JP2002068889A - Method of producing (0001) epitaxial thin film of hexagonal system substance such as zinc oxide using oxide cubic system (111) substrate and the thin film obtained by the same - Google Patents

Method of producing (0001) epitaxial thin film of hexagonal system substance such as zinc oxide using oxide cubic system (111) substrate and the thin film obtained by the same

Info

Publication number
JP2002068889A
JP2002068889A JP2000256967A JP2000256967A JP2002068889A JP 2002068889 A JP2002068889 A JP 2002068889A JP 2000256967 A JP2000256967 A JP 2000256967A JP 2000256967 A JP2000256967 A JP 2000256967A JP 2002068889 A JP2002068889 A JP 2002068889A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxide
hexagonal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000256967A
Other languages
Japanese (ja)
Other versions
JP3579712B2 (en
Inventor
Hachizo Muto
八三 武藤
Hideki Minoura
秀樹 箕浦
Toshiyuki Nakamura
俊之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000256967A priority Critical patent/JP3579712B2/en
Publication of JP2002068889A publication Critical patent/JP2002068889A/en
Application granted granted Critical
Publication of JP3579712B2 publication Critical patent/JP3579712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for depositing (0001) epitaxial thin film of a hexagonal system substance such as ZnO and a multilayer stacked thin film of the same substance, and the thin film and the multilayer stacked thin film obtained by the method. SOLUTION: The method of depositing (0001) oriented epitaxial (single-crystalline) thin film is characterized in that the (0001) oriented epitaxial (single-crystalline) thin film of a substance having the hexagonal system crystal structure such as zinc oxide (ZnO) or titanium trioxide (Ti2O3), or ZnO or Ti2O3 converted into a semiconductor by adding a small amount of an other element is deposited on a (111) single crystal substrate of a cubic system oxide by either a physical or chemical film deposition method such as a pulse laser vapor deposition or a plasma CVD method. The method of depositing the multilayer stacked thin film is characterized in that the crystalline multilayer stacked thin film of one substance mentioned above is deposited on the (111) single crystal substrate of the cubic system oxide mentioned above by the above method. The single crystal thin film or the multilayer stacked thin film of one of the substances mentioned above deposited on the surface of (111) substrate of the cubic system oxide by the above mentioned method is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、六方晶系物質の
(0001)エピタキシャル薄膜に関するものであり、
更に詳しくは、六方晶系物質の(0001)配向エピタ
キシャル薄膜及び同エピタキシャル多層積層薄膜の作製
方法と、それにより得られるエピタキシャル薄膜及び多
層積層薄膜に関するものであり、特に、非シリコン系や
酸化物系エレクトロニクスの基礎となる金属酸化物等の
物質のエピタキシャル薄膜及び同多層積層薄膜とそれを
得るための特定の対称性を持つ酸化物単結晶基板を使用
した成膜方法に関する。
The present invention relates to a (0001) epitaxial thin film of a hexagonal material,
More specifically, the present invention relates to a method for producing a (0001) -oriented epitaxial thin film and a multilayer multilayer thin film of a hexagonal substance, and an epitaxial thin film and a multilayer multilayer thin film obtained by the method. The present invention relates to an epitaxial thin film and a multilayered thin film of a substance such as a metal oxide which are the basis of electronics and a film forming method using an oxide single crystal substrate having a specific symmetry for obtaining the same.

【0002】[0002]

【従来の技術】エピタキシャル薄膜とは、その薄膜物質
に類似の結晶構造、つまり対称性と格子定数を持つ別の
単結晶基板の上に載せて作製したその物質の単結晶性の
薄膜のことを言う。六方晶系結晶構造を有するZnOや
Ti23 等の金属酸化物の(0001)配向エピタキ
シャル薄膜の作製に関する従来の方法としては、同じ六
方晶系構造を有する酸化物系基板としてサファイア(A
23 )以外に適当な基板がないことから、同単結晶
基板が主に用いられてきた。これらの六方晶系金属酸化
物等の電子素子化や産業化を図るには、同六方晶系物質
の(0001)エピタキシャル薄膜化を可能にする種々
の基板が必要になる。
2. Description of the Related Art An epitaxial thin film is a single crystal thin film of a material formed on another single crystal substrate having a crystal structure similar to that of the thin film material, that is, having a symmetry and a lattice constant. To tell. As a conventional method for producing a (0001) oriented epitaxial thin film of a metal oxide such as ZnO or Ti 2 O 3 having a hexagonal crystal structure, sapphire (A) is used as an oxide substrate having the same hexagonal crystal structure.
Since there is no suitable substrate other than l 2 O 3 ), the same single crystal substrate has been mainly used. In order to make these hexagonal metal oxides and the like electronic devices and industrial products, various substrates are required which enable the (0001) epitaxial thin film of the hexagonal material.

