同じで良い。このよ
うに、近似微分を用いて制御パラメータA1,A2,B
1,B2,B3を算出しても、前記実施形態とほぼ同様
の効果を得ることができる。
In this embodiment (1), the control parameters A1, A2, B1, B
2, B3 is calculated, but in another embodiment of the present invention shown in FIG. 6, the control parameters A1, A2, B1, B are obtained by using approximate differentiation instead of the PID controller.
2 and B3 are calculated. Other processing,
The processing may be the same as the processing in each step of FIGS. Thus, the control parameters A1, A2, B
Even if 1, B2 and B3 are calculated, substantially the same effects as in the above embodiment can be obtained.

【0040】図1に示すシステム構成例では、触媒22
の上流側のみに空燃比センサ23を設置したが、触媒2
2の上流側と下流側の両方に空燃比センサを設置したシ
ステムにも本発明を適用できる。この場合、触媒下流側
の空燃比センサで検出した燃料過剰率と空気量とに基づ
いて触媒内状態量を算出し、この触媒内状態量と目標触
媒内状態量との偏差を小さくするように触媒上流側の目
標燃料過剰率を算出するようにしても良い。この際、触
媒内状態量の算出に用いる空気量は、少なくとも燃料噴
射から触媒下流側で排出ガスの燃料過剰率を検出するま
での遅れ時間を考慮して、その遅れ時間分過去の空気量
を用いるようにすると良い。
In the example of the system configuration shown in FIG.
The air-fuel ratio sensor 23 is installed only on the upstream side of
The present invention can also be applied to a system in which an air-fuel ratio sensor is installed on both the upstream side and the downstream side. In this case, the in-catalyst state amount is calculated based on the excess fuel ratio and the air amount detected by the air-fuel ratio sensor on the downstream side of the catalyst, and the deviation between the in-catalyst state amount and the target in-catalyst state amount is reduced. The target excess fuel ratio on the upstream side of the catalyst may be calculated. At this time, the amount of air used for calculating the state quantity in the catalyst is calculated based on at least the delay time from the fuel injection to the detection of the excess fuel ratio of the exhaust gas on the downstream side of the catalyst. It is good to use.

【0041】また、上記各実施形態においては、空燃比
の情報として燃料過剰率φを用いたが、燃料過剰率φに
代えて、空気過剰率λ又は空燃比A/Fを用いても良い
ことは言うまでもない。
Further, in each of the above embodiments, the excess fuel ratio φ is used as the information of the air-fuel ratio, but the excess fuel ratio λ or the air-fuel ratio A / F may be used instead of the excess fuel ratio φ. Needless to say.

【0042】また、空燃比センサ23の代わりに、排出
ガスのガス濃度を検出するガス濃度センサを用いても良
い。この場合は、検出した排出ガスのガス濃度と空気量
とに基づいて触媒内状態量を算出し、この触媒内状態量
と目標値との偏差が小さくなるように燃料噴射量を補正
するようにすれば良い。
Further, instead of the air-fuel ratio sensor 23, a gas concentration sensor for detecting the gas concentration of the exhaust gas may be used. In this case, the state quantity in the catalyst is calculated based on the detected gas concentration of the exhaust gas and the air amount, and the fuel injection amount is corrected so that the deviation between the state quantity in the catalyst and the target value is reduced. Just do it.

【0043】[実施形態(2)]次に、図7乃至図10
に基づいて本発明の実施形態(2)を説明する。本実施
形態(2)では、触媒22の上流側と下流側の両方に空
燃比センサ23,27を設置している。上流側の空燃比
センサ(以下「上流側センサ」という)23は、前記実
施形態(1)と同じく、排出ガスの空燃比に応じてリニ
アな空燃比信号を出力するリニアA/Fセンサ等が用い
られ、下流側の空燃比センサ(以下「下流側センサ」と
いう)27は、排出ガスの空燃比のリッチ/リーンに応
じて出力電圧が反転する酸素センサ等が用いられてい
る。尚、下流側センサ27も、上流側センサ23と同じ
く、リニアA/Fセンサ等を用いても良いことは言うま
でもない。その他のシステム構成は、前記実施形態
(1)と同じである。
[Embodiment (2)] Next, FIGS.
An embodiment (2) of the present invention will be described based on FIG. In the embodiment (2), the air-fuel ratio sensors 23 and 27 are provided on both the upstream side and the downstream side of the catalyst 22. The upstream air-fuel ratio sensor (hereinafter, referred to as “upstream sensor”) 23 is a linear A / F sensor that outputs a linear air-fuel ratio signal according to the air-fuel ratio of the exhaust gas, as in the first embodiment. As the downstream air-fuel ratio sensor (hereinafter, referred to as “downstream sensor”) 27, an oxygen sensor or the like whose output voltage is inverted according to rich / lean air-fuel ratio of exhaust gas is used. Needless to say, the downstream sensor 27 may be a linear A / F sensor or the like, like the upstream sensor 23. The other system configuration is the same as that of the embodiment (1).

