JP2002070598A - Quick closing miller cycle internal combustion engine - Google Patents

Quick closing miller cycle internal combustion engine

Info

Publication number
JP2002070598A
JP2002070598A JP2000266725A JP2000266725A JP2002070598A JP 2002070598 A JP2002070598 A JP 2002070598A JP 2000266725 A JP2000266725 A JP 2000266725A JP 2000266725 A JP2000266725 A JP 2000266725A JP 2002070598 A JP2002070598 A JP 2002070598A
Authority
JP
Japan
Prior art keywords
valve
center
intake
miller cycle
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266725A
Other languages
Japanese (ja)
Inventor
Kenji Ariga
健司 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000266725A priority Critical patent/JP2002070598A/en
Priority to US09/927,329 priority patent/US20020026913A1/en
Publication of JP2002070598A publication Critical patent/JP2002070598A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PROBLEM TO BE SOLVED: To relieve a restriction originating from the suction valve opening period (working angle) becoming small in the quick closing miller cycle in which the suction valve closing timing is set before the suction lower dead center. SOLUTION: The crankshaft center 01 is offset to one side from the axis X of cylinder. The upper and lower dead centers of a piston are obtained in the condition that the crankshaft center 01, crank pin center 02 and piston pin center 03 are aligned in one straight line, when a connecting rod and crank arm will take attitude inclined to the axis X. The tumbling angle θbdc at the lower dead center is larger than that θtdc at the upper dead center, and when the crankshaft rotates in the ω-direction shown by arrow, the suction stroke and expansion stroke become greater than 180 deg. CA while the compression stroke and exhaust stroke become smaller than 180 deg. CA. In association therewith the working angle of the suction valve enlarges, and the restriction in the valve lift curve, etc., is relieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、吸気弁閉時期を
吸気下死点よりも進角させることで、ミラーサイクルを
実現するようにした早閉じミラーサイクル内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an early closing Miller cycle internal combustion engine which realizes a Miller cycle by advancing an intake valve closing timing from an intake bottom dead center.

【0002】[0002]

【従来の技術】近年、主に燃料消費率の向上のために、
機関の膨張比を圧縮比よりも大きく得るようにしたミラ
ーサイクル機関が注目されており、一部で実用に供され
ている。このミラーサイクル機関としては、吸気弁閉時
期を吸気下死点よりも遅らせて、吸い込んだ吸気の一部
を押し戻すようにした遅閉じミラーサイクル機関と、吸
気弁閉時期を逆に吸気下死点よりも進角させて、実質的
な吸気行程を短くするようにした早閉じミラーサイクル
機関と、に大きく分類される(例えば特開平7−310
565号公報等参照)。
2. Description of the Related Art In recent years, mainly for improving the fuel consumption rate,
Attention has been paid to Miller cycle engines in which the expansion ratio of the engine is made larger than the compression ratio, and some of them have been put to practical use. The Miller cycle engine consists of a late closing Miller cycle engine that delays the intake valve closing timing from the bottom dead center of the intake air and pushes back part of the intake air. And an early closing Miller cycle engine in which the intake stroke is advanced to shorten the substantial intake stroke (for example, JP-A-7-310).
565, etc.).

【0003】また、内燃機関の吸気弁は、一般にカムシ
ャフトを介して機械的に駆動されるが、開閉時期の制御
の自由度等のために、例えば電磁式のアクチュエータを
各吸気弁に設けて、個々に開閉駆動するようにした形式
の弁駆動装置が、特開平8−189315号公報等によ
って、従来から種々提案されている。
An intake valve of an internal combustion engine is generally mechanically driven via a camshaft. However, for example, an electromagnetic actuator is provided in each intake valve for the degree of freedom in controlling the opening and closing timing. Various types of valve driving devices that individually open and close have been proposed in Japanese Patent Application Laid-Open No. Hei 8-189315.

【0004】[0004]

【発明が解決しようとする課題】早閉じミラーサイクル
内燃機関においては、吸気弁閉時期を吸気下死点前とす
るので、吸気弁開時期をバルブオーバラップ等の点から
適切な位置に維持している限りは、吸気弁の開期間(バ
ルブ作動角)が非常に短くなる。従って、吸気弁を急激
に開閉することになり、弁の慣性による衝撃力が大きく
なって、部品の耐久性が低下しやすい。また、弁が機関
高速域においてもジャンプやバウンスによって弁揚程曲
線から外れることがないように、弁揚程曲線を設計せざ
るを得ず、その設計自由度が減少する。
In the early-closing Miller cycle internal combustion engine, the intake valve closing timing is set before the intake bottom dead center, so that the intake valve opening timing is maintained at an appropriate position from the viewpoint of valve overlap and the like. , The opening period (valve operating angle) of the intake valve becomes very short. Therefore, the intake valve is rapidly opened and closed, the impact force due to the inertia of the valve is increased, and the durability of the parts tends to be reduced. In addition, the valve lift curve must be designed so that the valve does not deviate from the valve lift curve due to jump or bounce even in a high engine speed range, and the degree of freedom in designing the valve is reduced.

