JP2002075058A - Copper bus bar having excellent corrosion resistance and its manufacturing method - Google Patents

Copper bus bar having excellent corrosion resistance and its manufacturing method

Info

Publication number
JP2002075058A
JP2002075058A JP2000263218A JP2000263218A JP2002075058A JP 2002075058 A JP2002075058 A JP 2002075058A JP 2000263218 A JP2000263218 A JP 2000263218A JP 2000263218 A JP2000263218 A JP 2000263218A JP 2002075058 A JP2002075058 A JP 2002075058A
Authority
JP
Japan
Prior art keywords
copper
titanium
bus bar
interface
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000263218A
Other languages
Japanese (ja)
Other versions
JP4646369B2 (en
Inventor
Hiroaki Okano
宏昭 岡野
Akira Kosaka
晃 小阪
Atsushi Funakoshi
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000263218A priority Critical patent/JP4646369B2/en
Publication of JP2002075058A publication Critical patent/JP2002075058A/en
Application granted granted Critical
Publication of JP4646369B2 publication Critical patent/JP4646369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper bus bar suitable for being used as an electrode holding bus bar or the like used for minute hole etching processing of the surface of aluminum foil and excellent at corrosion resistance to an oxidizing strong acid or the like and its manufacturing method. SOLUTION: The bus bar consists of a copper or copper alloy base material 11 and a titanium or titanium alloy sheet coated layer 12 covering the surface of the base material 11. The bus bar has the coating structure in which abutting boundary surfaces between the base material and sheet, and the sheet end edge parts are diffused and bonded. A diffusion reaction generating layer with 5-50 μm of layer thickness is formed on the boundary surface between the base material and the coated layer. A diffused junction has joining strength (bending strength) of about 120 MPa or more. The surface of the base material 11 is coated with a titanium seat forming a coated layer 12 and heated at 700-850 deg.C of temperature and preferably under the action of pressurizing force (about 10-200 MPa) so as to manufacture the bus bar.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、給/配電設備にお
ける複数の電源,電極保持部材,供給回路等を結ぶ接続
導体であるブスバー(母線)の改良に係り、特に強酸性
腐食環境等に対する耐食性に優れた銅ブスバーおよびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a bus bar (bus) which is a connecting conductor for connecting a plurality of power supplies, electrode holding members, a supply circuit, and the like in a power supply / distribution facility. And a method for producing the same.

【0002】[0002]

【従来の技術】銅は高導電性を有する金属材料であり、
電極や電極に電気を与えるブスバー等に広く使用されて
いる。しかし、銅は、酸化性酸に対する腐食抵抗性に乏
しい。そのため、例えばコンデンサー用アルミ箔の製造
工程においてアルミ箔表面に微細穴をエッチング加工す
る電極取付け用ブスバーとして使用される場合、酸化性
強酸性溶液と接触し、腐食損傷を生じ易いという問題が
ある。その対策として、次のような手段が採られてい
る。 (1)銅ブスバーに樹脂ライニングを施し、腐食液との接
触を遮断する。 (2)銅ブスバーに代え、チタン製のブスバーを使用す
る。 (3)銅ブスバーの表面にチタンのシートを被せ溶接で接
合した被覆構造とする。
2. Description of the Related Art Copper is a metal material having high conductivity.
It is widely used for electrodes and busbars that provide electricity to the electrodes. However, copper has poor corrosion resistance to oxidizing acids. Therefore, for example, when used as a bus bar for mounting an electrode for etching a fine hole in the surface of an aluminum foil in a manufacturing process of an aluminum foil for a capacitor, the aluminum foil comes into contact with an oxidizing and strongly acidic solution, which causes a problem of easily causing corrosion damage. As a countermeasure, the following measures are taken. (1) Resin lining is applied to the copper bus bar to block contact with the corrosive liquid. (2) Instead of a copper bus bar, a titanium bus bar is used. (3) A covering structure in which a titanium sheet is covered on the surface of the copper busbar and joined by welding.

【0003】樹脂ライニングで保護された銅ブスバー
は、ライニング層が健全な状態に安定維持されれば問題
はないが、通電時にブスバーに発生する熱により樹脂の
剥離を生じ易く、剥離部分からブスバーの腐食が進むだ
けでなく、剥離した樹脂片がアルミ箔の製品皮質に悪影
響を及ぼすという欠点がある。チタン製ブスバーは、チ
タンの物性として酸化性強酸に対する優れた腐食抵抗性
を示すが、銅に比し電気伝導性が低く(Cu:1.72×10
−6Ωcm(20℃),Ti:0.478×10−4Ωcm(26
℃))、従って電気抵抗を低減するためにブスバーの断
面積を大きくする必要があり、しかも断面積を大きくす
るだけでは十分でなく、電流値も低く抑えなければなら
ない。このためエッチング効率が低下するという欠点が
ある。
A copper busbar protected by a resin lining has no problem if the lining layer is stably maintained in a healthy state, but the resin is easily peeled off by heat generated in the busbar when energized. In addition to the progress of corrosion, there is a disadvantage that the peeled resin pieces adversely affect the product cortex of the aluminum foil. Titanium busbars exhibit excellent corrosion resistance to oxidizing strong acids as physical properties of titanium, but have lower electrical conductivity than copper (Cu: 1.72 × 10
−6 Ωcm (20 ° C.), Ti: 0.478 × 10 −4 Ωcm (26
° C)), therefore, it is necessary to increase the cross-sectional area of the bus bar in order to reduce the electric resistance. Further, it is not enough to increase the cross-sectional area, and the current value must also be kept low. Therefore, there is a disadvantage that the etching efficiency is reduced.