【0003】特に、酸化物系電子磁気素子の開発や酸化
物エレクトロニクスの発展のためには、基板自身に電気
伝導度や誘電特性を付与したり、それらの物質との結晶
格子整合のみでなく、熱伝導度や熱膨張特性の整合を行
う必要がある。しかし、使われているサファイアは電気
的絶縁体であり、また、伝導性の付与も難しい。そのた
めに、サファイア以外で六方晶系の酸化物の良質のエピ
タキシャル薄膜を作製可能な基板を用いる成膜方法が望
まれている。
[0003] In particular, for the development of oxide-based electromagnetism elements and oxide electronics, not only are the substrates themselves imparted with electrical conductivity and dielectric properties, but also in addition to the crystal lattice matching with those substances, It is necessary to match thermal conductivity and thermal expansion characteristics. However, the sapphire used is an electrical insulator, and it is difficult to provide conductivity. Therefore, a film formation method using a substrate capable of forming a high-quality epitaxial thin film of a hexagonal oxide other than sapphire is desired.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、前記の従来のサファイア等の六方晶
系を持つ酸化物基板を用いる従来の方法と異なり、他の
晶系の酸化物を用いて六方晶系物質の(0001)配向
エピタキシャル薄膜を作製する方法を開発することを目
的として、創意工夫と研究を積み重ねた結果、立方晶系
酸化物の(111)面基板を用いる方法を採用すること
により所期の目的を達成し得ることを見いだし、本発明
を完成するに至った。本発明の目的は、前記従来の問題
点を解決し、ZnO等の六方晶系物質の(0001)エ
ピタキシャル薄膜及び同多層積層薄膜を得る方法と、本
方法により得られる薄膜及び積層薄膜を提供することに
ある。
In such a situation, the present inventors differ from the above-mentioned conventional method using a hexagonal oxide substrate such as sapphire and the like, in that another crystal system is used. Of the cubic oxide (111) -plane substrate, as a result of a lot of ingenuity and research for the purpose of developing a method for producing a (0001) oriented epitaxial thin film of a hexagonal material using the oxide of It has been found that the intended purpose can be achieved by employing the method used, and the present invention has been completed. An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for obtaining a (0001) epitaxial thin film and a multilayer laminated thin film of a hexagonal crystal material such as ZnO, and a thin film and a laminated thin film obtained by the method. It is in.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の方法及び製品からなる。物理的及び
化学的方法を用いる成膜手段により、ZnO等又は半導
体化させたZnO等の六方晶系物質の(0001)配向
エピタキシャル薄膜又は多層積層薄膜を作製するのに、
立方晶系結晶構造を有する金属酸化物の単結晶(11
1)面基板を用いる方法。前記の立方晶系酸化物(11
1)基板を用いる単結晶性薄膜の作製方法により作製し
た、六方晶系物質の(0001)配向のエピタキシャル
薄膜又は同多層積層薄膜。前記の単結晶性薄膜又はその
多層積層薄膜の作製方法により立方晶系酸化物基板(1
11)面上に成膜して作製したことを特徴とする、酸化
亜鉛(ZnO)等の六方晶系結晶構造を持つ物質又は必
要により他の元素の微量添加により半導体化させた酸化
亜鉛等の六方晶系結晶構造を持つ物質の(0001)単
結晶性薄膜又はその多層積層薄膜。
The present invention for solving the above problems comprises the following methods and products. To form a (0001) -oriented epitaxial thin film or a multilayer laminated thin film of a hexagonal substance such as ZnO or a semiconducting ZnO by a film forming means using physical and chemical methods,
Single crystal of metal oxide having a cubic crystal structure (11
1) A method using a surface substrate. The cubic oxide (11)
1) A (0001) -oriented epitaxial thin film or a multilayered thin film of a hexagonal substance produced by a method for producing a single crystalline thin film using a substrate. A cubic oxide substrate (1
11) A substance having a hexagonal crystal structure such as zinc oxide (ZnO) or a zinc oxide or the like that is made into a semiconductor by adding a small amount of another element as necessary, characterized in that it is formed by forming a film on a surface. A (0001) single crystalline thin film of a substance having a hexagonal crystal structure or a multilayer laminated thin film thereof.

【0006】[0006]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明においては、ZnOのような六方晶系
物質の(0001)エピタキシャル薄膜を六方晶系以外
の酸化物基板の上に作製する。即ち、本発明の薄膜は、
以下のように、立方晶系酸化物の(111)単結晶基板
を用いて成膜することにより達成される。これを図1、
2を用いて説明する。結晶には、大別して立方晶、正方
晶、斜方晶、菱面体晶、単斜晶、三斜晶、六方晶の7晶
系があるが、図1に示す六方晶系の持つ対称要素である
6回回転軸C6及び、その構成要素である3回回転軸C
3を有するものは、図2に示す立方晶系(a=b=c、
α=β=γ=90゜)の(111)面以外にはない。即
ち、図2a)に示すように、立方晶の(111)面に垂
直な方向の単位格子胞の頂点1の周りに3回回転軸があ
る。そのために、その頂点に隣接する単位胞の頂点は3
つ(図2a)中で2,3,4)あり、その3頂点を結ぶ
と正三角形を形成する。図2b)のように、その一頂点
(1)の周りに6個の正三角形が存在するので、結果的
に六方晶系と同じC6対称性が生じる。即ち、六方晶系
物質で基板面(膜面)垂直方向にc軸が立った(000
1)単結晶薄膜を作製しようとする場合において、その
面空間を六方晶系基板の単位胞でしか埋め尽くすことが
できないのではなくて、立方晶系の(111)面を使え
ば埋め尽くすことができることを意味する。その結果、
立方晶系(111)面上に六方晶系物質の(0001)
単結晶性薄膜や多層積層薄膜が作製可能となる。
Next, the present invention will be described in more detail. In the present invention, a (0001) epitaxial thin film of a hexagonal material such as ZnO is formed on a non-hexagonal oxide substrate. That is, the thin film of the present invention
It is achieved by forming a film using a cubic oxide (111) single crystal substrate as described below. This is shown in FIG.
2 will be described. The crystals are roughly classified into cubic, tetragonal, orthorhombic, rhombohedral, monoclinic, triclinic, and hexagonal, and the symmetrical elements of the hexagonal system shown in FIG. A certain six-turn axis C6 and its constituent three-turn axis C
3 has a cubic system (a = b = c,
α = β = γ = 90 °) except for the (111) plane. That is, as shown in FIG. 2A), there is a rotation axis three times around the vertex 1 of the unit cell in a direction perpendicular to the (111) plane of the cubic crystal. Therefore, the vertex of the unit cell adjacent to the vertex is 3
In FIG. 2A, there are two, three, and four, and connecting the three vertices forms an equilateral triangle. As shown in FIG. 2b), there are six equilateral triangles around one vertex (1), resulting in the same C6 symmetry as the hexagonal system. That is, the c-axis stands in the direction perpendicular to the substrate surface (film surface) in the hexagonal material (000
1) When a single crystal thin film is to be produced, its plane space cannot be completely filled only by unit cells of a hexagonal substrate, but by using a cubic (111) plane. Means you can do it. as a result,
(0001) of hexagonal substance on cubic (111) plane
A single crystal thin film or a multilayer laminated thin film can be manufactured.