【0044】ECU26は、図8の目標φ算出プログラ
ムで算出した目標燃料過剰率φrefと実際の燃料過剰率
φとの偏差を小さくするように燃料噴射量をフィードバ
ック補正して、触媒内状態量OSを目標触媒内状態量O
Sref 付近に制御する。
The ECU 26 performs feedback correction of the fuel injection amount so as to reduce the deviation between the target excess fuel ratio φref calculated by the target φ calculation program of FIG. Is the target state quantity O in the catalyst.
Control near Sref.

【0045】図8の目標φ算出プログラムは、所定クラ
ンク角毎又は所定時間毎に起動され、まず、ステップ2
01で、上流側センサ23の出力(触媒22に流入する
排出ガスの空燃比)がリッチかリーンかを判別する。
The target φ calculation program of FIG. 8 is started at every predetermined crank angle or every predetermined time.
At 01, it is determined whether the output of the upstream sensor 23 (the air-fuel ratio of the exhaust gas flowing into the catalyst 22) is rich or lean.

【0046】もし、上流側センサ23の出力がリッチと
判定されれば、ステップ202に進み、前回演算時から
今回演算時までの触媒内状態量の変化量ΔOS(i) を次
式により算出する。 ΔOS(i) =kr×(φ−φref )×Q(i-d) kr:重み係数 φ:上流側センサ23で検出した実際の燃料過剰率 φref :目標燃料過剰率 Q(i-d) :現時点iよりも遅れ時間d前の過去の空気量
If the output of the upstream sensor 23 is determined to be rich, the routine proceeds to step 202, where the change amount ΔOS (i) of the state quantity in the catalyst from the previous calculation to the current calculation is calculated by the following equation. . ΔOS (i) = kr × (φ−φref) × Q (id) kr: weighting factor φ: actual excess fuel ratio detected by the upstream sensor 23 φref: target excess fuel ratio Q (id): more than the current i Past air volume before delay time d

【0047】ここで、重み係数krは、実際の触媒内状
態量の代用情報となる下流側センサ27の出力(触媒2
2から流出する排出ガスの空燃比)に応じて次のように
設定される。
Here, the weighting coefficient kr is the output of the downstream sensor 27 (catalyst 2
2 is set as follows according to the air-fuel ratio of the exhaust gas flowing out of the fuel cell 2).

【0048】下流側センサ27の出力(実際の触媒内
状態量)がリッチの時は、重み係数krを1よりも小さ
い所定値に設定する。この所定値は、予め設定した固定
値でも良いが、下流側センサ27の出力に応じてマップ
又は数式により設定しても良い。
When the output of the downstream sensor 27 (actual in-catalyst state quantity) is rich, the weight coefficient kr is set to a predetermined value smaller than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.

【0049】下流側センサ27の出力(実際の触媒内
状態量)がリーンの時は、重み係数krを1よりも大き
い所定値に設定する。この所定値は、予め設定した固定
値でも良いが、下流側センサ27の出力に応じてマップ
又は数式により設定しても良い。
When the output (actual in-catalyst state quantity) of the downstream sensor 27 is lean, the weight coefficient kr is set to a predetermined value larger than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.

【0050】下流側センサ27の出力(実際の触媒内
状態量)がストイキの時は、重み係数krを1に設定す
る。尚、kr=1とする下流側センサ27の出力の範囲
をある程度幅を持たせて、下流側センサ27の出力(実
際の触媒内状態量)がストイキに近ければ、kr=1と
しても良い。
When the output (actual in-catalyst state quantity) of the downstream sensor 27 is stoichiometric, the weight coefficient kr is set to one. It should be noted that the output range of the downstream sensor 27 where kr = 1 has a certain range, and if the output (actual in-catalyst state quantity) of the downstream sensor 27 is close to stoichiometry, kr = 1 may be set.

【0051】一方、上記ステップ201で、上流側セン
サ23の出力がリーンと判定されれば、ステップ202
に進み、重み係数klを用いて、前回演算時から今回演
算時までの触媒内状態量の変化量ΔOS(i) を次式によ
り算出する。 ΔOS(i) =kl×(φ−φref )×Q(i-d)
On the other hand, if it is determined in step 201 that the output of the upstream sensor 23 is lean, step 202
Then, using the weighting coefficient kl, the change amount ΔOS (i) of the in-catalyst state quantity from the previous calculation to the current calculation is calculated by the following equation. ΔOS (i) = kl × (φ−φref) × Q (id)

【0052】ここで、重み係数klは、実際の触媒内状
態量の代用情報となる下流側センサ27の出力(触媒2
2から流出する排出ガスの空燃比)に応じて次のように
設定される。
Here, the weighting factor kl is determined by the output of the downstream sensor 27 (catalyst 2
2 is set as follows according to the air-fuel ratio of the exhaust gas flowing out of the fuel cell 2).

【0053】下流側センサ27の出力(実際の触媒内
状態量)がリッチの時は、重み係数klを1よりも大き
い所定値に設定する。この所定値は、予め設定した固定
値でも良いが、下流側センサ27の出力に応じてマップ
又は数式により設定しても良い。
When the output (actual in-catalyst state quantity) of the downstream sensor 27 is rich, the weight coefficient kl is set to a predetermined value larger than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.