【0005】また、特定の運転条件でのみミラーサイク
ルとするためには、上述した電磁式あるいは油圧式等の
アクチュエータを利用した弁駆動装置を吸気弁の動弁機
構として利用することが考えられるが、クランクシャフ
トに従動しないこの種の弁駆動装置にあっては、その最
小のバルブ開時間が、機関回転数と無関係に、アクチュ
エータの応答性や印加電圧等によって一義的に定まって
しまうので、早閉じミラーサイクル内燃機関にこの種の
弁駆動装置を組み合わせようとすると、吸気弁開期間に
対応する実時間が相対的に短くなる機関高速域に対応す
ることが困難となる。つまり、ミラーサイクルとした運
転が可能な領域が高回転側で制限され、あるいは、応答
性を一層高めるためにアクチュエータの大型化や消費電
力の増大等を招来する。
In order to make a mirror cycle only under specific operating conditions, it is conceivable to use the above-described valve driving device using an electromagnetic or hydraulic actuator as a valve operating mechanism of an intake valve. In this type of valve driving device that does not follow the crankshaft, the minimum valve opening time is uniquely determined by the responsiveness of the actuator, the applied voltage, etc., regardless of the engine speed. If it is attempted to combine this type of valve drive device with a closed Miller cycle internal combustion engine, it becomes difficult to cope with an engine high speed region where the actual time corresponding to the intake valve opening period becomes relatively short. In other words, the region where the operation as a mirror cycle can be performed is restricted on the high rotation side, or the size of the actuator is increased and the power consumption is increased in order to further improve the responsiveness.

【0006】なお、吸気弁閉時期を吸気下死点よりも遅
らせる遅閉じミラーサイクル機関にあっては、吸気弁の
開期間が、通常のオットーサイクル機関よりもむしろ長
くなるので、このような問題はない。
[0006] In a late-closing Miller cycle engine in which the closing timing of the intake valve is delayed from the intake bottom dead center, the opening period of the intake valve becomes longer than in a normal Otto cycle engine. There is no.

【0007】[0007]

【課題を解決するための手段】この発明は、請求項1の
ように、吸気弁を吸気下死点よりも前に閉じることによ
りミラーサイクルを実現する早閉じミラーサイクル内燃
機関において、吸気行程および膨張行程が180°CA
よりも大きくなる方向に、クランクシャフト中心がシリ
ンダ中心軸線からオフセットされていることを特徴とし
ている。
According to a first aspect of the present invention, there is provided an early closing Miller cycle internal combustion engine which realizes a Miller cycle by closing an intake valve before an intake bottom dead center. 180 ° CA expansion stroke
The center of the crankshaft is offset from the cylinder center axis in a direction in which the crankshaft axis becomes larger than the center axis.

【0008】なお、この発明の「ミラーサイクル内燃機
関」とは、必ずしも常時ミラーサイクルの運転を行うも
のに限定されるものではなく、例えば可変動弁機構の利
用等により、吸気弁閉時期を変化させることにより、特
定の運転条件でのみミラーサイクルとなるものを含む。
The "Miller cycle internal combustion engine" of the present invention is not necessarily limited to the one that always operates in the Miller cycle. For example, the use of a variable valve mechanism changes the intake valve closing timing. By doing so, it includes a mirror cycle only under specific operating conditions.

【0009】図2に示すように、クランクシャフト中心
O1がシリンダ中心軸線X上に位置する場合、つまり、
いわゆるクランクオフセットが0である場合には、図
(a)の上死点(TDC)位置および図(b)の下死点
(BDC)位置の双方において、クランクシャフト中心
O1と、クランクピン中心O2と、ピストンピン中心O
3と、の3つの点が中心軸線X上に整列する。従って、
吸気、圧縮、膨張、排気の4つの行程は、いずれもクラ
ンク角(°CA)で180°ずつとなる。なお、図中、
lはコンロッドの長さを、rはクランクピンの回転半径
を、それぞれ示す。
As shown in FIG. 2, when the crankshaft center O1 is located on the cylinder center axis X, that is,
When the so-called crank offset is 0, the crankshaft center O1 and the crankpin center O2 are both located at the top dead center (TDC) position in FIG. And the piston pin center O
3 are aligned on the central axis X. Therefore,
Each of the four strokes of intake, compression, expansion, and exhaust has a crank angle (° CA) of 180 °. In the figure,
l indicates the length of the connecting rod, and r indicates the turning radius of the crankpin.