【0007】本発明は、立方晶系酸化物の(111)面
単結晶基板を用いて、六方晶系物質の(0001)単結
晶性薄膜を作製することを特徴とする成膜法に関わるの
で、成膜手段に関わらず、また、膜物質は六方晶系であ
り、基板は立方晶系酸化物であればよく、それらの種類
に依らない。即ち、成膜手段としては、例えば、パルス
レーザアブレーション(PLA) 蒸着法、マグネトロン
等を用いる各種のスパッター法、Kセル等を用いる蒸着
法、分子ビームエピタキシー法、プラズマCVD等の気
相成膜方法、及び塗布後焼結等の液相エピタキシー方法
等を用いることができ、いずれにも限定されない。ま
た、対象となる膜物質は、六方晶系に属せばよく、この
膜物質として、例えば、ZnO、Ti23 や酸化ネオ
ジュム(Nd23 )、酸化ランタン(La23 )、
チッ化ホウ素(BN)、チッ化リチュム(Li3 N)、
チッ化アルミニュウム(AlN)、また硫化亜鉛(Zn
S)などの鉄、ニッケル、コバルト、カドミウム、チタ
ン、銅等の遷移金属の硫化物、更にセレン化亜鉛(Zn
Se)などの遷移金属のセレン化物等が例示されるが、
これらに限らず、いずれの六方晶系物質でも用いること
ができる。また、六方晶系物質及び他の元素、例えば、
ホウ素(B)、アルミニウム(Al)、スカンジュウム
(Sc)、ガリウム(Ga)、イットリウム(Y)、イ
ンジュウム(In)、ランタン(La)、シリカ(S
i)、ゲルマニュウム(Ge)、ジルコニュウム(Z
r)、スズ(Sn)、セリウム(Ce)、鉛(Pb)、
窒素(N)、リン(P)、砒素(Co)、リチウム(L
i)、銀(Ag)及び、鉄(Fe)、ニッケル(N
i)、コバルト(Co)、チタン(Ti)、クロム(C
r)、マンガン(Mn)、モリブデン(Mo)、銅(C
u)などの遷移金属等の微量添加により半導体化させた
六方晶系構造を持つ物質を用いることができる。更に、
基板は、立方晶系の金属酸化物の(111)基板であれ
ばよく、基板として、例えば、誘電体材料であるチタン
酸ストロンチュウム(SrTiO3 )、絶縁体であるが
還元や他の金属のドーピングにより半導体化できるアル
ミン酸ランタニド(LaAlO3 )、LSAT(0.3
LaAlO3 ;0.7SrAl0. 5 Ta0.53 )、ジ
ルコニア(ZrO2 )やマグネシア(MgO)、及び導
電性のある一酸化チタン(TiO)や一酸化銅(Cu2
O)等が例示されるが、これらに限らず、いずれの立方
晶系酸化物でも用いることができる。
The present invention relates to a film forming method characterized in that a (0001) monocrystalline thin film of a hexagonal substance is formed using a (111) plane single crystal substrate of a cubic oxide. Regardless of the film forming means, the film material is hexagonal and the substrate only needs to be a cubic oxide, and does not depend on the type thereof. That is, as the film forming means, for example, a pulse laser ablation (PLA) vapor deposition method, various sputtering methods using a magnetron or the like, a vapor deposition method using a K cell or the like, a molecular beam epitaxy method, a vapor phase film forming method such as a plasma CVD method , And a liquid phase epitaxy method such as sintering after coating can be used, and the present invention is not limited thereto. The target film material may belong to a hexagonal system. Examples of the film material include ZnO, Ti 2 O 3 , neodymium oxide (Nd 2 O 3 ), lanthanum oxide (La 2 O 3 ),
Boron nitride (BN), lithium nitride (Li 3 N),
Aluminum nitride (AlN) and zinc sulfide (Zn)
S) and other transition metal sulfides such as iron, nickel, cobalt, cadmium, titanium, and copper; and zinc selenide (Zn
Se) of a transition metal such as Se) is exemplified.
Not limited to these, any hexagonal substance can be used. Also, hexagonal materials and other elements, for example,
Boron (B), aluminum (Al), scandium (Sc), gallium (Ga), yttrium (Y), indium (In), lanthanum (La), silica (S
i), germanium (Ge), zirconium (Z
r), tin (Sn), cerium (Ce), lead (Pb),
Nitrogen (N), phosphorus (P), arsenic (Co), lithium (L
i), silver (Ag), iron (Fe), nickel (N
i), cobalt (Co), titanium (Ti), chromium (C
r), manganese (Mn), molybdenum (Mo), copper (C
A substance having a hexagonal structure which is made into a semiconductor by adding a small amount of a transition metal such as u) can be used. Furthermore,
The substrate may be a cubic metal oxide (111) substrate. Examples of the substrate include strontium titanate (SrTiO 3 ), which is a dielectric material; Lanthanide aluminate (LaAlO 3 ), LSAT (0.3
LaAlO 3; 0.7SrAl 0. 5 Ta 0.5 O 3), zirconia (ZrO 2) and magnesia (MgO), and conductivity is titanium monoxide (TiO) or copper monoxide (Cu 2
O) and the like, but are not limited thereto, and any cubic oxide can be used.