【0054】下流側センサ27の出力(実際の触媒内
状態量)がリーンの時は、重み係数klを1よりも小さ
い所定値に設定する。この所定値は、予め設定した固定
値でも良いが、下流側センサ27の出力に応じてマップ
又は数式により設定しても良い。
When the output of the downstream sensor 27 (actual in-catalyst state quantity) is lean, the weight coefficient kl is set to a predetermined value smaller than 1. The predetermined value may be a fixed value set in advance, or may be set by a map or a mathematical expression according to the output of the downstream sensor 27.

【0055】下流側センサ27の出力(実際の触媒内
状態量)がストイキの時は、重み係数klを1に設定す
る。尚、kl=1とする下流側センサ27の出力の範囲
をある程度幅を持たせて、下流側センサ27の出力(実
際の触媒内状態量)がストイキに近ければ、kl=1と
しても良い。
When the output (actual in-catalyst state quantity) of the downstream sensor 27 is stoichiometric, the weight coefficient kl is set to 1. Note that the output range of the downstream sensor 27 where kl = 1 is set to have a certain width, and if the output (actual in-catalyst state quantity) of the downstream sensor 27 is close to stoichiometry, kl = 1 may be set.

【0056】上記ステップ202,203で、下流側セ
ンサ27の出力に応じて触媒内状態量の変化量ΔOS
(i) の演算式のパラメータ(重み係数kr,kl)を可
変する処理が特許請求の範囲でいうパラメータ可変手段
としての役割を果たす。また、上記ステップ202,2
03で、パラメータ(重み係数kr,kl)を用いて、
触媒内状態量の変化量ΔOS(i) を補正しながら求める
処理が特許請求の範囲でいう補正手段としての役割を果
たす。
In the above steps 202 and 203, the variation ΔOS of the state quantity in the catalyst in accordance with the output of the downstream side sensor 27
The process of varying the parameters (weighting factors kr, kl) of the operation formula (i) serves as a parameter varying means in the claims. Steps 202 and 2 above
03, using the parameters (weight coefficients kr, kl),
The process of obtaining the change amount ΔOS (i) of the state amount in the catalyst while correcting the change amount serves as a correction means in the claims.

【0057】以上のようにしてステップ202又は20
3で、触媒内状態量の変化量ΔOS(i) を算出した後、
ステップ204に進み、触媒内状態量の変化量ΔOS
(i) を前回の触媒内状態量算出値OS(i-1) に積算して
現在の触媒内状態量OS(i) を求める。 OS(i) =ΔOS(i) +OS(i-1)
As described above, step 202 or 20
In step 3, after calculating the variation ΔOS (i) of the state quantity in the catalyst,
Proceeding to step 204, the change amount ΔOS of the state quantity in the catalyst
(i) is added to the previous in-catalyst state quantity calculation value OS (i-1) to obtain the current in-catalyst state quantity OS (i). OS (i) = ΔOS (i) + OS (i-1)

【0058】その後、ステップ205に進み、触媒内状
態量OS(i) の算出値を触媒22のリーン側/リッチ側
飽和吸着量に相当するガード値OSmin ,OSmax でガ
ード処理する。
Thereafter, the routine proceeds to step 205, where the calculated value of the in-catalyst state quantity OS (i) is subjected to guard processing with guard values OSmin and OSmax corresponding to the lean / rich side saturated adsorption amount of the catalyst 22.

【0059】この後、ステップ206に進み、目標触媒
内状態量OSref と現在の触媒内状態量OS(i) との偏
差OSerror を算出する。 OSerror =OSref −OS(i)
Thereafter, the routine proceeds to step 206, where a deviation OSerror between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i) is calculated. OSerror = OSref-OS (i)

【0060】そして、次のステップ207で、PIDコ
ントローラの比例ゲイン、積分ゲイン、微分ゲインをマ
ップ等により算出した後、ステップ208に進み、各ゲ
インを用いて、PIDコントローラの制御パラメータA
1,A2,B1,B2,B3を前記実施形態(1)と同
様の方法で算出する。
Then, in the next step 207, the proportional gain, the integral gain, and the differential gain of the PID controller are calculated by using a map or the like, and the process proceeds to step 208, where the control parameter A of the PID controller is calculated using each gain.
1, A2, B1, B2, and B3 are calculated in the same manner as in the embodiment (1).

【0061】この後、ステップ209に進み、上記制御
パラメータA1,A2,B1,B2,B3と過去の目標
燃料過剰率φref を用いて目標燃料過剰率補正量Δφre
fBを次式により算出する。 ΔφrefB=B1・OSerror(i)−B2・OSerror(i-1)
+B3・OSerror(i-2)+A1・φref (i-1) −A2・
φref (i-2)
Thereafter, the routine proceeds to step 209, where the target fuel excess ratio correction amount Δφre is calculated using the control parameters A1, A2, B1, B2, B3 and the past target fuel excess ratio φref.
fB is calculated by the following equation. ΔφrefB = B1 · OSerror (i) −B2 · OSerror (i−1)
+ B3 · OSerror (i-2) + A1 · φref (i-1) -A2 ·
φref (i-2)