【0010】これに対し、図1に示すように、クランク
シャフト中心O1がシリンダ中心軸線Xからオフセット
していた場合、ピストンの上死点および下死点は、やは
り、クランクシャフト中心O1とクランクピン中心O2
とピストンピン中心O3と、の3つの点が一直線上に整
列したときとなるが、このとき、コンロッドおよびクラ
ンクアームは、図示するように、軸線Xに対し傾斜した
姿勢となる。クランクシャフト中心O1のシリンダ中心
軸線Xからのオフセット量をHとすると、上死点(図
(a))における倒れ角θtdcは、θtdc=sin
-1{H/(r+l)}として表される。一方、下死点
(図(b))における倒れ角θbdcは、θbdc=s
in-1{H/(l−r)}として表される。従って、そ
れぞれの式から、θtdc<θbdcとなる。ここで、
クランクシャフトの回転方向が図の矢印ωのように時計
回り方向であるとすると、この回転方向に従って、ピス
トンが上死点から下死点へと向かう吸気行程および膨張
行程が、180°CAよりも大きくなり、圧縮行程およ
び排気行程が、180°CAよりも小さくなる。具体的
には、吸気行程および膨張行程は、クランク角で、18
0+(θbdc−θtdc)となり、クランクオフセッ
トがない場合よりも、(θbdc−θtdc)だけ拡大
する。
On the other hand, when the center O1 of the crankshaft is offset from the center axis X of the cylinder as shown in FIG. 1, the top dead center and the bottom dead center of the piston are also the same as the center O1 of the crankshaft and the crankpin. Center O2
When the three points of and the piston pin center O3 are aligned on a straight line, the connecting rod and the crank arm assume a posture inclined with respect to the axis X as illustrated. Assuming that the offset amount of the crankshaft center O1 from the cylinder center axis X is H, the tilt angle θtdc at the top dead center (FIG. 9A) is θtdc = sin
-1 {H / (r + 1)}. On the other hand, the inclination angle θbdc at the bottom dead center (FIG.
in -1 {H / (l-r)}. Therefore, from each equation, θtdc <θbdc. here,
Assuming that the rotation direction of the crankshaft is clockwise as shown by the arrow ω in the drawing, the intake stroke and the expansion stroke in which the piston moves from top dead center to bottom dead center according to this rotation direction are greater than 180 ° CA. The compression stroke and the exhaust stroke become smaller than 180 ° CA. Specifically, the intake stroke and the expansion stroke are represented by a crank angle of 18 degrees.
0+ (θbdc−θtdc), which is larger by (θbdc−θtdc) than when there is no crank offset.

【0011】図3は、早閉じミラーサイクルに必要な吸
気弁の開閉時期の一例を示したバルブタイミングダイア
グラムであって、クランクオフセットがない場合(図
(A))と本発明のクランクオフセットを有する場合
(図(B))とを対比して示してある。クランクオフセ
ットがない場合は、上述したように、吸気行程と圧縮行
程はいずれも180°CAであり、吸気弁開時期(IV
O)は吸気上死点の少し前に設定され、吸気弁閉時期
(IVC)は、吸気下死点よりも進角した位置に設定さ
れる。この吸気弁閉時期によって、実質的な吸気行程容
積が定まる。
FIG. 3 is a valve timing diagram showing an example of the opening / closing timing of the intake valve required for the early closing Miller cycle, in which there is no crank offset (FIG. (A)) and the present invention has the crank offset. The case (FIG. (B)) is shown in comparison. When there is no crank offset, as described above, the intake stroke and the compression stroke are both 180 ° CA, and the intake valve opening timing (IV
O) is set slightly before the intake top dead center, and the intake valve closing timing (IVC) is set at a position advanced from the intake bottom dead center. The actual intake stroke volume is determined by the intake valve closing timing.