【0004】他方、銅ブスバーの表面にチタンシートを
被せて溶接で接合した構造とする場合は、樹脂ライニン
グによる被覆構造やチタン製ブスバーに付随する上記欠
点はなく、チタン被覆層による保護効果として優れた腐
食防止効果を得ることができる。しかし、その被覆構造
における基体と被覆層との当接界面は不連続面であり、
そのため通電時におけるブスバー本体と被覆層との界面
の接触抵抗が大きく、ブスバーとして安定な使用を確保
することは困難である。
On the other hand, in the case of a structure in which the surface of a copper bus bar is covered with a titanium sheet and joined by welding, there is no problem of the coating structure by the resin lining or the above-mentioned disadvantages associated with the titanium bus bar, and the protective effect by the titanium coating layer is excellent. The effect of preventing corrosion can be obtained. However, the contact interface between the substrate and the coating layer in the coating structure is a discontinuous surface,
Therefore, the contact resistance at the interface between the busbar main body and the coating layer during energization is large, and it is difficult to secure stable use as the busbar.

【0005】[0005]

【発明が解決しようとする課題】本発明は、チタン被覆
構造の長所を生かしつつ、その欠点であるブスバー本体
と被覆層との界面に生じる接触抵抗の問題を解消し、銅
腐食環境において安定に使用し得る銅ブスバーおよびそ
の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the problem of contact resistance at the interface between the busbar body and the coating layer, which is a disadvantage of the present invention, while taking advantage of the advantages of the titanium coating structure, and stabilizes it in a copper corrosive environment. An object of the present invention is to provide a copper busbar that can be used and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の銅ブスバーは、
銅又は銅合金の基体とその表面を被包するチタン又はチ
タン合金シートの被覆層とからなり、基体とシートとの
当接界面およびシート端縁部同士の当接界面は拡散接合
された被覆保護構造を有している。基体は複数個のセグ
メントの接合体として構成することも可能であり、その
場合のブスバーの基体は、セグメント同士の当接界面を
拡散接合により一体化された構造を備えている。
The copper bus bar of the present invention comprises:
It consists of a copper or copper alloy substrate and a coating layer of a titanium or titanium alloy sheet enclosing its surface. The contact interface between the substrate and the sheet and the contact interface between the sheet edges are diffusion-bonded coating protection. It has a structure. The base can be configured as a joined body of a plurality of segments. In this case, the base of the bus bar has a structure in which the contact interfaces between the segments are integrated by diffusion bonding.

【0007】本発明の銅ブスバーは、銅又は銅合金から
なる基体(ブスバー本体である)による高導電性を有す
ると共に、チタン又はチタン合金からなる被覆層により
腐食環境から遮断されて基体の腐食損傷を防止され、ま
た基体と被覆層とが拡散接合された一体的接合構造であ
ることにより、基体と被覆層との間の接触抵抗の問題も
実質的に解消される。
[0007] The copper busbar of the present invention has high conductivity due to a substrate (a busbar body) made of copper or a copper alloy, and is shielded from a corrosive environment by a coating layer made of titanium or a titanium alloy, thereby causing corrosion of the substrate. And the problem of contact resistance between the substrate and the coating layer is substantially eliminated by the integrated bonding structure in which the substrate and the coating layer are diffusion-bonded.

【0008】[0008]

【発明の実施の形態】図1は、本発明の銅ブスバーの実
施例を示している。11は銅又は銅合金からなる基体、
12はチタン又はチタン合金からなる被覆層である(図
は基体11がL字断面形状をなすアングル型ブスバーの
例である)。基体(11)と被覆層(12)との界面は
全体に亘って拡散接合により一体化されている。被覆層
(12)はチタン又はチタン合金シートで形成され、シ
ートの端縁同士の当接界面も拡散接合により一体的に接
合(端縁同士の境界面は消失)している。
FIG. 1 shows an embodiment of a copper bus bar according to the present invention. 11 is a substrate made of copper or a copper alloy,
Reference numeral 12 denotes a coating layer made of titanium or a titanium alloy (the figure is an example of an angle-type bus bar in which the base 11 has an L-shaped cross section). The interface between the substrate (11) and the coating layer (12) is integrated by diffusion bonding over the whole. The coating layer (12) is formed of a titanium or titanium alloy sheet, and the contact interface between the edges of the sheet is also integrally bonded by diffusion bonding (the boundary surface between the edges disappears).

【0009】また、図2に示すように、基体(11)の
板面に、例えば電極保持等のための穴(13)が設けら
れる場合は、穴(13)のそれぞれの内周面もチタン又
はチタン合金からなる被覆層(12)が設けられる。被
覆層(12)は、銅ブスバーの用途・使用環境等に応じ
て適宜の層厚を与えられ、例えばアルミ箔エッチング加
工の電極保持用ブスバーの場合、約1〜5mm程度の厚
さとしてよい。
As shown in FIG. 2, when a hole (13) for holding an electrode or the like is provided on the plate surface of the base (11), the inner peripheral surface of each hole (13) is also made of titanium. Alternatively, a coating layer (12) made of a titanium alloy is provided. The coating layer (12) is given an appropriate layer thickness in accordance with the use and use environment of the copper busbar, and for example, in the case of an aluminum foil etching processed electrode holding busbar, the thickness may be about 1 to 5 mm.