【0062】そして、次のステップ210で、後述する
図9のΔφrefA算出プログラムを実行して、サブフィー
ドバックによる目標燃料過剰率補正量ΔφrefAを算出す
る。この後、ステップ211に進み、上記ステップ20
9,210で算出した2つの目標燃料過剰率補正量Δφ
refB,ΔφrefAをベース値“1”に加算して、触媒22
上流側の目標燃料過剰率φref を設定し、本プログラム
を終了する。 φref =1+ΔφrefA+ΔφrefB
Then, in the next step 210, a ΔφrefA calculation program shown in FIG. 9 to be described later is executed to calculate a target excess fuel ratio correction amount ΔφrefA by sub-feedback. Thereafter, the process proceeds to step 211, and the process proceeds to step 20.
The two target excess fuel ratio correction amounts Δφ calculated in 9, 210
refB and ΔφrefA are added to the base value “1”, and the catalyst 22
The target excess fuel ratio φref on the upstream side is set, and the program ends. φref = 1 + ΔφrefA + ΔφrefB

【0063】一方、上記ステップ210で、図9のΔφ
refA算出プログラムが起動されると、まず、ステップ3
01で、目標触媒内状態量OSref と現在の触媒内状態
量OS(i) との偏差OSerror(i)に応じて、サブフィー
ドバックの制御パラメータki,kpを次式により算出
する。 ki=kis×OSerror(i) kp=kps×OSerror(i) ここで、kisとkpsは、それぞれ制御パラメータk
i,kpのベース値である。
On the other hand, in step 210, Δφ in FIG.
When the refA calculation program is started, first, step 3
At 01, the control parameters ki and kp of the sub-feedback are calculated according to the following equation according to the deviation OSerror (i) between the target in-catalyst state quantity OSref and the current in-catalyst state quantity OS (i). ki = kis × OSerror (i) kp = kps × OSerror (i) where kis and kps are control parameters k
Base values of i and kp.

【0064】この後、ステップ302に進み、現在の下
流側センサ27の出力(実際の触媒内状態量)がリッチ
かリーンかを判別する。もし、下流側センサ27の出力
がリッチと判定されれば、ステップ303に進み、前回
もリッチであったか否かを判定する。前回も今回もリッ
チである場合には、ステップ304に進み、前回の目標
燃料過剰率補正量ΔφrefA(i-1) に制御パラメータki
を加算して今回の目標燃料過剰率補正量ΔφrefA(i) を
求める。 ΔφrefA(i) =ΔφrefA(i-1) +ki
Thereafter, the routine proceeds to step 302, where it is determined whether the current output (actual in-catalyst state quantity) of the downstream sensor 27 is rich or lean. If the output of the downstream sensor 27 is determined to be rich, the process proceeds to step 303, and it is determined whether or not the previous time was rich. If the previous time and this time are rich, the process proceeds to step 304, and the control parameter ki is added to the previous target excess fuel ratio correction amount ΔφrefA (i-1).
Is added to obtain the current target excess fuel ratio correction amount ΔφrefA (i). ΔφrefA (i) = ΔφrefA (i-1) + ki

【0065】また、下流側センサ27の出力が前回はリ
ーン側で今回リッチに反転した場合は、ステップ305
に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に
制御パラメータkpを加算して今回の目標燃料過剰率補
正量ΔφrefA(i) を求める。 ΔφrefA(i) =ΔφrefA(i-1) +kp
If the output of the downstream sensor 27 has been inverted to rich this time on the lean side last time, step 305
Then, the control parameter kp is added to the previous target excess fuel ratio correction amount ΔφrefA (i-1) to obtain the current target excess fuel ratio correction amount ΔφrefA (i). ΔφrefA (i) = ΔφrefA (i-1) + kp

【0066】一方、ステップ302で、現在の下流側セ
ンサ27の出力(実際の触媒内状態量)がリーンと判定
されれた場合は、ステップ306に進み、前回もリーン
であったか否かを判定する。前回も今回もリーンである
場合には、ステップ308に進み、前回の目標燃料過剰
率補正量ΔφrefA(i-1) に制御パラメータkiを加算し
て今回の目標燃料過剰率補正量ΔφrefA(i) を求める。 ΔφrefA(i) =ΔφrefA(i-1) +ki
On the other hand, if it is determined in step 302 that the current output (actual in-catalyst state amount) of the downstream sensor 27 is lean, the process proceeds to step 306 to determine whether the previous time was also lean. . If both the previous time and this time are lean, the process proceeds to step 308, where the control parameter ki is added to the previous target excess fuel ratio correction amount ΔφrefA (i-1), and the current target excess fuel ratio correction amount ΔφrefA (i) Ask for. ΔφrefA (i) = ΔφrefA (i-1) + ki

【0067】また、下流側センサ27の出力が前回はリ
ッチ側で今回リーンに反転した場合は、ステップ307
に進み、前回の目標燃料過剰率補正量ΔφrefA(i-1) に
制御パラメータkpを加算して今回の目標燃料過剰率補
正量ΔφrefA(i) を求める。 ΔφrefA(i) =ΔφrefA(i-1) +kp
If the output of the downstream sensor 27 has been inverted to rich this time and lean this time, then step 307
Then, the control parameter kp is added to the previous target excess fuel ratio correction amount ΔφrefA (i-1) to obtain the current target excess fuel ratio correction amount ΔφrefA (i). ΔφrefA (i) = ΔφrefA (i-1) + kp