【0012】これに対し、クランクオフセットがある
と、上述したように、吸気行程が180°CAよりも大
きくなる。なお、図3(B)では、(A)との対比を容
易とするために、上死点(TDC)位置を基準としてバ
ルブタイミングダイアグラムを描いてある。このよう
に、吸気行程に対応するクランク角が拡大するため、ミ
ラーサイクルとして必要な吸気行程容積を(A)の場合
と同一に確保しようとした場合、図示するように、上死
点(TDC)を基準とした吸気弁閉時期(IVC)の位
置は、(A)の場合よりも相対的に遅れた位置となり、
吸気弁の作動角(IVOからIVCまでのクランク角)
が大きくなる。従って、例えば弁揚程曲線の設計に、そ
れだけ余裕が生じる。また、例えば同一のバルブ作動角
とするのであれば、それだけ吸気弁閉時期を下死点から
大きく進角させることが可能となり、ミラーサイクルと
して、吸気行程容積を一層減少させることが可能とな
る。
On the other hand, when there is a crank offset, the intake stroke becomes larger than 180 ° CA as described above. In FIG. 3B, a valve timing diagram is drawn with reference to the top dead center (TDC) position for easy comparison with FIG. As described above, since the crank angle corresponding to the intake stroke is increased, when the intake stroke volume required for the Miller cycle is to be ensured the same as in the case of (A), as shown in the figure, the top dead center (TDC) , The position of the intake valve closing timing (IVC) is a position relatively delayed from the case of (A),
Operating angle of intake valve (crank angle from IVO to IVC)
Becomes larger. Therefore, for example, a margin is generated in the design of the valve lift curve. Further, for example, if the same valve operating angle is used, the intake valve closing timing can be advanced from the bottom dead center accordingly, and the intake stroke volume can be further reduced as a Miller cycle.

【0013】請求項1の発明をより具体化した請求項2
の発明においては、上記吸気弁は、クランクシャフトに
機械的に連動する動弁機構によって駆動される構成とな
っている。これは、一般的なカムシャフトによって固定
的なカムリフト特性としたもののほか、カムリフト特性
を段階的あるいは連続的に変化させ得る可変動弁機構で
あってもよい。例えば、特開平11−107725号公
報にはバルブ作動角を連続的に変化させ得る可変動弁機
構が開示されているが、この種の装置と、その作動角中
心のクランクシャフトに対する位相を変化させる機構
と、を組み合わせ、作動角を縮小させつつ作動角中心を
進角させることにより、特定運転条件でのみ早閉じミラ
ーサイクルを実現することが可能である。ここで、本発
明では、上記のように、早閉じミラーサイクルとしたと
きのバルブ作動角がクランクオフセットによって拡大す
るので、カムプロファイル等の設計の自由度が高くな
る。
[0013] A second aspect of the present invention is a further embodiment of the present invention.
In the invention, the intake valve is driven by a valve mechanism that is mechanically linked to the crankshaft. This may be a variable cam mechanism in which the cam lift characteristics can be changed stepwise or continuously in addition to the fixed cam lift characteristics using a general camshaft. For example, Japanese Patent Laying-Open No. 11-107725 discloses a variable valve mechanism capable of continuously changing a valve operating angle. This type of device and a device for changing the phase of the operating angle center with respect to a crankshaft are disclosed. By combining the mechanism and the mechanism and advancing the center of the operating angle while reducing the operating angle, it is possible to realize the early closing Miller cycle only under specific operating conditions. Here, in the present invention, as described above, since the valve operating angle in the case of the early closing mirror cycle is enlarged by the crank offset, the degree of freedom in designing the cam profile and the like is increased.

【0014】また、請求項1の発明をより具体化した請
求項3の発明においては、上記吸気弁は、電磁式もしく
は油圧式のアクチュエータを介して駆動される構成とな
っている。例えば特開平8−189315号公報のよう
に、各吸気弁に電磁式あるいは油圧式のアクチュエータ
を設けて吸気弁を開閉駆動する構成とすれば、任意のタ
イミングで吸気弁を開閉できるので、容易に早閉じミラ
ーサイクルを実現できる。この種の装置においては、最
小のバルブ開時間が、機関回転数と無関係に、アクチュ
エータの応答性や印加電圧等によって一義的に定まって
しまうが、本発明では、上記のように、早閉じミラーサ
イクルとしたときのバルブ作動角がクランクオフセット
によって拡大するので、バルブが開いている実時間が同
一であっても、より高速域まで早閉じミラーサイクルに
対応することが可能となる。また、ミラーサイクルとす
る最高回転速度が同一であるとすれば、早閉じミラーサ
イクルとしたときのバルブ作動角がクランクオフセット
によって拡大する結果、バルブ開時間(実時間)が長く
なり、例えば応答性がそれほど高くない小型のアクチュ
エータの利用や消費電力の低減などが可能となる。油圧
式の場合は、応答性は主に油圧に左右されるので、それ
だけ低い油圧で制御が可能となる。
According to a third aspect of the present invention, the intake valve is driven via an electromagnetic or hydraulic actuator. For example, as disclosed in Japanese Patent Application Laid-Open No. 8-189315, if each intake valve is provided with an electromagnetic or hydraulic actuator to open and close the intake valve, the intake valve can be opened and closed at an arbitrary timing. An early closing Miller cycle can be realized. In this type of device, the minimum valve opening time is uniquely determined by the responsiveness of the actuator, the applied voltage, etc. irrespective of the engine speed, but in the present invention, as described above, the early closing mirror Since the valve operating angle in the cycle is expanded by the crank offset, even if the actual time during which the valve is open is the same, it is possible to cope with the Miller cycle that closes earlier to a higher speed range. Assuming that the maximum rotation speed of the mirror cycle is the same, the valve operating angle in the early closing mirror cycle is enlarged by the crank offset, so that the valve opening time (real time) becomes longer, and for example, the responsiveness is increased. However, it is possible to use a small actuator that is not so high and to reduce power consumption. In the case of a hydraulic system, the responsiveness mainly depends on the hydraulic pressure, so that control can be performed with a lower hydraulic pressure.

