JP2002070719A - Wind force generator corresponding to wind direction or wind force shift - Google Patents

Wind force generator corresponding to wind direction or wind force shift

Info

Publication number
JP2002070719A
JP2002070719A JP2000302891A JP2000302891A JP2002070719A JP 2002070719 A JP2002070719 A JP 2002070719A JP 2000302891 A JP2000302891 A JP 2000302891A JP 2000302891 A JP2000302891 A JP 2000302891A JP 2002070719 A JP2002070719 A JP 2002070719A
Authority
JP
Japan
Prior art keywords
wind
hydraulic
windmill
guide disk
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000302891A
Other languages
Japanese (ja)
Inventor
Nobuo Inoue
宣夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITN KK
Original Assignee
ITN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITN KK filed Critical ITN KK
Priority to JP2000302891A priority Critical patent/JP2002070719A/en
Publication of JP2002070719A publication Critical patent/JP2002070719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wind force generator having excellent power generation efficiency, which has a characteristic of amplifying wind velocity from a step of low wind velocity upon starting power generation to operating up to a step of high wind velocity, and a mechanism by which a windmill receives the optimum wind volume in a given wind velocity range. SOLUTION: The windmill 4 having tower 1 as its shaft is placed between an upper guide disk 2 on the upper side and a lower guide disk 3 on the lower side, both the disks being retained by a universal joint 11 and are coupled with a plurality of hydraulic cylinders consisting of a hydraulic cylinder 5, a hydraulic cylinder 6 and a hydraulic cylinder 7. There are also provided equipment for controlling the hydraulic cylinders, comprising; an anemometer 8 mounted near the upper guide disk 2, a guide disk wind volume sensor provided on the windmill side of the upper guide disk 2, and a controller 21 with a built-in microcomputer for analyzing a signal from an anemoscope 9. The windmill 4 has an internal gear 13 on the shaft side, wherein the rotation energy is transmitted through an accelerator 14 to drive a hydraulic pump 17, and subsequently to drive a motor 19 linked with a hydraulic motor 18. There is another application where the hydraulic pump 17 is not used but is replaced with the generator 19.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、低風速から風量の増
幅をして発電を開始し、高風速まで稼動する特性をも
ち、かつその風速帯で、風車に最適の風速を得る機構を
備えた、発電効率のよい風力発電機である。このことは
設備利用率を引き上げることなり、発電コストを引き下
げ経済的効果を高めることとなる。小型から大型まで製
造が可能であり、このような特徴により、風力発電所の
建設が可能な候補地が増加し、風力発電普及の一助とな
れば幸いである。 【0002】 【従来の技術】サボニウス風車などの垂直軸風車のまわ
りに、上下、または垂直に固定する誘導板を配設して、
低風速の風を集め、少しでも風車に当たる風の速度を上
げようとするアイデアはあった(参考文献 書名 小型
風車ハンドブック、発行所 株式会社パワー社 298
ページ)。 【0003】 【発明が解決しようとする課題】風力発電機において、
風量の増加のみを一方的に図るのではなく、発電開始の
風速をできるだけ低風速から行い、できるだけ高風速ま
で稼動する特性をもち、かつその風速帯で、風車に最適
の風量を得る機構を備えた発電効率のよい風力発電機を
実現することにある。このことは設備利用率を引き上げ
ることなり、発電コストを引き下げ経済的効果を高める
こととなる。この発明は上記の課題を風車の上下に誘導
円盤を設置して解決しようとするものである。 【0004】 【発明が解決するための手段】この発明は、塔を軸に回
転する風車を、塔に支持支点を持つ誘導円盤で上下には
さみ、誘導円盤を油圧シリンダで連結し、風向計と風速
計の信号と、油圧シリンダの伸縮量を制御するマイクロ
コンピュータを内蔵する制御装置を備えて、風車の水平
全方向の風向に向かい、開閉を制御して、風車に最適の
風量を得る機構を備えた、発電効率のよい風力発電機で
あることを特徴とする。 【0005】 【作用】上記において制御装置に、あらかじめ所定の風
速が設定されており風車の運転中に風向と風速が変化す
ると、制御装置がその変化に対応して油圧シリンダの伸
縮量をもとめ、風車の水平全方向の風向に向かい、伸縮
量を制御して油圧シリンダを伸縮させて、上下の誘導円
盤を開閉して風車に最適の風量を得る機構を備えて、発
電効率のよい風量を連続的に制御する。 【0006】 【実施例】この発明の一実施例にかかわる風速制御装置
について図1、により説明する。図1は、この発明の原
理を説明する図である。軽量金属や強化繊維で補強した
硬質の合成樹脂を用いて、なめらかな表面に仕上た誘導
円盤上2と誘導円盤下3を、おのおの自在継手11で支
持し、塔1を回転軸とする風車4を上下にはさむように
とりつける。誘導円盤上2と誘導円盤下3を塔1の中心
から、等角度と等しい長さに位置する油圧シリンダA
5,油圧シリンダB6,油圧シリンダC7で上下を連結
する。 【0007】図6のフロー図にしめすように、まず各セ
ンサが正常に動作するかを確認し、自動運転となり正常
に動作を進めてゆくYにそって説明する。風向計9によ
る風向の検出、次に誘導円盤角度センサ8gによる上下
の誘導円盤角度の検出、次に風速計8による風速の検出
後、風速に対する最低開口角度を算出し、各油圧シリン
ダA、B、C、を動作して目標値まで動作する。この時
の風速が誘導円盤の角度を調整する必要がない角度であ
れば、その角度をそのまま風向にむかい移動するように
各油圧シリンダA、B、C、が動作する。次に誘導円盤
風量センサ8aが風量を検出し、規定値の範囲であれば
ブレーキ12を開放して、風車は運転を開始する。さら
に誘導円盤風量センサ8aが風量を検出し、誘導円盤の
動作で作り出すことの出来る最適の風量を油圧シリンダ
で微調整する。逆回転検出センサ8fが動作せず、正常
回転であれば発電容量センサ8hは、風車状況モニタリ
ングにデータを送る。次に発電機の発熱温度を温度セン
サ8dにより検出、風車回転センサ8cも正常であれば
頭にもどり検出と判断を繰り返してシステムを監視す
る。この時、各センサの情報は風車の状況としてモニタ
リングされている。 【0008】このようにして、マイクロコンピュータ制
御はあらかじめ設定した値の範囲内で処理を行うよう、
プログラムにより稼動する。 【0009】またメンテナンスモードとして保守点検時
には手動停止、手動復帰が行える。センサによる異常の
感知による異常停止時には、誘導円盤2、誘導円盤3、
を水平にしてブレーキ12の動作を行い、警報をモニタ
に通知する。 【0010】このようにして塔1を中心とする、全方位
の風向に対し、各油圧シリンダの伸縮を組み合わせて開
口、閉口することで、風車に最適の風量を連続的に制御
する。 【0011】図3のように、風車の回転エネルギを、油
圧ポンプ17と油圧パイプ18、油圧モータ19で発電
機20に導くことで、発電機の設置場所が限定されずに
メンテナンスの容易な場所に設置できる特徴がある。 【0012】図5は上記の特徴を持つ風力発電機を、一
つの塔の同軸上に、2基取り付けたものである。 【0013】図9に、この発明において、上下の誘導円
盤の間を通過する風速の近似値を求める式を添付する。 【0014】 【発明の効果】高風速は風力発電にとって発電効率が高
まるために好条件であるが、この発明の誘導円盤を装備
することで、風量の増加のみを一方的に図るのではな
く、発電機の風車の受風エネルギを抑制でき、風車のカ
ットアウト風速を引き上げることができる。低風速時に
は集風効果でカットイン風速(発電を開始する風速)を
引き下げることができる。低風速から高風速まで、利用
できる範囲を広げることが可能となる。 【0015】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a characteristic that it starts a power generation by amplifying an air volume from a low wind speed and operates up to a high wind speed. This is a wind power generator with high power generation efficiency, equipped with a mechanism for obtaining the optimum wind speed for the wind turbine. This will increase the capacity factor, lower the power generation cost and increase the economic effect. It is possible to manufacture from small to large, and it is fortunate that such features will increase the number of candidate sites where wind power plants can be constructed, and will contribute to the spread of wind power generation. [0002] A guide plate fixed vertically or vertically around a vertical axis wind turbine such as a Savonius wind turbine is provided.
There was an idea to collect the low wind speed and increase the speed of the wind hitting the windmill even a little (reference book title Small windmill handbook, published by Power Corporation 298
page). [0003] In a wind power generator,