【0010】ブスバー本体である基体(11)の基本的
な材種は銅(純銅)であるが、ブスバーの使用態様に応
じて、例えば強度を要求され、かつ電気伝導性がある程
度低くても差し支えないような場合には、銅に代えて適
宜の銅合金(例えば黄銅等)が適用され、被覆層(1
2)についても強度等の要求に応じ、チタン(純チタ
ン)に代え、適宜のチタン合金(例えばTi-4Al-V等)を
適用することができる。以下の説明では、基体(11)
を形成する銅又は銅合金を「銅」、基体(11)の被覆
層(12)を形成するチタン又はチタン合金を「チタ
ン」とそれぞれ表記する。
The basic material of the base (11), which is the busbar body, is copper (pure copper). However, depending on the mode of use of the busbar, for example, strength is required and electric conductivity may be low to some extent. In such a case, an appropriate copper alloy (for example, brass or the like) is applied instead of copper, and the coating layer (1
As for 2), an appropriate titanium alloy (for example, Ti-4Al-V or the like) can be applied instead of titanium (pure titanium) according to the requirement of strength or the like. In the following description, the substrate (11)
Is described as “copper”, and titanium or a titanium alloy forming the coating layer (12) of the substrate (11) is described as “titanium”.

【0011】図3は、アングル型銅ブスバー(図1)を
構成する部材の組付け態様の例を示している。同図
(1)のように、基体(11)とその表面を被覆する複
数枚のチタンシート(12)〜(12)を用意し、
同図(2)に示すように各チタンシート(12)〜
(12)を基体(11)の表面にあてがい、端縁部同
士を溶接wし基体(11)の表面に固定する。基体(1
1)とチタンシート(12)〜(12)の向い合う
面は隙間のないように当接させ、チタンシートの端縁同
士も隙間のないように当接させる。
FIG. 3 shows an example of a mode of assembling the members constituting the angle type copper bus bar (FIG. 1). As shown in FIG. 1A, a substrate (11) and a plurality of titanium sheets (12 1 ) to (12 6 ) covering the surface thereof are prepared.
As shown in FIG. 2B, each titanium sheet (12 1 ) to
(12 6) a Ategai on the surface of the substrate (11), securing the edge portions on the surface of the weld w and a substrate (11). Substrate (1
Opposite surfaces of 1) and the titanium sheets (12 1 ) to (12 6 ) are brought into contact with no gap, and the edges of the titanium sheet are also brought into contact with no gap.

【0012】基体(11)は、複数個のセグメントを用
いて構成することもできる。図4は、アングル型の基体
(11)を2枚の基体セグメント(11)(11
で形成する例を示している。基体セグメント(11
(11)は、L字型に突合わされ溶接wにより仮り付
けされている。表面にあてがわれるチタンシート(12
)〜(12)の取付けは、前記図2に示した例にお
けるそれと同じ要領で行なえばよい。なお、各部材の表
面は、部材同士の当接界面の拡散接合を阻害されないよ
うに、予め酸化膜、その他の汚染物の付着を除去してお
く。
The base (11) can also be constituted by using a plurality of segments. 4, two substrates segment angle type of the base (11) (11 1) (11 2)
An example is shown in FIG. Base segment (11 1 )
(11 2 ) is butted in an L-shape and is temporarily attached by welding w. Titanium sheet (12
1) Mounting to (12 6) may be carried out in the same manner as that in the example shown in FIG. 2. The surface of each member is preliminarily removed from an oxide film and other contaminants so as not to hinder diffusion bonding at the contact interface between the members.

【0013】上記のように部材の組付けを行なったうえ
加熱処理に付す。この処理は、部材同士の当接界面の酸
化汚染を生じないように不活性雰囲気(アルゴン,窒素
ガス等)ないし真空雰囲気で行なわれる。加熱処理にお
いては、基体(11)と被覆層(12)との界面(銅−
チタン界面)に拡散による反応層(金属間化合物層)が
生成する。図8は銅−チタン接合界面と直交する面にお
ける元素分布状況(EPMA面分析・線分析による)を
示している。図中、A(細帯状部分)が反応層である。
After assembling the members as described above, the members are subjected to a heat treatment. This treatment is performed in an inert atmosphere (argon, nitrogen gas, etc.) or a vacuum atmosphere so as not to cause oxidative contamination of the contact interface between the members. In the heat treatment, the interface between the substrate (11) and the coating layer (12) (copper-
A reaction layer (intermetallic compound layer) is generated at the titanium interface) by diffusion. FIG. 8 shows the element distribution on the plane orthogonal to the copper-titanium bonding interface (by EPMA surface analysis and line analysis). In the figure, A (strip-like portion) is a reaction layer.