【0068】以上のようにして、ステップ304,30
5,307,308のいずれかで、目標燃料過剰率補正
量ΔφrefA(i) を算出した後、ステップ309に進み、
目標燃料過剰率補正量ΔφrefA(i) を適正なガード値で
ガード処理して、本プログラムを終了する。
As described above, steps 304 and 30
After calculating the target fuel excess ratio correction amount ΔφrefA (i) in any one of 5, 307 and 308, the routine proceeds to step 309,
The target excess fuel ratio correction amount ΔφrefA (i) is subjected to guard processing with an appropriate guard value, and the program ends.

【0069】以上説明した実施形態(2)の過渡時の制
御特性を図10のタイムチャートを用いて説明する。図
10のタイムチャートは、実施形態(2)の制御特性を
実施形態(1)の制御特性と比較して示している。
The control characteristics during the transition of the embodiment (2) described above will be described with reference to the time chart of FIG. The time chart of FIG. 10 shows the control characteristics of the embodiment (2) in comparison with the control characteristics of the embodiment (1).

【0070】実施形態(2)では、触媒22の下流側に
設置した下流側センサ27の出力(触媒22から流出す
る排出ガスの空燃比)が実際の触媒内状態量に追従して
変化する点に着目し、触媒内状態量の変化量ΔOS(i)
の演算式のパラメータ(重み係数kr,kl)を下流側
センサ27の出力(実際の触媒内状態量)に応じて可変
するようにしたので、触媒内状態量OS(i) の算出値を
下流側センサ27の出力(実際の触媒内状態量)に応じ
て逐次補正することができる。これにより、実施形態
(2)では、触媒内状態量OS(i) の算出誤差(推定誤
差)を実施形態(1)よりも少なくすることができ、実
際の触媒内状態量に追従した応答性の良い空燃比制御を
実施することができる。これにより、過渡時に触媒22
上流側の燃料過剰率φや、下流側センサ27の出力(実
際の触媒内状態量)を早期にストイキに収束させること
ができ、過渡時でも安定した排出ガス浄化性能を維持す
ることができる。
In the embodiment (2), the point at which the output of the downstream sensor 27 (the air-fuel ratio of the exhaust gas flowing out of the catalyst 22) installed downstream of the catalyst 22 changes following the actual state quantity in the catalyst. And the change amount ΔOS (i) of the state quantity in the catalyst.
(Weighting coefficients kr, kl) are varied according to the output of the downstream sensor 27 (actual in-catalyst state quantity), so that the calculated value of the in-catalyst state quantity OS (i) is The correction can be made sequentially according to the output of the side sensor 27 (actual in-catalyst state quantity). As a result, in the embodiment (2), the calculation error (estimation error) of the in-catalyst state quantity OS (i) can be made smaller than that in the embodiment (1), and the responsiveness following the actual in-catalyst state quantity is improved. A good air-fuel ratio control can be implemented. This allows the catalyst 22 to be
The excess fuel ratio φ on the upstream side and the output of the downstream sensor 27 (actual in-catalyst state quantity) can be quickly converged to stoichiometry, and stable exhaust gas purification performance can be maintained even during a transition.

【0071】しかも、本実施形態(2)では、触媒22
の下流側の空燃比(下流側センサ27の出力)を目標燃
料過剰率φref (目標触媒内状態量OSref )に反映さ
せるサブフィードバックの制御パラメータki,kp
を、下流側センサ27の出力(実際の触媒内状態量)に
応じて可変するようにしたので、下流側センサ27の出
力(実際の触媒内状態量)に応じて目標燃料過剰率φre
f (目標触媒内状態量OSref )を応答性良く可変する
ことができる。
Further, in the embodiment (2), the catalyst 22
The sub-feedback control parameters ki and kp that reflect the air-fuel ratio on the downstream side (output of the downstream sensor 27) to the target excess fuel ratio φref (target state quantity OSref).
Is varied according to the output of the downstream sensor 27 (actual in-catalyst state quantity), so that the target excess fuel ratio φre is determined in accordance with the output of the downstream sensor 27 (actual in-catalyst state quantity).
f (the target in-catalyst state quantity OSref) can be varied with good responsiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】実施形態(1)の目標φ算出プログラムの処理
の流れを示すフローチャート(その1)
FIG. 2 is a flowchart showing a processing flow of a target φ calculation program according to the embodiment (1) (part 1);

【図3】実施形態(1)の目標φ算出プログラムの処理
の流れを示すフローチャート(その2)
FIG. 3 is a flowchart showing a processing flow of a target φ calculation program according to the embodiment (1) (part 2);

【図4】触媒内状態量OSの算出値に対するガード値O
Smin ,OSmax と空気量Qとの関係を示す図
FIG. 4 shows a guard value O with respect to a calculated value of a state quantity OS in a catalyst.
Diagram showing the relationship between Smin, OSmax and air volume Q

【図5】過渡運転時の燃料過剰率φと触媒内状態量OS
の挙動の一例を示すタイムチャート
FIG. 5 shows the excess fuel ratio φ and the state quantity OS in the catalyst during the transient operation.
Time chart showing an example of the behavior of

【図6】近似微分を用いて制御パラメータA1,A2,
B1,B2,B3を算出する方法を説明するフローチャ
ート
FIG. 6 shows control parameters A1, A2, and
Flowchart for explaining a method of calculating B1, B2, and B3

【図7】本発明の実施形態(2)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 7 is a schematic configuration diagram of an entire engine control system showing an embodiment (2) of the present invention.