Rather than unilaterally increasing the air volume, the system has the characteristic of starting the power generation at the lowest possible wind speed and operating at the highest possible wind speed. Another object of the present invention is to realize a wind power generator with high power generation efficiency. This will increase the capacity factor, lower the power generation cost and increase the economic effect. The present invention is to solve the above problems by installing guide disks above and below a windmill. According to the present invention, a wind turbine rotating about a tower is sandwiched above and below by an induction disk having a supporting fulcrum on the tower, the induction disk is connected by a hydraulic cylinder, and a wind vane is connected to the wind turbine. Equipped with a control device with a built-in microcomputer that controls the signal of the anemometer and the amount of expansion and contraction of the hydraulic cylinder, and a mechanism to control the wind direction in all horizontal directions of the windmill, control opening and closing, and obtain the optimum airflow for the windmill It is a wind power generator with high power generation efficiency. In the above, a predetermined wind speed is set in advance in the control device, and when the wind direction and the wind speed change during operation of the wind turbine, the control device calculates the amount of expansion and contraction of the hydraulic cylinder in accordance with the change, and A mechanism that controls the expansion and contraction amount to extend and retract the hydraulic cylinder, opens and closes the upper and lower induction disks to obtain the optimal air volume for the wind turbine, and directs the wind volume with high power generation efficiency Control. FIG. 1 is a block diagram showing a wind speed control apparatus according to an embodiment of the present invention. FIG. 1 is a diagram for explaining the principle of the present invention. A wind turbine 4 using a universal joint 11 to support an upper disk 2 and a lower disk 3 on a smooth surface using a hard synthetic resin reinforced with a lightweight metal or a reinforcing fiber, and using the tower 1 as a rotation axis. And put it up and down. Hydraulic cylinder A located at an equal angle from the center of the tower 1 to the upper guide disk 2 and lower guide disk 3
5, the upper and lower parts are connected by a hydraulic cylinder B6 and a hydraulic cylinder C7. As shown in the flow chart of FIG. 6, first, it is confirmed whether or not each sensor operates normally, and the operation will be described in accordance with Y in which automatic operation is performed and operation proceeds normally. After the detection of the wind direction by the anemometer 9, the detection of the upper and lower guiding disk angles by the guiding disk angle sensor 8g, and the detection of the wind speed by the anemometer 8, the minimum opening angle with respect to the wind speed is calculated. , C, to the target value. If the wind speed at this time is an angle at which it is not necessary to adjust the angle of the induction disk, the hydraulic cylinders A, B, and C operate so that the angle moves toward the wind direction as it is. Next, the guidance disk air volume sensor 8a detects the air volume, and if the air volume is within a specified range, the brake 12 is released and the windmill starts operating. Furthermore, the guidance disk air volume sensor 8a detects the air volume and finely adjusts the optimal air volume that can be created by the operation of the guidance disk using a hydraulic cylinder. If the reverse rotation detection sensor 8f does not operate and the rotation is normal, the power generation capacity sensor 8h sends data to the wind turbine condition monitoring. Next, the heat generation temperature of the generator is detected by the temperature sensor 8d. If the windmill rotation sensor 8c is also normal, the system returns to the head and repeats the detection and determination to monitor the system. At this time, the information of each sensor is monitored as the state of the windmill. In this manner, the microcomputer control performs processing within a range of a preset value.
Operated by a program. In the maintenance mode, manual stop and manual return can be performed at the time of maintenance and inspection. At the time of abnormal stop due to the detection of an abnormality by the sensor, the guiding disk 2, the guiding disk 3,
Is leveled to operate the brake 12, and an alarm is notified to the monitor. In this way, by opening and closing the hydraulic cylinders in combination with the expansion and contraction of each hydraulic cylinder with respect to the omnidirectional wind direction centering on the tower 1, the optimal air flow for the windmill is continuously controlled. As shown in FIG. 3, the rotation energy of the wind turbine is guided to the generator 20 by the hydraulic pump 17, the hydraulic pipe 18, and the hydraulic motor 19, so that the location where the generator is installed is not limited and the location where the maintenance is easy. There is a feature that can be installed. FIG. 5 shows two wind power generators having the above-mentioned features mounted on the same axis of one tower. FIG. 9 is attached with an equation for calculating an approximate value of the wind speed passing between the upper and lower guide disks in the present invention. The high wind speed is a favorable condition for wind power generation in order to increase the power generation efficiency. However, by providing the induction disk of the present invention, it is not necessary to unilaterally increase the air flow, The wind receiving energy of the wind turbine of the generator can be suppressed, and the cut-out wind speed of the wind turbine can be increased. When the wind speed is low, the cut-in wind speed (wind speed at which power generation starts) can be reduced by the wind collecting effect. From low wind speed to high wind speed, the usable range can be expanded. [0015]