【0014】加熱処理においては、基体(11)と被覆
層(12)との界面の接合(銅−チタン界面接合)、被
覆層材であるチタンシート(12)〜(12)の端
縁同士の接合(チタン−チタン界面接合)、および図4
に示したように基体(11)を複数個のセグメント(1
)(11)で構成する場合は、該セグメント同士
の接合(銅−銅界面接合)を同時に達成することを要す
る。基体と被覆層との界面接合およびセグメント同士の
界面接合が不完全であると、ブスバーの実機使用時に接
触抵抗が発生し電気伝導が阻害され、またチタンシート
同士の継ぎ目に一部でも接合の不完全ないし強度の乏し
い個所があると、その部分が起点となって被覆層(1
2)の保護機能が損なわれるからである。
In the heat treatment, bonding at the interface between the substrate (11) and the coating layer (12) (copper-titanium interface bonding) and the edges of the titanium sheets (12 1 ) to (12 6 ) as the coating layer material Bonding (titanium-titanium interface bonding), and FIG.
As shown in the figure, the substrate (11) is divided into a plurality of segments (1).
1 1) (the case of a 11-2), the bonding between the segments (copper - required to achieve a copper interface bonding) at the same time. If the interfacial bonding between the base and the coating layer and the interfacial bonding between the segments are incomplete, contact resistance will occur when the busbar is used in actual equipment, impeding electrical conduction, and even at a part of the joint between the titanium sheets, improper bonding may occur. If there is a complete or poor strength part, that part becomes the starting point and the coating layer (1
This is because the protection function of 2) is impaired.

【0015】銅−チタン界面の接合においては、その界
面に790℃前後以上の温度域で反応層(A)が生成
し、850℃を越えると反応が急激に進み、反応層
(A)が過剰に生成する。反応層(A)は脆質であるた
め、その層厚が過大になると、熱応力等により反応層に
亀裂とそれによる剥離を生じ易くなる。健全な接合界面
を得るには、基体と被覆層との接合強度(曲げ強度)が
120MPa以上であることが必要であり、そのために
は反応層(A)の層厚を50μm以下とすることを要す
る。処理温度850℃以下で反応層(A)の層厚50μ
m以下を達成することができる。
In the bonding at the copper-titanium interface, a reaction layer (A) is formed at a temperature range of about 790 ° C. or higher at the interface, and when the temperature exceeds 850 ° C., the reaction proceeds rapidly, and the reaction layer (A) becomes excessive. To be generated. Since the reaction layer (A) is brittle, if the layer thickness is excessively large, cracks in the reaction layer due to thermal stress or the like and peeling due to the cracks easily occur. In order to obtain a sound bonding interface, the bonding strength (bending strength) between the substrate and the coating layer needs to be 120 MPa or more. For this purpose, the thickness of the reaction layer (A) must be 50 μm or less. It costs. The reaction layer (A) has a thickness of 50 μm at a processing temperature of 850 ° C. or less.
m or less can be achieved.

【0016】さて、チタン−チタン界面、および銅−銅
界面の接合について、チタンの融点(1680℃)およ
び銅の融点(1083℃)が上記処理温度と比べて著し
く高いことから、これらの部材同士の当接界面に拡散接
合を生じさせ、十分な接合強度を得ることができるかが
問題となる。処理温度を700℃以上とすれば、これら
の拡散接合が可能であり、しかもその接合部は、銅−チ
タン界面の接合強度を超える高い接合強度を示す。70
0℃の加熱処理で生成する銅−チタン界面の反応層
(A)の層厚は5μm程度である。
Since the melting point of titanium (1680 ° C.) and the melting point of copper (1083 ° C.) are remarkably higher than those of the above-mentioned processing temperatures at the joining of the titanium-titanium interface and the copper-copper interface, these members are joined together. The problem is whether or not diffusion bonding can occur at the contact interface of the metal and a sufficient bonding strength can be obtained. When the treatment temperature is set to 700 ° C. or higher, these diffusion bondings are possible, and the bonding portions exhibit high bonding strength exceeding the bonding strength at the copper-titanium interface. 70
The layer thickness of the reaction layer (A) at the copper-titanium interface generated by the heat treatment at 0 ° C. is about 5 μm.

【0017】上記のように、銅−チタン界面の反応層
(A)の層厚を5〜50μmの範囲に調整することによ
り、基体(11)と被覆層(12)との界面(銅−チタ
ン界面)に120MPa以上の接合強度をもたせると共
に、被覆層材であるチタンシート(12)〜(1
)の端縁同士の界面(チタン−チタン界面)および
基体セグメント(11)(11)同士の界面(銅−
銅界面)の接合強度が銅−チタン界面の接合強度以上と
なる拡散接合を同時に達成することができる。その加熱
処理温度は700〜850℃である。
As described above, by adjusting the layer thickness of the reaction layer (A) at the copper-titanium interface to a range of 5 to 50 μm, the interface (copper-titanium) between the substrate (11) and the coating layer (12) is adjusted. Interface) and a titanium sheet (12 1 )-(1)
Interface edge between two 6) (titanium - titanium interface) and base segments (11 1) (11 2) the interface between the (copper -
Diffusion bonding in which the bonding strength at the copper interface) is equal to or higher than the bonding strength at the copper-titanium interface can be achieved at the same time. The heat treatment temperature is 700 to 850 ° C.

【0018】上記の加熱処理は、加圧条件下に行なうこ
とが望ましい。加圧力の効果として、処理温度が低温域
に制限されていながら、当接界面の相互拡散が効率化さ
れると共に、当接界面全体に亘る均質な拡散接合が達成
され接合品質を高めることが容易になる。加圧力は、約
10〜200MPaの範囲が適当である。この加圧加熱
処理法として、ホットプレス法、熱間静水圧加圧法(H
IP)等を適用することができる。
The above heat treatment is desirably performed under a pressurized condition. The effect of the pressing force is that while the processing temperature is limited to a low temperature range, the interdiffusion of the contact interface is made more efficient, and uniform diffusion bonding over the entire contact interface is achieved, so that the bonding quality can be easily improved. become. The pressure is suitably in the range of about 10 to 200 MPa. As the pressurizing and heating treatment method, a hot press method, a hot isostatic pressing method (H
IP) or the like can be applied.

【0019】ホットプレス法による拡散接合は、部材組
付け体(15)(図3(2),図4(2))を金型に装填し、
不活性ないし真空雰囲気中、金型を介して押圧力を加え
た状態で加熱処理することにより行なわれる。ホットプ
レス装置の制約上、部材組付け体の全体を一度に接合処
理することができない場合は、部分毎に分けて実施すれ
ばよい。
Diffusion bonding by hot pressing is performed by loading a member assembly (15) (FIGS. 3 (2) and 4 (2)) into a mold,
The heat treatment is performed in an inert or vacuum atmosphere with a pressing force applied through a mold. If the entire member assembly cannot be joined at one time due to the limitations of the hot press device, it may be performed separately for each part.

【0020】熱間静水圧加圧法(HIP)による場合
は、部材組付け体(15)を、図6のように、カプセル
(軟鋼製等)(20)で被包し、カプセル(20)に取
付けた脱気管(21)を介してカプセル内を脱気し密封
したうえHIP装置にかけ、アルゴンガス等を圧力媒体
とする静水圧の作用下に加熱する。なお、部材組付け体
(15)の製作において、チタンシート(12)〜
(12)の端縁部同士を気密に溶接し、内側(シート
と基体との間)を真空脱気する場合は、カプセル(2
0)を省略しそのままHIP処理(カプセル・フリーH
IP)することができる。HIP法は、一度の処理で組
付け体全体の拡散接合を達成することができ、また組付
け体の全体に均一に圧力が加えられ、かつ温度管理も容
易であること等から、本発明のブスバーの製造法として
最適である。
In the case of hot isostatic pressing (HIP), the member assembly (15) is encapsulated in a capsule (made of mild steel) (20) as shown in FIG. The inside of the capsule is evacuated and sealed through the attached deaeration tube (21), and then the capsule is subjected to a HIP device, and heated under the action of hydrostatic pressure using argon gas or the like as a pressure medium. In the production of the member assembly (15), the titanium sheet (12 1 )
(12 6) the edge portions are welded to the airtight, the inner case of vacuum degassing (between the sheet and the substrate) can be a capsule (2
0) is omitted and HIP processing is performed as it is (capsule free H)
IP). According to the HIP method, the diffusion bonding of the entire assembly can be achieved by a single process, the pressure is uniformly applied to the entire assembly, and the temperature control is easy. It is most suitable as a busbar manufacturing method.

【0021】上記説明ではアングル型のブスバーを例に
挙げたが、ブスバーの形状に制限はなく、帯板形状、チ
ャネル形状、パイプ形状等、用途や設置形態に応じた種
々の形状が与えられる。また、穴(13)を有するブス
バー(図2)を製作する場合は、部材の組付け体(1
5)(図3(2),図4(2))を形成する工程で、図7に示
すように、基体(11)に設けられた各穴(13)のそ
れぞれの内周面に、環状に賦形したチタンシート(12
)を嵌め込み、溶接wしておけばよい。
In the above description, the angle type bus bar is taken as an example. However, the shape of the bus bar is not limited, and various shapes such as a strip shape, a channel shape, a pipe shape and the like depending on the use and the installation form are given. When manufacturing a bus bar (FIG. 2) having a hole (13), an assembly (1
5) In the step of forming (FIGS. 3 (2) and 4 (2)), as shown in FIG. 7, an annular inner surface of each hole (13) provided in the base (11) is formed. Titanium sheet (12
7 ) may be fitted and welded.

【0022】[0022]

【実施例】銅又は銅合金の柱状ブロックとチタン又はチ
タン合金の柱状ブロックを用意し、ブロックの端面を密
接させて当接界面の外周に沿って溶接することにより組
付け体を形成し、拡散接合処理に付し供試接合体を得
る。
EXAMPLE A columnar block made of copper or a copper alloy and a columnar block made of titanium or a titanium alloy are prepared, the end faces of the blocks are brought into close contact and welded along the outer periphery of the contact interface to form an assembly, and the diffusion is performed. The sample is subjected to a joining process to obtain a joined sample.

【0023】(1)供試材の材種 [銅又は銅合金] 純銅(≧99.90%) C1100(JIS H310
0) 黄銅(85%Cu-15%Zn)YBSC1(JIS H510
1) [チタン又はチタン合金] 純チタン (≧99.5%) TP340H(JIS H
4600) チタン合金(Ti-6%Al-4%V)TAP640(JIS H
4607)
(1) Grade of test material [copper or copper alloy] Pure copper (≧ 99.90%) C1100 (JIS H310)
0) Brass (85% Cu-15% Zn) YBSC1 (JIS H510
1) [Titanium or titanium alloy] Pure titanium (≧ 99.5%) TP340H (JIS H
4600) Titanium alloy (Ti-6% Al-4% V) TAP640 (JIS H
4607)

【0024】(2)拡散接合処理 HIP: ブロックの組付け体を圧力容器内に装入し、
Arガスを圧力媒体とする加圧下に加熱処理した。 ホットプレス: ブロックの組付け体をダイスに装填
し、窒素ガス雰囲気中、ブロックの当接界面と直交する
向きの一軸加圧下に加熱処理した。
(2) Diffusion bonding treatment HIP: The assembled body of blocks is charged into a pressure vessel,
The heat treatment was performed under pressure using Ar gas as a pressure medium. Hot pressing: The assembled body of the block was loaded into a die, and heat-treated in a nitrogen gas atmosphere under uniaxial pressure perpendicular to the contact interface of the block.

【0025】(3)接合強度試験 各供試接合体から、3種の角柱状試験片A(銅-チタン
接合体),B(銅-銅接合体),C(チタン-チタン接合
体)を調製し、図7に示すように3点曲げ法による接合
部の強度測定を行なった。 試験片サイズ:3×3×40(mm) スパン距離:30mm 試験温度:室温
(3) Bonding strength test Three types of prism-shaped test pieces A (copper-titanium joint), B (copper-copper joint), and C (titanium-titanium joint) were obtained from each specimen. It was prepared and the strength of the joint was measured by a three-point bending method as shown in FIG. Test piece size: 3 x 3 x 40 (mm) Span distance: 30 mm Test temperature: room temperature

【0026】[0026]

【表1】 [Table 1]

【0027】表1に、供試接合体の材種の組合せと拡散
接合条件、および接合強度の測定結果を示している。表
中「接合部状況」欄の「*」印は、3点曲げ試験で、曲
げ変形開始後も接合部の破断はなく接合状態が保たれて
いたことを示している。発明例の接合体(銅−チタン界
面の反応層の生成層厚は5〜50μmである)は、銅−
チタン界面の接合強度が十分に大きく、しかも銅−銅界
面、およびチタン−チタン界面の接合強度も高く、ブス
バー全体が高強度である。
Table 1 shows the combinations of the material types of the specimens to be tested, the diffusion bonding conditions, and the measurement results of the bonding strength. In the table, "*" in the column of "Joint condition" indicates that in the three-point bending test, the joint was not broken even after the start of bending deformation, and the joined state was maintained. The bonded body of the invention example (the thickness of the reaction layer formed at the copper-titanium interface is 5 to 50 μm) is
The bonding strength at the titanium interface is sufficiently large, and the bonding strength at the copper-copper interface and the titanium-titanium interface is also high, so that the entire bus bar has high strength.

【0028】他方、比較例No.11(銅−チタン界面の
反応層厚が不足)は、銅−チタン界面の接合強度が極端
に低いだけでなく、チタン−チタン界面は未接合の状態
であり、銅−銅界面の接合強度も著しく低い。また、比
較例No.12(銅−チタン界面の反応層厚が過剰)で
は、銅−銅界面、およびチタン−チタン界面の接合強度
は十分高いものの、銅−チタン界面の接合強度が大きく
低下している。
On the other hand, in Comparative Example No. 11 (the thickness of the reaction layer at the copper-titanium interface is insufficient), not only is the bonding strength at the copper-titanium interface extremely low, but also the titanium-titanium interface is in an unbonded state. Also, the bonding strength at the copper-copper interface is extremely low. In Comparative Example No. 12 (the thickness of the reaction layer at the copper-titanium interface is excessive), the bonding strength at the copper-copper interface and the titanium-titanium interface is sufficiently high, but the bonding strength at the copper-titanium interface is greatly reduced. ing.

【0029】[0029]

【発明の効果】本発明の銅ブスバーは、チタン被覆層に
よりブスバー本体(銅基体)が腐食環境から確実に遮断
保護され、樹脂コーティングのような剥離はなく、チタ
ン製ブスバーにおける問題(電気伝導性が低いことに起
因する断面積増大等の設計上の制約や電流値の制限等)
もなく安定使用することができる。特に、酸化性強酸腐
食環境に対する耐食性にも優れているので、例えばアル
ミ箔製造における微細孔エッチング加工のための電極保
持用ブスバー等として好適であり、耐用寿命の向上、メ
ンテナンスコストの低減、操業の安定化等をもたらすも
のである。
According to the copper busbar of the present invention, the busbar body (copper substrate) is reliably shielded and protected from the corrosive environment by the titanium coating layer, there is no peeling such as resin coating, and the problem in the titanium busbar (electrical conductivity). Restrictions such as an increase in the cross-sectional area due to low power, and restrictions on the current value)
No stable use. In particular, since it is also excellent in corrosion resistance to oxidizing strong acid corrosion environment, it is suitable, for example, as an electrode holding busbar for microhole etching in aluminum foil production, etc., improving the service life, reducing maintenance costs, and reducing operation costs. It brings stabilization and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブスバーの被覆構造を模式的に示す断
面図である。
FIG. 1 is a cross-sectional view schematically showing a bus bar coating structure of the present invention.

【図2】本発明のブスバーの被覆構造の他の例を模式的
に示す部分断面図である。
FIG. 2 is a partial cross-sectional view schematically illustrating another example of a busbar covering structure of the present invention.

【図3】本発明のブスバーを製作するための構成部材の
組付け態様の例を示す断面説明図である(同図(1)は
各部材の組付け前、同図(2)は組付け状態を示してい
る)。
FIG. 3 is a cross-sectional explanatory view showing an example of a mode of assembling components for manufacturing the bus bar of the present invention (FIG. 1A is before assembly of each member, and FIG. 2B is an assembly). Status).

【図4】本発明のブスバーを製作するための構成部材の
組付け態様の他の例を示す断面説明図である(同図
(1)は各部材の組付け前、同図(2)は組付け状態を
示している)。
FIG. 4 is a cross-sectional explanatory view showing another example of a mode of assembling the constituent members for manufacturing the bus bar of the present invention (FIG. 1A is before assembling of each member, and FIG. It shows an assembled state).