【0008】以下に、本発明による酸化物の立方晶(1
11)面を用いた六方晶系物質の(0001)エピタキ
シャル薄膜の作製に関する一実施形態を図面により詳細
に説明する。図3に、単結晶基板上に物質の単結晶薄膜
や多層積層薄膜を作製するための方法を示す概略図を示
す。図1に示す六方晶系を有するZnOや他の元素を添
加したZnO及びTi23 等の複数の物質(A,B,
C等) のターゲットをチャンバー中のターゲットホルダ
ーにセットしておき、図2に示す立方晶系構造を有する
酸化物の(111)基板を基板ホルダーにセットしてお
けば、同基板上にそれらの薄膜やA/B/Cなどの多層
積層薄膜を作製することができる。本発明の一実施形態
として、パルスレーザアブレーション蒸着(PLAD)
法を用いて、LSAT(111)単結晶基板上にZnO
(0001)エピタキシャル薄膜の作製を行う例を説明
する。即ち、PLAD法では、図3のように、膜を作ろ
うとする物質の焼結したターゲットを真空チャンバー
(容器)中にセットしておき、外部から光学窓を通して
パルスレーザ光をそれに集光照射してターゲット物質を
爆発的に分解剥離させて、それを対向する位置にあり電
気ヒータにより一定温度に制御された基板ホールダー上
の基板上に衝突させて、その物質の薄膜を作製する。
Hereinafter, a cubic crystal (1) of an oxide according to the present invention will be described.
11) One embodiment relating to the production of a (0001) epitaxial thin film of a hexagonal substance using a plane will be described in detail with reference to the drawings. FIG. 3 is a schematic view showing a method for producing a single crystal thin film or a multilayer laminated thin film of a substance on a single crystal substrate. As shown in FIG. 1, a plurality of substances (A, B, ZnO having a hexagonal system, ZnO added with other elements, and Ti 2 O 3) .
C) is set in a target holder in a chamber, and an oxide (111) substrate having a cubic structure shown in FIG. 2 is set in the substrate holder. Thin films and multilayer laminated thin films such as A / B / C can be manufactured. As one embodiment of the present invention, pulsed laser ablation deposition (PLAD)
ZnO on LSAT (111) single crystal substrate
An example of manufacturing a (0001) epitaxial thin film will be described. That is, in the PLAD method, as shown in FIG. 3, a sintered target of a substance to be formed into a film is set in a vacuum chamber (vessel), and a pulse laser beam is condensed and irradiated from outside through an optical window. Then, the target material is explosively decomposed and peeled, and the target material is made to collide with a substrate on a substrate holder located at a position opposed thereto and controlled at a constant temperature by an electric heater to produce a thin film of the material.

【0009】ここでは、レーザ光として、Nd:YAG
パルスレーザの第4高調波(波長266nm)を使用し
て、PLAD成膜実験を行い、次のような最適成膜条件
を得た。出力エネルギー30mJ/パルスのレーザ光を
レンズでチャンバー中のZnOターゲットに集光照射し
て、約1.0J/cm2 /パルスのフルーエンスを加え
た。酸素圧は1x10-4Torr、基板温度は550−
750℃である。これにより、良質のZnO(000
1)エピタキシャル薄膜が作製された。他方、同じLS
ATでも(100)基板を用いると、ZnO(000
1)薄膜は作製されず、Znの配向方向が異なり、しか
も、(110)や(100)が混じったエピタキシャル
性の悪い膜が生成する。
Here, Nd: YAG is used as the laser light.
A PLAD film-forming experiment was performed using the fourth harmonic (wavelength 266 nm) of the pulse laser, and the following optimum film-forming conditions were obtained. A laser beam having an output energy of 30 mJ / pulse was condensed and irradiated on a ZnO target in a chamber with a lens, and a fluence of about 1.0 J / cm 2 / pulse was applied. Oxygen pressure is 1 × 10 -4 Torr, substrate temperature is 550-
750 ° C. Thus, high quality ZnO (000
1) An epitaxial thin film was produced. On the other hand, the same LS
Even in AT, if a (100) substrate is used, ZnO (000)
1) A thin film is not formed, a Zn orientation direction is different, and a film with poor epitaxial property is formed, in which (110) and (100) are mixed.

【0010】なお、本発明では、ZnOやTi23
の六方晶系物質及びそれらに他の元素を微量添加した種
々のターゲット等をチャンバー内のターゲットホルダー
にセットしておき、ターゲット交換機構などでそれらの
ターゲットを順次にレーザ照射位置へ移動させて、PL
AD法等の成膜法により前述の立方晶系酸化物(11
1)基板上に順次に成膜して、その電子素子化を可能と
するそれらの多層積層薄膜を作製することができる。
In the present invention, a hexagonal substance such as ZnO or Ti 2 O 3 and various targets to which a small amount of other elements are added are set in a target holder in a chamber, and a target exchange mechanism is set. The targets are sequentially moved to the laser irradiation position by
The cubic oxide (11) is formed by a film forming method such as the AD method.
1) A multilayer film can be formed on a substrate in order to form an electronic device.

【0011】[0011]