【図8】実施形態(2)の目標φ算出プログラムの処理
の流れを示すフローチャート
FIG. 8 is a flowchart showing a processing flow of a target φ calculation program according to the embodiment (2).

【図9】ΔφrefA算出プログラムの処理の流れを示すフ
ローチャート
FIG. 9 is a flowchart showing the flow of processing of a ΔφrefA calculation program.

【図10】実施形態(2)の制御特性を実施形態(1)
の制御特性と比較して示すタイムチャート
FIG. 10 shows the control characteristics of the embodiment (2) according to the embodiment (1).
Time chart showing comparison with control characteristics of

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気管、14…エ
アフローメータ(空気量検出手段)、20…燃料噴射
弁、21…排気管、22…触媒、23…空燃比センサ
(空燃比検出手段,上流側センサ)、26…ECU(触
媒内状態量算出手段,噴射制御手段,ガード処理手段,
補正手段,パラメータ可変手段)、27…空燃比センサ
(下流側センサ)。
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter (air amount detection means), 20 ... Fuel injection valve, 21 ... Exhaust pipe, 22 ... Catalyst, 23 ... Air-fuel ratio sensor (Air-fuel ratio detection means, ECU (upstream sensor), 26 ... ECU (in-catalyst state quantity calculating means, injection control means, guard processing means,
Correction means, parameter variable means), 27 ... air-fuel ratio sensor (downstream sensor).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 324 F02D 45/00 324 368 368G (72)発明者 山下 幸宏 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3G084 BA05 BA09 BA13 EA07 EB13 FA07 FA10 FA11 FA29 FA30 FA33 FA38 3G091 AA17 AA23 AA28 AB03 BA14 BA15 BA19 CB02 DA01 DA02 DA10 DB02 DB04 DB05 DB06 DB07 DB10 DC01 DC03 EA01 EA05 EA06 EA07 EA16 EA31 EA34 FB10 FB12 HA36 HA37 HA42 3G301 HA01 JA25 JA26 JA27 LB01 MA11 NA03 NA04 NC01 NC02 ND01 PA01A PA07A PA11A PD01A PE01A PE03A PE08A──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F02D 45/00 324 F02D 45/00 324 368 368G (72) Inventor Yukihiro Yamashita 1-chome, Showa-cho, Kariya city, Aichi prefecture No. 1 F-term in Denso Co., Ltd. (Reference) 3G084 BA05 BA09 BA13 EA07 EB13 FA07 FA10 FA11 FA29 FA30 FA33 FA38 3G091 AA17 AA23 AA28 AB03 BA14 BA15 BA19 CB02 DA01 DA02 DA10 DB02 DB04 DB05 DB06 DB07 DB10 EA06 EA01 EA31 EA34 FB10 FB12 HA36 HA37 HA42 3G301 HA01 JA25 JA26 JA27 LB01 MA11 NA03 NA04 NC01 NC02 ND01 PA01A PA07A PA11A PD01A PE01A PE03A PE08A