【図面の簡単な説明】 【図1】この発明の一実施例にかかわる風車の説明図で
ある。 【図2】この発明の一実施例にかかわる平面図である。 【図3】断面を含む側面図である。 【図4】増速機14付近の図である。 【図5】同一の塔に風力発電機を2基配置した断面を含
む図である。 【図6】この発明の一実施例にかかわるブロック図であ
る。 【図7】この発明の一実施例にかかわるフロー図であ
る。 【図8】この発明の一実施例にかかわる動作系統図であ
る 【図9】この発明の誘導円盤の間を通過する風速の近似
値を求める式。 【符号の説明】 1 塔 2 誘導円盤上 3 誘導円盤下 4 風車 5 油圧シリンダA 6 油圧シリンダB 7 油圧シリンダC 8 風速計 8a 誘導円盤風量センサ 8b 破損センサ 8c 風車回転センサ 8d 温度センサ 8e 逆回転検出センサ 8f 回転トルクセンサ 8g 誘導円盤角度センサ 8h 発電容量センサ 8i ブレーキセンサ 9 風向計 10 軸受 11 自在継手 12 ブレーキ 13 内歯車 14 増速機 15 遊動歯車 16 支持金具 17 油圧ポンプ 18 油圧パイプ 19 油圧モータ 20 発電機 21 制御装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a windmill according to an embodiment of the present invention. FIG. 2 is a plan view according to an embodiment of the present invention. FIG. 3 is a side view including a cross section. FIG. 4 is a view around the speed increasing gear 14; FIG. 5 is a view including a cross section in which two wind power generators are arranged on the same tower. FIG. 6 is a block diagram according to an embodiment of the present invention. FIG. 7 is a flowchart according to an embodiment of the present invention. FIG. 8 is an operation system diagram according to an embodiment of the present invention. FIG. 9 is an equation for calculating an approximate value of a wind speed passing between guide disks according to the present invention. [Description of Signs] 1 Tower 2 Above induction disk 3 Below induction disk 4 Windmill 5 Hydraulic cylinder A 6 Hydraulic cylinder B 7 Hydraulic cylinder C 8 Anemometer 8a Induction disk airflow sensor 8b Damage sensor 8c Windmill rotation sensor 8d Temperature sensor 8e Reverse rotation Detection sensor 8f Rotary torque sensor 8g Induction disk angle sensor 8h Power generation capacity sensor 8i Brake sensor 9 Anemometer 10 Bearing 11 Universal joint 12 Brake 13 Internal gear 14 Speed increaser 15 Floating gear 16 Support bracket 17 Hydraulic pump 18 Hydraulic pipe 19 Hydraulic motor 20 generator 21 control device