【実施例】次に、実施例に基づいて本発明を具体的に説
明するが、本発明は、以下の実施例によって何ら限定さ
れるものではない。本実施例では、LSAT(111)
単結晶基板上に、基板温度550℃でPLAD法により
ZnO薄膜を作製した例を説明する。また、比較のため
に、LSAT(100)及び石英ガラスの各基板上に作
製したZnO薄膜についても併せて説明する。図4
a)、b)、c)は、それぞれLSAT(111)、L
SAT(100)単結晶基板及び石英ガラス基板上に作
製した膜について、θ−2θ掃引により測定したX線回
折パターンを示す。LSAT(111)上の膜は基板で
あるLASTの(hhh);h=1−5以外にはZnO
の(0001);1=2,4,6の回折線のみが観測さ
れている。これは基板面垂直方向にc軸が配向したZn
Oの(0001)配向膜が作製されていることを示して
いる。なお、後述の反射型高速電子線回折測定によっ
て、この膜は基板面内でも結晶のa,b軸方向が単結晶
的に特定の方向へ配向した(0001)エピタキシャル
薄膜であることを確認した。一方、LSAT(100)
単結晶基板を用いた場合にはZnO(hhO);h=1
−2が強く観測されており、その他にもZnOの(00
02)回折線が観測されている。これはLSAT(10
0)基板上ではZnOの(0001)結晶性薄膜ができ
ないのみならず、ZnO(110)配向と(0001)
配向結晶が混じって成膜されていることを示している。
他方、非晶質の石英基板上の薄膜については、非晶質で
あるガラス基板からX線回折線が生じないので、ZnO
の(0001);1=2,4,6の回折線のみが観測さ
れている。この結果はc軸配向薄膜であることを示して
いるが、後述のように、基板の面内では結晶は無配向で
あり、面内配向性も有する単結晶性のエピタキシャル薄
膜は生成していないことが分かった。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples. In this embodiment, the LSAT (111)
An example in which a ZnO thin film is formed on a single crystal substrate by a PLAD method at a substrate temperature of 550 ° C. will be described. For comparison, ZnO thin films formed on LSAT (100) and quartz glass substrates will also be described. FIG.
a), b) and c) are LSAT (111) and LSAT, respectively.
The X-ray diffraction patterns of the films formed on the SAT (100) single crystal substrate and the quartz glass substrate measured by θ-2θ sweep are shown. The film on LSAT (111) is (hhh) of LAST as a substrate; ZnO except for h = 1-5.
Only (0001); 1 = 2, 4, 6 diffraction lines are observed. This is because Zn has a c-axis oriented in the direction perpendicular to the substrate surface.
This indicates that a (0001) oriented film of O has been produced. In addition, by reflection-type high-speed electron beam diffraction measurement described later, it was confirmed that this film was a (0001) epitaxial thin film in which the a- and b-axis directions of the crystal were monocrystalline and oriented in a specific direction even in the substrate plane. On the other hand, LSAT (100)
When a single crystal substrate is used, ZnO (hhO); h = 1
-2 is strongly observed, and (00)
02) Diffraction lines are observed. This is LSAT (10
0) Not only the (0001) crystalline thin film of ZnO cannot be formed on the substrate, but also the ZnO (110) orientation and (0001)
This indicates that the film is formed by mixing the oriented crystals.
On the other hand, for a thin film on an amorphous quartz substrate, no X-ray diffraction line is generated from the amorphous glass substrate,
Only (0001); 1 = 2, 4, 6 diffraction lines are observed. This result indicates that the film is a c-axis oriented thin film, but as described below, the crystal is non-oriented in the plane of the substrate, and a single-crystal epitaxial thin film having in-plane orientation is not generated. I understood that.

【0012】次に、反射型高速電子線回折(RHEE
D)測定から分かった、面内配向も含めた膜の単結晶性
に関する実験結果である回折写真を図5、6、7に示
し、それらについて説明する。RHEED法とは、結晶
性膜の膜面に対して2−3°の低角度で10−30Ke
Vの高速電子線を照射することにより、膜の表面に近い
低角度での電子線回折像を測定して、膜面の結晶構造や
平滑度を知る方法である。ナノメータ(10-9m)次元
の表面平滑度を持つ良質な薄膜結晶について、対称的な
結晶構造方向でRHEEDを測定すると、回折点が結晶
膜面垂直(ここでは紙面垂直)方向に立ったストリーク
と呼ばれる縦棒状の輝線が何本か対称的に並んだパター
ンが観測される。これらの輝線の間隔は結晶格子の間隔
に関連する(正確には逆格子の間隔に比例する)ので単
結晶性の膜をその膜面内で回転するとパターンが変わ
り、結晶が膜面内で持つ回転対称性を反映して45°、
60°や90°周期で対称的ストリークパターンが観測
される。LSAT(111)基板上に作製したZnO膜
では、図5a)と5b)がそれぞれ単一成分のパターン
からなっており、また、両者は30°異なる方向で観測
された。しかも、それぞれ六方晶系の持つ60°周期
(c6対称性)を持って観測された。輝線間隔から、図
5a)と5b)の方向でのZnO結晶の面間隔を算出し
た結果、それぞれの面はZnOの(100)と(11
0)に対応することが分かった。すなわち、それぞれ、
単一成分からなっており、その輝線(ストリーク) の間
隔から算出した面間隔の値からa)は(100),b)
は(110)面方向に同定された。これらより、LSA
T(111)基板上に作製したZnO膜は完全に単結晶
に近い(0001)配向エピタキシャル薄膜であること
が明らかになった。
Next, reflection type high-speed electron diffraction (RHEE)
D) Diffraction photographs, which are experimental results regarding the single crystallinity of the film including the in-plane orientation, as found from the measurements, are shown in FIGS. 5, 6, and 7, and these will be described. The RHEED method is performed at a low angle of 2-3 ° with respect to the film surface of the crystalline film at 10-30 Ke.
By irradiating a high-speed electron beam of V, an electron beam diffraction image at a low angle close to the surface of the film is measured, and the crystal structure and smoothness of the film surface are known. When RHEED is measured in a symmetrical crystal structure direction for a high-quality thin film crystal having a surface smoothness of a nanometer (10-9 m) dimension, a streak whose diffraction point stands in a direction perpendicular to the crystal film surface (here, perpendicular to the paper surface) is obtained. A pattern in which some vertical bar-shaped bright lines are arranged symmetrically is observed. Since the spacing between these emission lines is related to the spacing between the crystal lattices (more precisely, it is proportional to the spacing between the reciprocal lattices), when the monocrystalline film is rotated in the film plane, the pattern changes, and the crystal has in the film plane 45 ° reflecting rotational symmetry,
Symmetric streak patterns are observed at 60 ° and 90 ° cycles. In the ZnO film formed on the LSAT (111) substrate, FIGS. 5a) and 5b) each have a single component pattern, and both were observed in directions different by 30 °. Moreover, they were observed with the 60 ° cycle (c6 symmetry) of each hexagonal system. As a result of calculating the plane spacing of the ZnO crystal in the directions of FIGS. 5a) and 5b) from the bright line spacing, the respective planes were (100) and (11) of ZnO.
0). That is,
A) is (100), b) from the value of the surface spacing calculated from the spacing of the bright lines (streaks).
Was identified in the (110) plane direction. From these, LSA
It was found that the ZnO film formed on the T (111) substrate was a (0001) oriented epitaxial thin film which was almost completely single crystal.