【0015】[0015]

【発明の効果】この発明に係る早閉じミラーサイクル内
燃機関においては、クランクシャフトのオフセットを適
用することによって、吸気下死点よりも進角側にある吸
気弁閉時期を、同一の吸気行程容積を維持しつつ実質的
に遅らせることができる。そのため、吸気弁開時期が一
定位置であるとすれば、必要なバルブ作動角が相対的に
拡大し、例えば弁揚程曲線の設計の自由度が高くなる。
また、吸気弁の弁揚程曲線等による制約が同一のもので
あるとすれば、それだけ吸気弁閉時期を下死点から一層
大きく進角させることが可能となり、ミラーサイクルと
して、吸気行程容積を一層減少させることが可能とな
る。
In the early closing Miller cycle internal combustion engine according to the present invention, by applying the offset of the crankshaft, the closing timing of the intake valve on the advanced side from the intake bottom dead center is changed to the same intake stroke volume. And can be substantially delayed. Therefore, assuming that the intake valve opening timing is at a fixed position, the required valve operating angle is relatively increased, and, for example, the degree of freedom in designing a valve lift curve is increased.
In addition, if the restriction by the valve lift curve of the intake valve is the same, it becomes possible to advance the closing timing of the intake valve further from the bottom dead center to a greater extent, thereby further increasing the intake stroke volume as a Miller cycle. It is possible to reduce it.

【0016】特に、請求項3のように電磁式もしくは油
圧式の弁駆動装置と組み合わせた場合には、アクチュエ
ータの応答性等によって定まる最小開時間に制約される
高速域での早閉じミラーサイクル可能な限界を、高回転
数側に拡大することができ、さらには、アクチュエータ
の小型化、消費電力や供給油圧の低減を実現できる。
In particular, when combined with an electromagnetic or hydraulic valve driving device as described in claim 3, an early closing Miller cycle in a high speed range which is restricted by a minimum opening time determined by the response of the actuator and the like is possible. These limits can be extended to higher rotational speeds, and furthermore, the size of the actuator can be reduced, and power consumption and supply hydraulic pressure can be reduced.

【0017】[0017]

【発明の実施の形態】以下、この発明の好ましい実施の
形態を説明する。
Preferred embodiments of the present invention will be described below.

【0018】図4は、この発明に係る早閉じミラーサイ
クル内燃機関の構成を示している。図示するように、シ
リンダ12内にピストン13が摺動可能に配置されてい
るが、このシリンダ12の中心軸線から一方にオフセッ
トした位置にクランクシャフト(図示せず)の中心が配
置されており、前述したように、吸気行程および膨張行
程が、180°CAよりも大きなものとなっている。シ
リンダ12の略中央には点火プラグ20が配置され、か
つ吸気ポートには、燃料噴射弁15が配置されている。
そして、吸気弁17および排気弁19は、それぞれ吸気
弁駆動アクチュエータ16および排気弁駆動アクチュエ
ータ18を備え、個々に開閉駆動されている。上記吸気
弁駆動アクチュエータ16および排気弁駆動アクチュエ
ータ18は、電磁式の構成であって、基本的に同一の構
成を有している。これは、バルブ(吸気弁17ないしは
排気弁19)を、該バルブを挟んで実質的に直列に配置
された一対のばね要素によって、中立位置に保持するよ
うにするとともに、このバルブを、開方向および閉方向
にそれぞれ付勢する一対の電磁コイルを設けたものであ
って、各電磁コイルの通電,停止が、電磁アクチュエー
タ制御部6によって制御されることで、図5に示すよう
なリフト特性でもって各バルブが開閉される。なお、弁
体の移動速度は、ばね−質量系の固有振動数で定まるの
で、機関が高速回転となって単位クランク角当たりの実
時間が短くなると、クランク角に対する弁体の移動は相
対的に緩慢なものとなる。従って、クランク角に対する
バルブリフト特性においては、開時および閉時の傾き
が、図示するように、機関回転数によって変化する。
FIG. 4 shows the configuration of the early closing Miller cycle internal combustion engine according to the present invention. As shown in the figure, a piston 13 is slidably disposed in the cylinder 12, but the center of a crankshaft (not shown) is disposed at a position offset to one side from the center axis of the cylinder 12, As described above, the intake stroke and the expansion stroke are larger than 180 ° CA. An ignition plug 20 is arranged at substantially the center of the cylinder 12, and a fuel injection valve 15 is arranged at an intake port.
The intake valve 17 and the exhaust valve 19 include an intake valve drive actuator 16 and an exhaust valve drive actuator 18, respectively, and are individually opened and closed. The intake valve drive actuator 16 and the exhaust valve drive actuator 18 are of an electromagnetic type and have basically the same configuration. This allows the valve (intake valve 17 or exhaust valve 19) to be held in a neutral position by a pair of spring elements arranged substantially in series with the valve in between and in the opening direction. And a pair of electromagnetic coils for urging in the closing direction, and the energization and stoppage of each electromagnetic coil are controlled by the electromagnetic actuator control unit 6, so that the lift characteristics shown in FIG. Thus, each valve is opened and closed. Since the moving speed of the valve body is determined by the natural frequency of the spring-mass system, when the engine rotates at a high speed and the actual time per unit crank angle becomes short, the movement of the valve body with respect to the crank angle becomes relatively large. It will be slow. Accordingly, in the valve lift characteristics with respect to the crank angle, the inclinations at the time of opening and at the time of closing vary depending on the engine speed as shown in the figure.

【0019】また、上記内燃機関は、単位クランク角の
信号を出力するクランク角センサ11と、気筒判別信号
を出力する気筒判別センサ9と、を有し、これらの検出
信号が、他の吸入空気量信号、スロットル開度信号、水
温信号、等とともに、エンジンコントロールユニット1
に入力されている。そして、エンジンコントロールユニ
ット1は、これらの検出信号に基づき、上記電磁アクチ
ュエータ制御部6を介して、吸気弁17および排気弁1
8の開閉時期を制御している。なお、7はバッテリを示
す。
The internal combustion engine has a crank angle sensor 11 for outputting a signal of a unit crank angle and a cylinder discriminating sensor 9 for outputting a cylinder discriminating signal. Engine control unit 1 together with the quantity signal, throttle opening signal, water temperature signal, etc.
Has been entered. The engine control unit 1 then controls the intake valve 17 and the exhaust valve 1 via the electromagnetic actuator control unit 6 based on these detection signals.
8 is controlled. Reference numeral 7 denotes a battery.

【0020】次に、図6は、吸気弁および排気弁の駆動
に油圧式弁駆動装置を用いた構成例を示す。なお、吸気
弁および排気弁の双方で、基本的に同一の構成であるの
で、以下では、両者をバルブ910と総称する。この弁
駆動装置は、リザーバタンク901、油圧ポンプ90
2、油圧調整弁903、アキュムレータ904、高圧ラ
イン905を開閉する開弁用油圧切換弁906、バルブ
910に連係した油圧シリンダ907、ドレインライン
912を開閉する閉弁用油圧切換弁911、バルブスプ
リング909、を主に備えている。このものでは、油圧
ポンプ902およびアキュムレータ904によって高圧
の油圧が常時生成されており、図示せぬエンジンコント
ロールユニットからの制御信号により、閉弁用油圧切換
弁911を閉じるとともに開弁用油圧切換弁906を開
くと、油圧が油圧シリンダ907に作用し、バルブ91
0が開かれる。そして、開弁用油圧切換弁906を閉じ
るとともに閉弁用油圧切換弁911を開くと、油圧シリ
ンダ907内の油圧が直ちに開放され、バルブスプリン
グ909のばね力によって、バルブ910が閉じる。
Next, FIG. 6 shows an example of a configuration using a hydraulic valve driving device for driving the intake valve and the exhaust valve. In addition, since both the intake valve and the exhaust valve have basically the same configuration, hereinafter, both are collectively referred to as a valve 910. This valve driving device includes a reservoir tank 901, a hydraulic pump 90
2. Hydraulic pressure adjusting valve 903, accumulator 904, hydraulic switching valve 906 for opening and closing high pressure line 905, hydraulic cylinder 907 linked to valve 910, hydraulic switching valve 911 for closing and opening drain line 912, valve spring 909 , Is mainly provided. In this apparatus, a high-pressure oil pressure is constantly generated by a hydraulic pump 902 and an accumulator 904, and a control signal from an engine control unit (not shown) closes a valve closing hydraulic switching valve 911 and opens a valve opening hydraulic switching valve 906. Is opened, the hydraulic pressure acts on the hydraulic cylinder 907 and the valve 91
0 is opened. When the valve-opening hydraulic switching valve 906 is closed and the valve-closing hydraulic switching valve 911 is opened, the oil pressure in the hydraulic cylinder 907 is immediately released, and the valve 910 is closed by the spring force of the valve spring 909.