Claims (1)

【特許請求の範囲】 【請求項1】 垂直軸風車を同軸上に自在継手で支持し
た誘導円盤上2と、誘導円盤下3で上下にはさみ、上下
の誘導円盤を、長さを制御できる複数の油圧シリンダで
連結した構造が特徴の風力発電機。 【請求項2】 【請求項1】の特徴をもち、備えた風向計と風速計の信
号を解析し、油圧シリンダを制御するマイクロコンピュ
ータを内蔵する制御装置を備え、風車の水平全方向の風
向に対し、上下の誘導円盤の開閉を制御できる特徴を持
つ風力発電機。 【請求項3】 【請求項2】の特徴を備え、風車の回転エネルギを、油
圧ポンプと油圧モータを介して発電機を駆動する風力発
電機。 【請求項4】 【請求項3】の特徴を備えた風力発電機を、一つの塔の
同軸上に、複数取り付けた風力発電機。
Claims: 1. A plurality of guide disks, each of which has a vertical axis wind turbine coaxially supported by a universal joint and coaxially supported by a universal joint, and is vertically sandwiched between lower and upper guide disks 3 to control the length of the upper and lower guide disks. A wind power generator characterized by a structure connected by hydraulic cylinders. 2. A control device having a built-in microcomputer for analyzing signals of an anemometer and an anemometer having the features of claim 1 and controlling a hydraulic cylinder, wherein the wind direction of the wind turbine in all horizontal directions is provided. In contrast, a wind power generator that can control the opening and closing of the upper and lower induction disks. 3. A wind power generator having the characteristics of claim 2 and driving a generator by using rotational energy of a wind turbine through a hydraulic pump and a hydraulic motor. 4. A wind power generator having a plurality of wind power generators having the features of claim 3 mounted coaxially on one tower.
JP2000302891A 2000-08-29 2000-08-29 Wind force generator corresponding to wind direction or wind force shift Pending JP2002070719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302891A JP2002070719A (en) 2000-08-29 2000-08-29 Wind force generator corresponding to wind direction or wind force shift