【0013】他方、LSAT(100)基板上に作製し
たZnO膜では、図6a)と6b)に示すように、(0
001)薄膜と異なるパターンが観測された。しかも、
両者は約45°異なる方向で観測され、しかも、90°
周期を持っていた。解析の結果、それぞれZnOの(1
02)と(100)面に帰属された。更に、この他に、
図6b)では弱い強度のRHEEDパターンも観測され
ており、これはZnOの(002)に帰属された。こう
して、LSATのc6対称性を持たない(100)面の
単結晶基板では六方晶系であるZnOの(0001)エ
ピタキシャル薄膜は作製されないことが確認された。す
なわち、a)のストリ−クの間隔から求めた面間隔の値
から、a)は(102)面に、他方b)方向では強い3
本線と弱い4本線からなる二成分の結晶配向からなって
おり、それぞれ(002)と(100)に同定された。
On the other hand, in a ZnO film formed on an LSAT (100) substrate, as shown in FIGS.
001) A pattern different from the thin film was observed. Moreover,
Both are observed at about 45 ° different directions, and 90 °
Had a cycle. As a result of the analysis, (1
02) and (100) plane. In addition to this,
In FIG. 6b), a RHEED pattern of weak intensity was also observed, which was assigned to (002) of ZnO. Thus, it was confirmed that a (0001) epitaxial thin film of ZnO, which is hexagonal, was not produced on a (100) plane single crystal substrate having no c6 symmetry of LSAT. That is, from the value of the surface spacing obtained from the strike spacing in a), a) is on the (102) plane, while 3) is strong in the b) direction.
It consisted of a binary crystal orientation consisting of a main line and a weak four line, and was identified as (002) and (100), respectively.

【0014】更に、石英基板上に作製したZnO膜のR
HEEDパターンを図7に示す。点状輝線からなってお
り、結晶方向依存性がないことから、結晶面内ではラン
ダム配向した膜が生成していることが分かる。単結晶で
なく非晶性である石英基板上に作製した膜では、このよ
うにスポット状のパターンが観測され、膜を回転しても
パターンは変わらない。前述のように、X線回折の結果
はc軸配向膜である、つまり膜面垂直方向にc軸が立っ
ていることを示している。このことを考え合わせると、
この膜は膜面平滑度は良いが膜面内では配向は無い、つ
まりこの膜は無数の多結晶でできており、それらは面垂
直方向にc軸を向けているが、膜面内では各結晶は無秩
序に向いていることを示している。これは基板が非晶質
ガラス(無定型)であることから当然予想される結果で
ある。
Further, the R of the ZnO film formed on the quartz substrate
The HEED pattern is shown in FIG. Since it is composed of a point-like bright line and has no dependence on the crystal direction, it can be seen that a randomly oriented film is formed in the crystal plane. In the case of a film formed on an amorphous quartz substrate instead of a single crystal, a spot-like pattern is observed as described above, and the pattern does not change even when the film is rotated. As described above, the result of the X-ray diffraction shows that the film is a c-axis oriented film, that is, the c-axis stands in the direction perpendicular to the film surface. Considering this,
This film has good film surface smoothness but has no orientation in the film surface, that is, this film is made of countless polycrystals, and they have their c-axis oriented in the direction perpendicular to the surface. This indicates that the crystals are oriented randomly. This is an expected result because the substrate is amorphous glass (amorphous).

【0015】[0015]

【発明の効果】以上説明したように、本発明により、
1)LAST、SrTiO3 、LaAlO3 等の立方晶
系金属酸化物単結晶の(111)面を用いることによ
り、ZnOやTi23 等の六方晶系物質及びそれらに
他の元素を微量添加して半導体化した材料の(000
1)エピタキシャル薄膜やそれらの多層積層薄膜の作製
が可能となる、2)また、本発明の立方晶系に属する種
々の酸化物の(111)単結晶基板を用いる単結晶成膜
法により、ZnOやTi23 等のエピタキシャル薄膜
や多層積層薄膜を提供できるので、これまでの六方晶系
であり絶縁体であるサファイア基板に限定される問題を
ブレークスルーできる、3)これにより、種々の電子・
磁気・光学物性等の特性を有する立方晶系の酸化物基板
及び六方晶系の膜物質、更には、それらに還元反応やド
ーピングにより伝導度や光学物性付与等ができるので、
酸化物エレクトロニクスにおける諸物性を有する金属酸
化物系等の物質の整合多層薄膜による電子素子化が可能
となる、という格別の効果が奏される。
As described above, according to the present invention,
1) By using the (111) plane of a cubic metal oxide single crystal such as LAST, SrTiO 3 , LaAlO 3, etc., a small amount of hexagonal substances such as ZnO and Ti 2 O 3 and other elements are added to them. (000)
1) It is possible to produce epitaxial thin films and their multilayer laminated thin films. 2) In addition, ZnO is formed by a single crystal film forming method using a (111) single crystal substrate of various oxides belonging to the cubic system of the present invention. because it provides and epitaxial thin film or multilayered film such as a Ti 2 O 3, past a hexagonal problem to be limited to the sapphire substrate is an insulator and can breakthrough, 3) Thus, a variety of electronic・
Since cubic oxide substrates and hexagonal film materials having properties such as magnetic and optical properties, and further, conductivity and optical properties can be imparted to them by a reduction reaction or doping,
A special effect is achieved in that an electronic element can be formed by a matching multilayer thin film of a material such as a metal oxide having various physical properties in oxide electronics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化亜鉛等の六方晶系物質の結晶構造の概略図
であり、a)は立体図、b)はc軸に沿っての投影図で
ある(c軸方向に6回回転軸がある)。
FIG. 1 is a schematic view of the crystal structure of a hexagonal substance such as zinc oxide, in which a) is a three-dimensional view, b) is a projection view along the c-axis (the rotation axis is rotated six times in the c-axis direction). is there).