【図面の簡単な説明】[Brief description of the drawings]

【図1】クランクオフセットを有する本発明の場合の上
死点位置(a)と下死点位置(b)の状態を示す説明
図。
FIG. 1 is an explanatory diagram showing a state of a top dead center position (a) and a bottom dead center position (b) in the case of the present invention having a crank offset.

【図2】クランクオフセットが0である場合の上死点位
置(a)と下死点位置(b)の状態を示す説明図。
FIG. 2 is an explanatory diagram showing a state of a top dead center position (a) and a bottom dead center position (b) when a crank offset is 0.

【図3】クランクオフセットが0の場合(A)と本発明
(B)との早閉じミラーサイクルにおける吸気弁の開閉
時期を示すバルブタイミングダイアグラム。
FIG. 3 is a valve timing diagram showing the opening / closing timing of an intake valve in an early closing Miller cycle in the case where the crank offset is 0 (A) and the present invention (B).

【図4】この発明に係る早閉じミラーサイクル内燃機関
の一実施例を示す構成説明図。
FIG. 4 is a configuration explanatory view showing one embodiment of a fast-closing Miller cycle internal combustion engine according to the present invention.

【図5】この実施例による吸気弁のバルブリフト特性を
示す特性図。
FIG. 5 is a characteristic diagram showing a valve lift characteristic of the intake valve according to the embodiment.

【図6】油圧式弁駆動装置を用いた実施例を示す構成説
明図。
FIG. 6 is a configuration explanatory view showing an embodiment using a hydraulic valve driving device.

【符号の説明】[Explanation of symbols]

1…エンジンコントロールユニット 9…気筒判別センサ 11…クランク角センサ 12…シリンダ 13…ピストン 17…吸気弁 16…吸気弁駆動アクチュエータ DESCRIPTION OF SYMBOLS 1 ... Engine control unit 9 ... Cylinder discrimination sensor 11 ... Crank angle sensor 12 ... Cylinder 13 ... Piston 17 ... Intake valve 16 ... Intake valve drive actuator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G018 AA01 AB09 AB16 BA33 BA38 CA12 CA13 DA20 DA39 DA41 DA70 EA04 EA11 EA16 EA17 FA01 FA07 FA27 GA02 GA03 GA27 3G092 AA01 AA04 AA11 AA12 AB02 BA02 CB03 DA01 DA08 DA10 DA12 DC03 DD03 DD06 DE10S DE10Y DF05 DF06 DG05 DG07 EA03 EA04 EA22 EA25 EB08 FA14 FA24 FB03 HA13X HA13Z HA14X HE03Z HE05Z HE08Z  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G018 AA01 AB09 AB16 BA33 BA38 CA12 CA13 DA20 DA39 DA41 DA70 EA04 EA11 EA16 EA17 FA01 FA07 FA27 GA02 GA03 GA27 3G092 AA01 AA04 AA11 AA12 AB02 BA02 CB03 DA01 DA10 DA03 DD10 DD03 DD03 DE10Y DF05 DF06 DG05 DG07 EA03 EA04 EA22 EA25 EB08 FA14 FA24 FB03 HA13X HA13Z HA14X HE03Z HE05Z HE08Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁を吸気下死点よりも前に閉じるこ
とによりミラーサイクルを実現する早閉じミラーサイク
ル内燃機関において、吸気行程および膨張行程が180
°CAよりも大きくなる方向に、クランクシャフト中心
がシリンダ中心軸線からオフセットされていることを特
徴とする早閉じミラーサイクル内燃機関。
1. An early closing Miller cycle internal combustion engine that realizes a Miller cycle by closing an intake valve before an intake bottom dead center has an intake stroke and an expansion stroke of 180.
An early closing Miller cycle internal combustion engine, characterized in that the crankshaft center is offset from the cylinder center axis in a direction that is greater than ° CA.
【請求項2】 上記吸気弁は、クランクシャフトに機械
的に連動する動弁機構によって駆動されることを特徴と
する請求項1記載の早閉じミラーサイクル内燃機関。
2. The early closing Miller cycle internal combustion engine according to claim 1, wherein the intake valve is driven by a valve mechanism mechanically linked to a crankshaft.
【請求項3】 上記吸気弁は、電磁式もしくは油圧式の
アクチュエータを介して駆動されることを特徴とする請
求項1記載の早閉じミラーサイクル内燃機関。
3. The early-close Miller cycle internal combustion engine according to claim 1, wherein the intake valve is driven via an electromagnetic or hydraulic actuator.
JP2000266725A 2000-09-04 2000-09-04 Quick closing miller cycle internal combustion engine Pending JP2002070598A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000266725A JP2002070598A (en) 2000-09-04 2000-09-04 Quick closing miller cycle internal combustion engine
US09/927,329 US20020026913A1 (en) 2000-09-04 2001-08-13 Early closing miller cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266725A JP2002070598A (en) 2000-09-04 2000-09-04 Quick closing miller cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JP2002070598A true JP2002070598A (en) 2002-03-08

Family

ID=18753765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266725A Pending JP2002070598A (en) 2000-09-04 2000-09-04 Quick closing miller cycle internal combustion engine

Country Status (2)

Country Link
US (1) US20020026913A1 (en)
JP (1) JP2002070598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222079A (en) * 2006-09-08 2015-12-10 ナジ アミン アタラ Apparatus to improve efficiency of internal combustion engines, and method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
US20050247286A1 (en) * 2002-02-04 2005-11-10 Weber James R Combustion engine including fluidically-controlled engine valve actuator
US6688280B2 (en) * 2002-05-14 2004-02-10 Caterpillar Inc Air and fuel supply system for combustion engine
US7178492B2 (en) * 2002-05-14 2007-02-20 Caterpillar Inc Air and fuel supply system for combustion engine
US20050241302A1 (en) * 2002-05-14 2005-11-03 Weber James R Air and fuel supply system for combustion engine with particulate trap
US20050235953A1 (en) * 2002-05-14 2005-10-27 Weber James R Combustion engine including engine valve actuation system
US20050241597A1 (en) * 2002-05-14 2005-11-03 Weber James R Air and fuel supply system for a combustion engine
US6928969B2 (en) * 2002-05-14 2005-08-16 Caterpillar Inc System and method for controlling engine operation
US20050247284A1 (en) * 2002-05-14 2005-11-10 Weber James R Air and fuel supply system for combustion engine operating at optimum engine speed
US20050235950A1 (en) * 2002-05-14 2005-10-27 Weber James R Air and fuel supply system for combustion engine
US7100552B2 (en) 2002-05-14 2006-09-05 Caterpillar Inc. Control system and method for variable valve actuation system
JP4516401B2 (en) * 2004-10-18 2010-08-04 日立オートモティブシステムズ株式会社 Engine start control device
KR101789481B1 (en) * 2014-12-08 2017-10-23 바르실라 핀랜드 오이 A method of controlling an operation of an inlet valve system and an inlet valve control system
FR3071879B1 (en) * 2017-09-29 2022-03-11 Ifp Energies Now TWO-VALVE INTERNAL COMBUSTION ENGINE
DE102017010758A1 (en) * 2017-11-21 2019-05-23 Daimler Ag Internal combustion engine for a motor vehicle, and method for operating such an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222079A (en) * 2006-09-08 2015-12-10 ナジ アミン アタラ Apparatus to improve efficiency of internal combustion engines, and method thereof
US10036336B2 (en) 2006-09-08 2018-07-31 Hawar Technologies Limited Apparatus to improve the efficiency of internal combustion engines, and method therefor

Also Published As

Publication number Publication date
US20020026913A1 (en) 2002-03-07

Similar Documents

Publication Publication Date Title
US5960755A (en) Internal combustion engine with variable camshaft timing and variable duration exhaust event
US6792924B2 (en) Engine control system of internal combustion engine with variable compression ratio mechanism and exhaust-gas recirculation control system
US6615775B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
JP2002070598A (en) Quick closing miller cycle internal combustion engine
EP0670958A1 (en) Method of operating an automotive type internal combustion engine
EP1234958B1 (en) A method of and apparatus for controlling quantity of air drawn into internal combustion engine
JP2007239555A (en) Internal combustion engine
JP4335663B2 (en) 4-cycle reciprocating internal combustion engine
JP2002285871A (en) Variable valve gear for internal combustion engine
KR20030078884A (en) Valve gear control device of internal combustion engine
JP2007247485A (en) Control device and control method of cylinder direct injection internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JPH0580561B2 (en)
JP2001263108A (en) Intake valve driving control device for internal combustion engine
JP4622431B2 (en) Variable valve gear for engine
JP2002227667A (en) Variable valve device for internal combustion engine
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP2733097B2 (en) Intake and exhaust devices for internal combustion engines
JPH0550574B2 (en)
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JPH039021A (en) Control method of intake device for internal combustion engine
JPH059610B2 (en)
JPH0686811B2 (en) Engine intake system
JP2003120346A (en) Intake device for four-stroke internal combustion engine
JPH05332112A (en) Air intake-exhaust valve operation device of internal combustion engine