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302891A JP2002070719A (en) 2000-08-29 2000-08-29 Wind force generator corresponding to wind direction or wind force shift

Publications (1)

Publication Number Publication Date
JP2002070719A true JP2002070719A (en) 2002-03-08

Family

ID=18784173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302891A Pending JP2002070719A (en) 2000-08-29 2000-08-29 Wind force generator corresponding to wind direction or wind force shift

Country Status (1)

Country Link
JP (1) JP2002070719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188427A (en) * 2003-12-26 2005-07-14 Daiwa House Ind Co Ltd High speed rotation restraining mechanism of windmill for power generation
CN1298993C (en) * 2003-09-08 2007-02-07 黄虎钧 Integrated vertical shaft windmill
WO2009002107A2 (en) * 2007-06-26 2008-12-31 Kr Co., Ltd. Method and apparatus for controlling vertical axis wind power generation system
KR100976570B1 (en) 2009-09-14 2010-08-17 한명진 Wind power generator
CN112096569A (en) * 2020-09-29 2020-12-18 陕西理工大学 Wind power generation device
RU2753783C1 (en) * 2021-01-25 2021-08-23 Павел Иванович Шатров Sailing wind turbin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298993C (en) * 2003-09-08 2007-02-07 黄虎钧 Integrated vertical shaft windmill
JP2005188427A (en) * 2003-12-26 2005-07-14 Daiwa House Ind Co Ltd High speed rotation restraining mechanism of windmill for power generation
JP4523269B2 (en) * 2003-12-26 2010-08-11 大和ハウス工業株式会社 High-speed rotation suppression mechanism for wind turbines for power generation
WO2009002107A2 (en) * 2007-06-26 2008-12-31 Kr Co., Ltd. Method and apparatus for controlling vertical axis wind power generation system
WO2009002107A3 (en) * 2007-06-26 2009-02-26 Kr Co Ltd Method and apparatus for controlling vertical axis wind power generation system
KR100976570B1 (en) 2009-09-14 2010-08-17 한명진 Wind power generator
CN112096569A (en) * 2020-09-29 2020-12-18 陕西理工大学 Wind power generation device
RU2753783C1 (en) * 2021-01-25 2021-08-23 Павел Иванович Шатров Sailing wind turbin
WO2022159006A1 (en) * 2021-01-25 2022-07-28 Юрий Дмитриевич ШАТРОВ Sail-driven wind power plant

Similar Documents

Publication Publication Date Title
US8169098B2 (en) Wind turbine and operating same
EP3344870B1 (en) A wind turbine and a method of operating a wind turbine with a rotational speed exclusion zone
US8096761B2 (en) Blade pitch management method and system
EP1646786B1 (en) Method and apparatus for wind turbine rotor load control based on shaft radial displacement
EP2762721B2 (en) Method and apparatus for wind turbine noise reduction
DK177922B1 (en) Method and system for monitoring wind turbine
US8292568B2 (en) Wind turbine generator having a detection unit for detecting foreign object inside rotor and operating method thereof
EP2287464B1 (en) Passive deicing for wind turbine blades
EP2177755A2 (en) Method and system for operating a wind turbine generator
EP2543876B1 (en) Controlling the amplitude modulation of noise generated by wind turbines
CN101334005A (en) Method and apparatus for controlling vertical axis wind power generation system
EP2075465B1 (en) Individual blade noise measurement system and method for wind turbines
WO2010061255A2 (en) Active blade pitch control for reduction of wind turbine noise or loads
WO2009125513A1 (en) Fan device for wind-driven electric power generation device and wind-driven electric power generation device
CN103047078B (en) The method determining whether to be installed on wind turbine rotor blade tip feature
CN102562438A (en) Modular rotor blade and method for mounting a wind turbine
TW201821692A (en) Wind farm or control method of wind farm
JP2002070719A (en) Wind force generator corresponding to wind direction or wind force shift
EP2754888A2 (en) Method and apparatus for operating a wind turbine
US20170248127A1 (en) Acoustic Damping System for a Wind Turbine Tower
US20120161448A1 (en) Multiple wind turbine power generation system with dynamic orientation mechanism and airflow optimization
JP2016145521A (en) Wind power generation device
WO2015045462A1 (en) Wind power generation facility
RU2297550C2 (en) Windmill electric generating plant
JP7455722B2 (en) Wind power generator and its control method