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 排出ガスを浄化する触媒を備えた内燃機
関において、 前記触媒の上流又は下流の排出ガスの空燃比を検出する
空燃比検出手段と、 内燃機関に吸入される空気量を検出する空気量検出手段
と、 前記空燃比検出手段で検出した排出ガスの空燃比と前記
空気量検出手段で検出した空気量とに基づいて触媒内状
態量を算出する触媒内状態量算出手段と、 前記触媒内状態量と目標値との偏差が小さくなるように
燃料噴射量を補正する噴射制御手段とを備えていること
を特徴とする内燃機関の空燃比制御装置。
1. An internal combustion engine provided with a catalyst for purifying exhaust gas, wherein an air-fuel ratio detecting means for detecting an air-fuel ratio of exhaust gas upstream or downstream of the catalyst, and an amount of air taken into the internal combustion engine is detected. Air amount detection means; and an in-catalyst state amount calculation means for calculating an in-catalyst state amount based on an air-fuel ratio of exhaust gas detected by the air-fuel ratio detection means and an air amount detected by the air amount detection means, An air-fuel ratio control device for an internal combustion engine, comprising: injection control means for correcting a fuel injection amount so as to reduce a deviation between a state amount in a catalyst and a target value.
【請求項2】 前記触媒内状態量算出手段は、前記触媒
内状態量を算出する際に用いる空気量として、少なくと
も燃料噴射から排出ガスの空燃比を検出するまでの遅れ
時間分過去の空気量を用いることを特徴とする請求項1
に記載の内燃機関の空燃比制御装置。
2. The in-catalyst state quantity calculating means includes, as an air amount used in calculating the in-catalyst state quantity, at least a delay time from fuel injection to detection of an air-fuel ratio of exhaust gas. 2. The method according to claim 1, wherein
3. The air-fuel ratio control device for an internal combustion engine according to claim 1.
【請求項3】 前記触媒内状態量算出手段は、所定の演
算周期で目標空燃比に対する前記排出ガスの空燃比のず
れ量と前記空気量とに基づいて触媒内状態量の変化量を
算出し、この変化量を積算して現在の触媒内状態量を求
めることを特徴とする請求項1又は2に記載の内燃機関
の空燃比制御装置。
3. The in-catalyst state quantity calculating means calculates a change amount of the in-catalyst state quantity based on a deviation amount of the air-fuel ratio of the exhaust gas with respect to a target air-fuel ratio and the air amount in a predetermined calculation cycle. 3. The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the amount of change is integrated to obtain a current state amount in the catalyst.
【請求項4】 前記触媒内状態量の算出値を前記触媒の
飽和吸着量に相当するガード値で制限するガード処理手
段を備えていることを特徴とする請求項1乃至3のいず
れかに記載の内燃機関の空燃比制御装置。
4. The apparatus according to claim 1, further comprising a guard processing means for limiting a calculated value of the state quantity in the catalyst by a guard value corresponding to a saturated adsorption amount of the catalyst. Air-fuel ratio control device for an internal combustion engine.
【請求項5】 前記ガード処理手段は、前記ガード値を
前記空気量に応じて変化させることを特徴とする請求項
4に記載の内燃機関の空燃比制御装置。
5. The air-fuel ratio control device for an internal combustion engine according to claim 4, wherein said guard processing means changes said guard value in accordance with said air amount.
【請求項6】 排出ガスを浄化する触媒を備えた内燃機
関において、 前記触媒の上流又は下流の排出ガスのガス濃度を検出す
るガス濃度検出手段と、 内燃機関に吸入される空気量を検出する空気量検出手段
と、 前記ガス濃度検出手段で検出した排出ガスのガス濃度と
前記空気量検出手段で検出した空気量とに基づいて触媒
内状態量を算出する触媒内状態量算出手段と、 前記触媒内状態量と目標値との偏差が小さくなるように
燃料噴射量を補正する噴射制御手段とを備えていること
を特徴とする内燃機関の空燃比制御装置。
6. An internal combustion engine provided with a catalyst for purifying exhaust gas, a gas concentration detecting means for detecting a gas concentration of exhaust gas upstream or downstream of the catalyst, and detecting an amount of air taken into the internal combustion engine. An air amount detection unit; an in-catalyst state amount calculation unit that calculates an in-catalyst state amount based on the gas concentration of the exhaust gas detected by the gas concentration detection unit and the air amount detected by the air amount detection unit; An air-fuel ratio control device for an internal combustion engine, comprising: injection control means for correcting a fuel injection amount so as to reduce a deviation between a state amount in a catalyst and a target value.
【請求項7】 前記触媒内状態量算出手段は、前記触媒
内状態量を算出する際に、その算出値を実際の触媒内状
態量に応じて補正する補正手段を備えていることを特徴
とする請求項1乃至6のいずれかに記載の内燃機関の空
燃比制御装置。
7. The in-catalyst state quantity calculating means includes a correcting means for correcting the calculated value in accordance with an actual in-catalyst state quantity when calculating the in-catalyst state quantity. The air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 6.
【請求項8】 前記補正手段は、実際の触媒内状態量の
情報を、前記触媒から流出する排出ガスの空燃比又はガ
ス濃度を検出する触媒下流側のセンサの出力から得るこ
とを特徴とする請求項7に記載の内燃機関の空燃比制御
装置。
8. The apparatus according to claim 1, wherein the correction means obtains information on the actual state quantity in the catalyst from an output of a sensor on the downstream side of the catalyst which detects an air-fuel ratio or a gas concentration of exhaust gas flowing out of the catalyst. An air-fuel ratio control device for an internal combustion engine according to claim 7.
【請求項9】 前記補正手段は、前記触媒内状態量算出
手段により算出した触媒内状態量と実際の触媒内状態量
との偏差に応じて前記触媒内状態量の目標値を制御する
パラメータを可変するパラメータ可変手段を備えている
ことを特徴とする請求項7又は8に記載の内燃機関の空
燃比制御装置。
9. The correction means includes a parameter for controlling a target value of the in-catalyst state quantity according to a deviation between the in-catalyst state quantity calculated by the in-catalyst state quantity calculation means and an actual in-catalyst state quantity. 9. The air-fuel ratio control device for an internal combustion engine according to claim 7, further comprising a variable parameter changing means.
【請求項10】 前記パラメータ可変手段は、前記触媒
内状態量の目標値を制御するパラメータとして、触媒内
状態量を算出する式のパラメータを可変することを特徴
とする請求項9に記載の内燃機関の空燃比制御装置。
10. The internal combustion engine according to claim 9, wherein the parameter varying unit varies a parameter of an equation for calculating a state quantity in the catalyst as a parameter for controlling a target value of the state quantity in the catalyst. Engine air-fuel ratio control device.
【請求項11】 前記パラメータ可変手段は、前記触媒
内状態量の目標値を制御するパラメータとして、前記触
媒の下流側の空燃比を前記目標値に反映させるサブフィ
ードバックの制御パラメータを可変することを特徴とす
る請求項9に記載の内燃機関の空燃比制御装置。
11. The parameter varying means may vary a sub-feedback control parameter for reflecting a downstream air-fuel ratio of the catalyst to the target value as a parameter for controlling a target value of the in-catalyst state quantity. The air-fuel ratio control device for an internal combustion engine according to claim 9, wherein:
【請求項12】 前記パラメータ可変手段は、前記触媒
内状態量算出手段により算出した触媒内状態量と実際の
触媒内状態量との偏差が所定値以下の場合に該偏差を0
と見なすことを特徴とする請求項9乃至11のいずれか
に記載の内燃機関の空燃比制御装置。
12. The parameter changing means sets the deviation to 0 when the deviation between the in-catalyst state quantity calculated by the in-catalyst state quantity calculation means and the actual in-catalyst state quantity is equal to or less than a predetermined value.
The air-fuel ratio control device for an internal combustion engine according to any one of claims 9 to 11, wherein:
JP2000303146A 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4636214B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000303146A JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine
US09/866,804 US20020011067A1 (en) 2000-06-20 2001-05-30 Air-fuel ratio control system for engine with in-catalyst state compensation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-189733 2000-06-20
JP2000189733 2000-06-20
JP2000303146A JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002081339A true JP2002081339A (en) 2002-03-22
JP4636214B2 JP4636214B2 (en) 2011-02-23