【図2】立方晶系のa)立体図と、b)そのC3対称軸
に垂直な面への投影図である(同面内には必然的に六回
回転軸が生ずる)。
FIG. 2 is a) a cubic diagram of a cubic system, and b) a projection of the cubic system onto a plane perpendicular to the C3 symmetry axis (six rotation axes necessarily occur in the same plane).

【図3】単結晶基板上に物質の単結晶薄膜や多層積層薄
膜を作製するための一方法を示す概略図である。
FIG. 3 is a schematic view showing one method for manufacturing a single crystal thin film or a multilayer laminated thin film of a substance on a single crystal substrate.

【図4】a)LSAT(111)、b)LSAT(10
0)単結晶基板及びc)石英ガラス基板上に、Nd:Y
AGレーザの第4高調波を用いたパルスレーザアブレー
ション(PLA)蒸着法により作製した酸化亜鉛(Zn
O) 薄膜のX線回折スペクトルである。
4) a) LSAT (111), b) LSAT (10)
Nd: Y on 0) single crystal substrate and c) quartz glass substrate
Zinc oxide (Zn) produced by pulsed laser ablation (PLA) evaporation using the fourth harmonic of an AG laser
O) X-ray diffraction spectrum of the thin film.

【図5】LSAT(111)単結晶基板上に、Nd:Y
AGレーザの第4高調波を用いたパルスレーザ蒸着方法
により作製したZnO単結晶薄膜の反射型高速電子線回
折(RHEED)写真であり、a)は(100)、b)
は(110)面方向に同定された。
FIG. 5 shows that Nd: Y is formed on an LSAT (111) single crystal substrate.
It is a reflection high-speed electron diffraction (RHEED) photograph of a ZnO single crystal thin film produced by a pulsed laser deposition method using the fourth harmonic of an AG laser, wherein a) is (100) and b).
Was identified in the (110) plane direction.

【図6】LSAT(100)単結晶基板上に、Nd:Y
AG第4高調波パルスレーザ蒸着方法により作製したZ
nO単結晶薄膜の反射型高速電子線回折(RHEED)
写真であり、a)は(102)、b)は(002)と
(100)に同定された。
FIG. 6: Nd: Y on LSAT (100) single crystal substrate
AG fabricated by the fourth harmonic pulse laser deposition method
Reflection high-speed electron beam diffraction (RHEED) of nO single crystal thin film
In the photograph, a) was identified as (102), and b) was identified as (002) and (100).

【図7】石英ガラス基板上に、Nd:YAG第4高調波
パルスレーザ蒸着方法により作製したZnO単結晶薄膜
の反射型高速電子線回折(RHEED)写真である。
FIG. 7 is a reflection high-speed electron diffraction (RHEED) photograph of a ZnO single crystal thin film formed on a quartz glass substrate by a Nd: YAG fourth harmonic pulsed laser deposition method.

フロントページの続き Fターム(参考) 4G077 AA03 AB02 BB04 BB07 BB10 BE11 BE12 BE13 BE22 BE25 DA03 DA05 DA11 DB16 ED05 ED06 GA03 SA04 4K029 AA01 AA04 BA43 BA48 BA49 BB02 BB07 DB05 DB20 Continued on the front page F term (reference) 4G077 AA03 AB02 BB04 BB07 BB10 BE11 BE12 BE13 BE22 BE25 DA03 DA05 DA11 DB16 ED05 ED06 GA03 SA04 4K029 AA01 AA04 BA43 BA48 BA49 BB02 BB07 DB05 DB20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物理的及び化学的成膜手段を用いる成膜
方法により、立方晶系(111)面上に六方晶系物質の
(0001)単結晶性薄膜を作製する方法であって、立
方晶系酸化物の(111)単結晶基板を用いて、当該基
板上に酸化亜鉛(ZnO)等の六方晶系結晶構造を持つ
物質又は必要により他の元素の微量添加により半導体化
させた酸化亜鉛等の六方晶系結晶構造を持つ物質を成膜
して六方晶系物質の(0001)配向エピタキシャル
(単結晶性)薄膜を作製することを特徴とする単結晶性
薄膜の作製方法。
1. A method for producing a (0001) monocrystalline thin film of a hexagonal substance on a cubic (111) plane by a film forming method using physical and chemical film forming means. Oxide made of a (111) single crystal substrate made of a crystalline oxide and made into a semiconductor by adding a substance having a hexagonal crystal structure such as zinc oxide (ZnO) or a small amount of another element as necessary on the substrate A method for producing a single crystalline thin film, characterized by producing a (0001) oriented epitaxial (single crystalline) thin film of a hexagonal material by forming a film having a hexagonal crystal structure such as
【請求項2】 請求項1に記載の単結晶性薄膜の作製方
法により、立方晶系酸化物の単結晶基板(111)面上
に六方晶系物質の(0001)薄膜を多層に積層するこ
とを特徴とする単結晶性多層積層薄膜の作製方法。
2. A method for producing a single-crystal thin film according to claim 1, wherein a (0001) thin film of a hexagonal substance is laminated in multiple layers on a (111) plane of a single-crystal substrate of a cubic oxide. A method for producing a single-crystal multilayer laminated thin film, characterized by the following.
【請求項3】 請求項1又は2に記載の単結晶性薄膜又
はその多層積層薄膜の作製方法により立方晶系酸化物基
板(111)面上に成膜して作製したことを特徴とす
る、酸化亜鉛(ZnO)等の六方晶系結晶構造を持つ物
質又は必要により他の元素の微量添加により半導体化さ
せた酸化亜鉛等の六方晶系結晶構造を持つ物質の(00
01)単結晶性薄膜又はその多層積層薄膜。
3. A film formed on a cubic oxide substrate (111) surface by the method for producing a single crystalline thin film or a multilayer laminated thin film according to claim 1 or 2. A substance having a hexagonal crystal structure such as zinc oxide (ZnO) or a substance having a hexagonal crystal structure such as zinc oxide made into a semiconductor by adding a small amount of another element as necessary (00)
01) Single crystalline thin film or multilayer thin film thereof.
JP2000256967A 2000-08-28 2000-08-28 Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method Expired - Lifetime JP3579712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256967A JP3579712B2 (en) 2000-08-28 2000-08-28 Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256967A JP3579712B2 (en) 2000-08-28 2000-08-28 Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method

Publications (2)

Publication Number Publication Date
JP2002068889A true JP2002068889A (en) 2002-03-08
JP3579712B2 JP3579712B2 (en) 2004-10-20

Family

ID=18745500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256967A Expired - Lifetime JP3579712B2 (en) 2000-08-28 2000-08-28 Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method

Country Status (1)

Country Link
JP (1) JP3579712B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074556A3 (en) * 2003-02-24 2004-11-11 Univ Waseda β-Ga2O3 SINGLE CRYSTAL GROWING METHOD, THIN-FILM SINGLE CRYSTAL GROWING METHOD, Ga2O3 LIGHT-EMITTING DEVICE, AND ITS MANUFACTURING METHOD
CN100370065C (en) * 2003-02-24 2008-02-20 学校法人早稻田大学 B-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
US8194364B2 (en) 2009-08-31 2012-06-05 Tdk Corporation Magnetoresistive effect element in CPP-type structure including ferromagnetic layer configured with CoFe system alloy and magnetic disk device therewith
JP2013107782A (en) * 2011-11-17 2013-06-06 National Institute Of Advanced Industrial Science & Technology Wurtzite type crystal film and method for producing the same
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO
CN113493899A (en) * 2020-04-06 2021-10-12 Tos株式会社 Chamber separated type outer film growing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747553B2 (en) 2003-02-24 2014-06-10 Waseda University β-Ga2O3 single crystal growing method including crystal growth method
WO2004074556A3 (en) * 2003-02-24 2004-11-11 Univ Waseda β-Ga2O3 SINGLE CRYSTAL GROWING METHOD, THIN-FILM SINGLE CRYSTAL GROWING METHOD, Ga2O3 LIGHT-EMITTING DEVICE, AND ITS MANUFACTURING METHOD
US7393411B2 (en) 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US7713353B2 (en) 2003-02-24 2010-05-11 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
EP2267194A2 (en) 2003-02-24 2010-12-29 Waseda University Thin-film single crystal growing method
EP2273569A2 (en) 2003-02-24 2011-01-12 Waseda University Beta-Ga203 light-emitting device and its manufacturing method
CN100370065C (en) * 2003-02-24 2008-02-20 学校法人早稻田大学 B-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
US8262796B2 (en) 2003-02-24 2012-09-11 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO
US8194364B2 (en) 2009-08-31 2012-06-05 Tdk Corporation Magnetoresistive effect element in CPP-type structure including ferromagnetic layer configured with CoFe system alloy and magnetic disk device therewith
JP2013107782A (en) * 2011-11-17 2013-06-06 National Institute Of Advanced Industrial Science & Technology Wurtzite type crystal film and method for producing the same
CN113493899A (en) * 2020-04-06 2021-10-12 Tos株式会社 Chamber separated type outer film growing device
JP2021166282A (en) * 2020-04-06 2021-10-14 ティー オー エス カンパニー リミテッドT.O.S Co., Ltd. Chamber-separated epitaxial growth device
JP7053773B2 (en) 2020-04-06 2022-04-12 ティー オー エス カンパニー リミテッド Chamber-separated epi-growth device

Also Published As

Publication number Publication date
JP3579712B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
US9187842B2 (en) Oriented perovskite oxide thin film
Christen et al. The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices
CA2560771C (en) Biaxially-textured film deposition for superconductor coated tapes
WO2002095084A1 (en) Process and apparatus for producing crystalline thin film buffer layers and structures having biaxial texture
US7781067B2 (en) Aligned crystalline semiconducting film on a glass substrate and method of making
JP2007307904A (en) Coated conductor and polycrystal line film useful for manufacture of high-temperature superconductor layer
US7129196B2 (en) Buffer layer for thin film structures
WO2006071543A1 (en) HIGH RATE BUFFER LAYER FOR IBAD MgO COATED CONDUCTORS
US6809066B2 (en) Ion texturing methods and articles
JP3579712B2 (en) Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method
US5281575A (en) Laser ablation method for forming oxide superconducting films
Shiojiri et al. Room-temperature laser annealing for solid-phase epitaxial crystallization of β-Ga2O3 thin films
US7851412B2 (en) Wide band gap semiconductor templates
Itoh et al. Growth process of CuO (1 1 1) and Cu2O (0 0 1) thin films on MgO (0 0 1) substrate under metal-mode condition by reactive dc-magnetron sputtering
Sata et al. Crystallization process of perovskite type oxide thin films deposited by PLD without substrate heating: Influence of sputtering rate and densification-driven high tensile strain
TWI717968B (en) Flexible single-crystal oxide and method of manufacturing the same
JPH01208327A (en) Production of thin film of superconductor
Safeen Growth study and characterization of TiO2 based thin films for low temperature synthesis of transparent conductive films
JPH06116094A (en) Thin film superconductor and its production
EP0392437B1 (en) Method for annealing thin film superconductors
Chiu et al. Preparation of metal oxide thin film by pulsed laser deposition
Haeni Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy
JPH02122067A (en) Production of oxide superconducting thin film
Chirila et al. Epitaxial Ferroelectric Thin Films: Potential for New Applications
Wasa Thin films for material engineering

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Ref document number: 3579712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term