【図5】本発明のブスバーを製作するための構成部材の
組付け態様の他の例を示す部分断面説明図である。
FIG. 5 is a partial cross-sectional explanatory view showing another example of a mode of assembling components for manufacturing the bus bar of the present invention.

【図6】熱間静水圧加圧処理を適用して拡散接合して本
発明のブスバーを製造する場合の部材組付け体のカプセ
ル封入の例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of encapsulation of a member assembly in a case where a bus bar of the present invention is manufactured by applying a hot isostatic pressure treatment and performing diffusion bonding.

【図7】実施例における供試材の拡散接合部の曲げ強度
試験の説明図である。
FIG. 7 is an explanatory diagram of a bending strength test of a diffusion bonding portion of a test material in an example.

【図8】銅−チタン拡散接合部の接合面と直交する面に
おけるEPMA面分析・線分析による元素分布を示す図
である。
FIG. 8 is a view showing element distribution by EPMA surface analysis and line analysis on a surface orthogonal to a bonding surface of a copper-titanium diffusion bonding portion.

【符号の説明】[Explanation of symbols]

10:ブスバー 11:基体(銅又は銅合金) 11,11:基体セグメント 12:被覆層(チタン又はチタン合金) 12,12…12:チタンシート 13:穴 15:部材組付け体 20:カプセル 21:脱気管 w:溶接 A:銅−チタン界面に生成した拡散反応層10: bus bar 11: base (copper or copper alloy) 11 1 , 11 2 : base segment 12: coating layer (titanium or titanium alloy) 12 1 , 12 2 ... 12 7 : titanium sheet 13: hole 15: member assembly 20: Capsule 21: Degassing tube w: Welding A: Diffusion reaction layer generated at copper-titanium interface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/00 H01B 5/00 Z 13/00 501 13/00 501G // B23K 101:38 B23K 101:38 103:12 103:12 (72)発明者 船越 淳 大阪府枚方市中宮大池1丁目1番1号 株 式会社クボタ枚方製造所内 Fターム(参考) 4E067 AA07 AA12 AB01 AD07 BA06 DC03 DC06 EA04 EB00 5G307 AA01 BA05 BB02 BC10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 5/00 H01B 5/00 Z 13/00 501 13/00 501G // B23K 101: 38 B23K 101: 38 103: 12 103: 12 (72) Inventor Atsushi Funakoshi 1-1-1, Nakamiya Oike, Hirakata City, Osaka Prefecture F-term in Kubota Hirakata Plant (reference) 4E067 AA07 AA12 AB01 AD07 BA06 DC03 DC06 EA04 EB00 5G307 AA01 BA05 BB02 BC10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】銅又は銅合金の基体とその表面を被包する
チタン又はチタン合金シートの被覆層とからなり、基体
とシートとの当接界面およびシート端縁同士の当接界面
を拡散接合されている耐食性に優れた銅ブスバー。
The present invention comprises a copper or copper alloy substrate and a coating layer of a titanium or titanium alloy sheet enclosing the surface thereof, and diffusion bonding is performed at a contact interface between the substrate and the sheet and a contact interface between sheet edges. Copper busbar with excellent corrosion resistance.
【請求項2】基体は複数個のセグメントからなる組立て
体であり、セグメント同士の当接界面は拡散接合されて
いる請求項1に記載の銅ブスバー。
2. The copper busbar according to claim 1, wherein the base is an assembly composed of a plurality of segments, and the contact interface between the segments is diffusion-bonded.
【請求項3】基体と被覆層との界面における拡散反応層
の層厚が5〜50μmである請求項1又は2に記載の銅
ブスバー。
3. The copper busbar according to claim 1, wherein the layer thickness of the diffusion reaction layer at the interface between the substrate and the coating layer is 5 to 50 μm.
【請求項4】拡散接合部の接合強度が120MPa以上
である請求項3に記載の銅ブスバー。
4. The copper busbar according to claim 3, wherein the bonding strength of the diffusion bonding portion is 120 MPa or more.
【請求項5】銅又は銅合金の基体の表面を、チタン又は
チタン合金シートで密着被包すると共にシートの端縁同
士を当接させ、加熱処理することにより基体とシートと
の当接界面及びシート端縁同士の当接界面を拡散接合す
る請求項1に記載の耐食性に優れた銅ブスバーの製造方
法。
5. The surface of a copper or copper alloy substrate is tightly covered with a titanium or titanium alloy sheet, and the edges of the sheet are brought into contact with each other. The method for producing a copper bus bar having excellent corrosion resistance according to claim 1, wherein the contact interface between the sheet edges is diffusion-bonded.
【請求項6】基体は、相互に当接された複数個の基体セ
グメントからなり、加熱処理で基体セグメント同士の当
接界面を拡散接合する請求項5に記載の耐食性に優れた
銅ブスバーの製造方法。
6. The production of a copper bus bar excellent in corrosion resistance according to claim 5, wherein the substrate is composed of a plurality of substrate segments that are in contact with each other, and the contact interface between the substrate segments is diffusion-bonded by heat treatment. Method.
【請求項7】加熱処理を700〜850℃の温度域で行
なう請求項5又は請求項6に記載の銅ブスバーの製造方
法。
7. The method for producing a copper bus bar according to claim 5, wherein the heat treatment is performed in a temperature range of 700 to 850 ° C.
【請求項8】部材相互の当接界面に10〜200MPa
の圧力を作用させた状態で加熱処理する請求項5ないし
請求項7のいずれか1項に記載の銅ブスバーの製造方
法。
8. The contact interface between members is 10 to 200 MPa.
The method for producing a copper bus bar according to any one of claims 5 to 7, wherein the heat treatment is performed in a state where the pressure is applied.
【請求項9】熱間静水圧加圧法により加圧状態での加熱
処理を行う請求項8に記載の銅ブスバーの製造方法。
9. The method for producing a copper bus bar according to claim 8, wherein the heat treatment is performed in a pressurized state by a hot isostatic pressing method.
JP2000263218A 2000-08-31 2000-08-31 Copper bus bar with excellent corrosion resistance and method for producing the same Expired - Lifetime JP4646369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263218A JP4646369B2 (en) 2000-08-31 2000-08-31 Copper bus bar with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263218A JP4646369B2 (en) 2000-08-31 2000-08-31 Copper bus bar with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002075058A true JP2002075058A (en) 2002-03-15
JP4646369B2 JP4646369B2 (en) 2011-03-09

Family

ID=18750796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263218A Expired - Lifetime JP4646369B2 (en) 2000-08-31 2000-08-31 Copper bus bar with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4646369B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014522B1 (en) * 2009-04-28 2011-02-14 김정수 Bus bar forming method with hot forming
WO2019181179A1 (en) 2018-03-22 2019-09-26 富山住友電工株式会社 Plating treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126173A (en) * 1977-04-12 1978-11-04 Mitsubishi Metal Corp Method of manufacturing flatttype clad bus bar
JPS58167087A (en) * 1982-03-26 1983-10-03 Mitsubishi Heavy Ind Ltd Production of conductive rod
JPS6029169U (en) * 1983-08-05 1985-02-27 株式会社 昭和鉛鉄 electroplating equipment
JPS611486A (en) * 1984-06-14 1986-01-07 Mitsubishi Heavy Ind Ltd Joining method of titanium or titanium alloy
JPS62164899A (en) * 1986-01-14 1987-07-21 Tanaka Kikinzoku Kogyo Kk Composite bus bar for electric conduction
JPH0857533A (en) * 1994-08-17 1996-03-05 Mitsubishi Materials Corp Clad bar and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126173A (en) * 1977-04-12 1978-11-04 Mitsubishi Metal Corp Method of manufacturing flatttype clad bus bar
JPS58167087A (en) * 1982-03-26 1983-10-03 Mitsubishi Heavy Ind Ltd Production of conductive rod
JPS6029169U (en) * 1983-08-05 1985-02-27 株式会社 昭和鉛鉄 electroplating equipment
JPS611486A (en) * 1984-06-14 1986-01-07 Mitsubishi Heavy Ind Ltd Joining method of titanium or titanium alloy
JPS62164899A (en) * 1986-01-14 1987-07-21 Tanaka Kikinzoku Kogyo Kk Composite bus bar for electric conduction
JPH0857533A (en) * 1994-08-17 1996-03-05 Mitsubishi Materials Corp Clad bar and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014522B1 (en) * 2009-04-28 2011-02-14 김정수 Bus bar forming method with hot forming
WO2019181179A1 (en) 2018-03-22 2019-09-26 富山住友電工株式会社 Plating treatment device
KR20190139999A (en) 2018-03-22 2019-12-18 도야마 스미토모 덴코우 가부시키가이샤 Plating processing equipment
EP3604629A4 (en) * 2018-03-22 2020-07-08 Sumitomo Electric Toyama Co., Ltd. Plating treatment device
US11230790B2 (en) 2018-03-22 2022-01-25 Sumitomo Electric Toyama Co., Ltd. Plating processing apparatus

Also Published As

Publication number Publication date
JP4646369B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
KR100274488B1 (en) Method of bonding a sputter target backing plate assembly and assemblies produced thereby
JP2013514188A (en) Conductive composite component and method of manufacturing the same
KR100775301B1 (en) Method for making a plated product comprising a steel support component and an anti-corrosive metal coating
US8814029B2 (en) Metal bonding method and metal bonded structure
EP4019483A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
JP5220449B2 (en) Method and apparatus for joining metal members
WO2017057698A1 (en) Metal laminate material, and production method therefor
CN110169213B (en) Method for manufacturing ceramic circuit board
JP6016095B2 (en) Joining method and joining parts
JP3288922B2 (en) Joint body and method of manufacturing the same
WO1992001528A1 (en) Hot diffusion welding
KR101261078B1 (en) Method for forming a tight-fitting silver surface on an aluminium piece
HU178946B (en) Process for joining details made of aluminium and irom alloys
US6874673B2 (en) Initial ball forming method for wire bonding wire and wire bonding apparatus
CN104014923A (en) Aluminum alloy diffusion bonding method
JPH11285859A (en) Manufacture of hip joined body between beryllium and copper alloy and hip joined body
JP2003112269A (en) Method of manufacturing joined body of beryllium and copper or copper alloy, and this joined body
JP2002075058A (en) Copper bus bar having excellent corrosion resistance and its manufacturing method
JP3110170B2 (en) Plate soldering method
CA2766848A1 (en) Method for cladding a component with a self-supporting cladding closed by cold spraying
KR20030096234A (en) Hollow laminate and heat sink using the same
JP2017047449A (en) Metal joint article and manufacturing method of the same
JP5314968B2 (en) Power feeding roll and power feeding roll manufacturing method
EP3845511A1 (en) Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulated circuit board
JPH02137306A (en) Pressure welding junction terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term