Family

ID=26594564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303146A Expired - Fee Related JP4636214B2 (en) 2000-06-20 2000-10-03 Air-fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
US (1) US20020011067A1 (en)
JP (1) JP4636214B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747909B1 (en) * 2006-07-10 2007-08-08 현대자동차주식회사 The air-bag housing structure of a passenger seat
US7559193B2 (en) 2005-11-01 2009-07-14 Hitachi, Ltd. Control apparatus and method for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249032A (en) * 1993-03-02 1994-09-06 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JPH0763111A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Misfire detection device for engine
JPH09310636A (en) * 1996-05-20 1997-12-02 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JPH09310635A (en) * 1996-05-20 1997-12-02 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2000008921A (en) * 1998-06-17 2000-01-11 Unisia Jecs Corp Oxygen storage quantity control device for three-way catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249032A (en) * 1993-03-02 1994-09-06 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JPH0763111A (en) * 1993-08-20 1995-03-07 Mitsubishi Motors Corp Misfire detection device for engine
JPH09310636A (en) * 1996-05-20 1997-12-02 Unisia Jecs Corp Air-fuel ratio controller for internal combustion engine
JPH09310635A (en) * 1996-05-20 1997-12-02 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2000008921A (en) * 1998-06-17 2000-01-11 Unisia Jecs Corp Oxygen storage quantity control device for three-way catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559193B2 (en) 2005-11-01 2009-07-14 Hitachi, Ltd. Control apparatus and method for internal combustion engine
DE102006051465B4 (en) * 2005-11-01 2012-11-22 Hitachi, Ltd. Method and device for controlling an internal combustion engine
KR100747909B1 (en) * 2006-07-10 2007-08-08 현대자동차주식회사 The air-bag housing structure of a passenger seat

Also Published As

Publication number Publication date
US20020011067A1 (en) 2002-01-31
JP4636214B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3625163B2 (en) Exhaust purification catalyst deterioration detection device
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP2001152928A (en) Air-fuel ratio control device for internal combustion engine
JP2002349325A (en) Air-fuel ratio control device for internal combustion engine
JP2001090584A (en) Air/fuel ratio control device for internal combustion engine
JP3572927B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP3788497B2 (en) Air-fuel ratio control device for internal combustion engine
JP6316471B1 (en) ENGINE CONTROL DEVICE AND ENGINE CONTROL METHOD
JP2002081339A (en) Air-fuel ratio control device of internal combustion engine
JP3826997B2 (en) Air-fuel ratio control device for internal combustion engine
JP4032840B2 (en) Exhaust gas purification device for internal combustion engine
JP4314551B2 (en) Air-fuel ratio control device for internal combustion engine
JP2003336538A (en) Exhaust emission control device for internal combustion engine
JP2002364345A (en) Exhaust emission control device for internal combustion engine
JP3826996B2 (en) Air-fuel ratio control device for internal combustion engine
JP4422398B2 (en) Exhaust gas purification device for internal combustion engine
JP4072412B2 (en) Air-fuel ratio control device for internal combustion engine
JP3988425B2 (en) Exhaust gas purification control device for internal combustion engine
JP4064092B2 (en) Engine air-fuel ratio control device
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3775570B2 (en) Air-fuel ratio control device for internal combustion engine
JP3864455B2 (en) Air-fuel ratio control device for internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees