JP2002066705A - Continuously cast slab, its casting method and manufacturing method of heavy plate therefrom - Google Patents

Continuously cast slab, its casting method and manufacturing method of heavy plate therefrom

Info

Publication number
JP2002066705A
JP2002066705A JP2000249633A JP2000249633A JP2002066705A JP 2002066705 A JP2002066705 A JP 2002066705A JP 2000249633 A JP2000249633 A JP 2000249633A JP 2000249633 A JP2000249633 A JP 2000249633A JP 2002066705 A JP2002066705 A JP 2002066705A
Authority
JP
Japan
Prior art keywords
slab
thickness
center
reduction
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000249633A
Other languages
Japanese (ja)
Other versions
JP3494136B2 (en
Inventor
Yoshinori Tanizawa
好徳 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000249633A priority Critical patent/JP3494136B2/en
Publication of JP2002066705A publication Critical patent/JP2002066705A/en
Application granted granted Critical
Publication of JP3494136B2 publication Critical patent/JP3494136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously cast slab free from central segregation through its entire width and length, its casting method and a manufacturing method of heavy plate by hot rolling it. SOLUTION: The slab contains S of 10 ppm or less, Mn of less than 0.2% in area ratio of 2.0 mass % or more and Ca, within 10 mm thickness in the center of the slab thickness including a final solidification band in its center. In the production process of the slab, the slab being cast is rolling-reduced by more than a pair of rolls after subjected to bulging but before fully solidified in the center of thickness. Rolling-reduction is applied at a position where a central solid phase rate is 0.2 to 0.7 and to its reduction ratio Lf of 0.9 to 1.5 satisfying the equation (A) below. L=D1/D2...(A) D1: Amount of reduction in the center of width of slab (mm), D2: Thickness of un-solidified layer (mm) when reduction is started at solid phase rate of 0.8 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造鋳片、そ
の鋳片の鋳造方法およびその鋳片を熱間で圧延すること
による耐水素誘起割れ性に優れた厚鋼板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous cast slab, a method for casting the slab, and a method for producing a thick steel sheet having excellent resistance to hydrogen-induced cracking by hot rolling the slab.

【0002】[0002]

【従来の技術】天然ガスおよび原油の採掘、精製、輸送
などに用いられるラインパイプなどは、連続鋳造鋳片を
熱間で圧延して得られる厚鋼板を素材として加工するこ
とにより製造されている。これらラインパイプなどの鋼
材では、水素誘起割れ(HIC)によって油漏れなどの
事故が発生することが知られている。鋼材中の水素が、
非金属介在物(MnS、クラスター状の酸化物、CaS
など)の周囲に集積し、水素ガスの圧力が高まるととも
に、非金属介在物の形状に基づく切欠き効果などによっ
て、非金属介在物を起点に水素誘起割れが発生する。そ
の際、Mn、Pなどが偏析する異常組織が存在している
と、その異常組織に沿って割れが伝播し、さらに大きな
割れが発生しやすい。
2. Description of the Related Art Line pipes and the like used for mining, refining, and transporting natural gas and crude oil are manufactured by processing a thick steel plate obtained by hot rolling a continuous cast slab as a raw material. . It is known that hydrogen-induced cracking (HIC) causes accidents such as oil leakage in steel materials such as line pipes. Hydrogen in steel is
Non-metallic inclusions (MnS, cluster oxide, CaS
), The pressure of the hydrogen gas increases, and a hydrogen-induced crack originates from the nonmetallic inclusion due to a notch effect based on the shape of the nonmetallic inclusion. At this time, if there is an abnormal structure in which Mn, P, and the like are segregated, cracks propagate along the abnormal structure, and larger cracks are likely to occur.

【0003】特開昭54−38214号公報には、C
a、REMなどの添加によって、鋼材の水素誘起割れ感
受性を高める非金属介在物MnSの析出を抑制するとと
もに、MnSが球状となるように非金属介在物の形態を
制御する方法が提案されている。しかし、この方法で
は、Ca、REMなどの含有量の最適値が狭い範囲であ
るため、これらの添加量を適正に調整することが困難で
ある。これらCa、REMなどの添加量が最適値より少
ないと、非金属介在物の形態制御の効果が発揮できず、
また添加量が多いと添加によって生成する硫化物、酸化
物などの量が多くなり、かえって鋼材の水素誘起割れ感
受性が高くなる。
Japanese Patent Application Laid-Open No. 54-38214 discloses C
a, a method has been proposed in which the precipitation of non-metallic inclusions MnS, which enhances the hydrogen-induced cracking susceptibility of steel materials, is controlled by adding REM and the like, and the form of the non-metallic inclusions is controlled so that the MnS becomes spherical. . However, in this method, since the optimum values of the contents of Ca, REM, and the like are in a narrow range, it is difficult to appropriately adjust the amounts of these added. If the amount of addition of Ca, REM, etc. is less than the optimum value, the effect of controlling the form of nonmetallic inclusions cannot be exhibited,
Also, when the addition amount is large, the amount of sulfide, oxide and the like generated by the addition increases, and the susceptibility of the steel material to hydrogen-induced cracking increases.

【0004】Mn、Pなどが偏析して発生する鋼材の異
常組織とは、連続鋳造鋳片に発生した中心偏析が、その
鋳片を熱間で圧延した鋼材にまで残存し、その部分の硬
度が高くなっている金属組織のことである。鋳片の中心
偏析は、凝固が進行する過程でデンドライト樹間に偏析
成分が濃化し、この濃化溶鋼が鋳片のバルジングなどに
より、デンドライト樹間より流出し、最終凝固部である
凝固完了点に向かって流動し、そのまま凝固して偏析成
分の濃化帯を形成するために発生する。
[0004] The abnormal structure of a steel material caused by segregation of Mn, P and the like means that the central segregation generated in a continuously cast slab remains in a steel material obtained by hot rolling the slab, and the hardness of the portion Is a metal structure that has a high In the center segregation of the slab, segregation components are concentrated between dendrite trees in the process of solidification, and this concentrated molten steel flows out from between the dendrite trees due to bulging of the slab, and the solidification completion point which is the final solidification part , And flows to the solidified state to form a concentrated zone of segregated components.

【0005】そこで、鋳片の中心偏析の防止対策とし
て、デンドライト樹間の偏析成分の濃化した溶鋼の移動
を防止し、また偏析成分の濃化した溶鋼の局所的な集積
を防ぐことが効果的であり、特開平9−57410号公
報および特開平9−206903号公報には、未凝固部
を含む鋳片をバルジングさせ、最終凝固部の鋳造方向の
上流側で、バルジング量相当分を圧下する方法が提案さ
れている。しかし、これらの方法では、圧下する際の中
心固相率、圧下量などの圧下条件によっては、鋳造方向
の全長、鋳片の全幅にわたって中心偏析の発生を安定し
て抑制することが困難な場合がある。
[0005] Therefore, as measures for preventing the center segregation of the slab, it is effective to prevent the movement of the molten steel in which the segregation component is concentrated between the dendrite trees and to prevent the local accumulation of the molten steel in which the segregation component is concentrated. Japanese Patent Application Laid-Open Nos. 9-57410 and 9-206903 disclose that a slab including an unsolidified portion is bulged, and a portion corresponding to the bulging amount is reduced upstream of the final solidified portion in the casting direction. A way to do that has been proposed. However, in these methods, depending on the rolling conditions such as the center solid phase ratio during rolling and the amount of rolling, it is difficult to stably suppress the occurrence of center segregation over the entire length in the casting direction and the entire width of the slab. There is.

【0006】上記のような現状に鑑み、ラインパイプな
どの鋼材における水素誘起割れの発生を安定して抑制す
る連続鋳造鋳片およびその鋳片を得るための連続鋳造を
行う方法が望まれている。
In view of the above situation, there is a demand for a continuously cast slab that stably suppresses the occurrence of hydrogen-induced cracking in steel materials such as line pipes, and a method of performing continuous casting to obtain the slab. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、ラインパイ
プなどの鋼材における水素誘起割れの発生を安定して抑
制できる鋼の連続鋳造鋳片、およびその鋳片を得るため
の連続鋳造方法を提供することを目的とし、さらに、こ
れらの鋳片を熱間で圧延することによる耐水素誘起割れ
性に優れた厚鋼板の製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention provides a continuous cast slab of steel capable of stably suppressing the occurrence of hydrogen-induced cracking in a steel material such as a line pipe, and a continuous cast method for obtaining the cast slab. Another object of the present invention is to provide a method for producing a thick steel plate having excellent resistance to hydrogen-induced cracking by hot rolling these slabs.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、下記の
(1)に示す連続鋳造鋳片、(2)に示す連続鋳造方
法、および(3)に示す厚鋼板の製造方法にある。 (1)鋳片の最終凝固部を厚さ方向の中央部に含む厚さ
中心部10mm以内の領域において、S含有率が10p
pm以下であり、かつMn含有率が2.0質量%以上の
面積率が0.2%未満であるCaを含有する鋼の連続鋳
造鋳片。 (2)未凝固部を含む鋳片をバルジングさせた後、厚さ
中心部が凝固完了するまでの間に1つ以上の圧下ロール
対により圧下する方法において、中心固相率が0.2〜
0.7の鋳片の位置で、下記(A)式で表される圧下率
Lfが0.9〜1.5を満足する条件で鋳片を圧下する
上記(1)に記載の連続鋳造鋳片の鋳造方法。
The gist of the present invention resides in a continuous cast slab shown in (1), a continuous casting method shown in (2), and a method for manufacturing a thick steel plate shown in (3). (1) In a region within a central portion of the thickness of 10 mm including the final solidified portion of the slab in the central portion in the thickness direction, the S content is 10 p.
A continuous cast slab of steel containing Ca of not more than pm and an Mn content of 2.0% by mass or more and an area ratio of less than 0.2%. (2) In a method in which the slab including the unsolidified portion is bulged and then reduced by one or more reduction roll pairs until the thickness center portion is completely solidified, the central solid phase ratio is 0.2 to
The continuous cast casting according to the above (1), wherein the slab is reduced at a position of a slab of 0.7 under a condition that a reduction ratio Lf represented by the following formula (A) satisfies 0.9 to 1.5. Piece casting method.

【0009】Lf=D1/D2 ・・・(A) ここで、D1:未凝固部を含む鋳片の幅中央部における
圧下量(mm) D2:圧下開始時の固相率0.8以下の未凝固部の厚さ
(mm) (3)上記(1)に記載の連続鋳造鋳片を熱間で圧延す
る厚鋼板の製造方法。
Lf = D1 / D2 (A) where D1: The amount of reduction (mm) at the center of the width of the slab including the unsolidified portion. D2: The solid phase ratio at the start of the reduction is 0.8 or less. Thickness of unsolidified portion (mm) (3) A method for producing a thick steel plate by hot rolling the continuous cast slab according to (1).

【0010】本発明が対象とする連続鋳造鋳片は、横断
面形状が長方形の鋳片である。また、本発明で規定する
「鋳片の最終凝固部を厚さ方向の中央部に含む厚さ中心
部10mm以内の領域」とは、次に示す鋳片の領域を意
味する。図1は、鋳片の横断面を示す模式図である。長
方形の鋳片2の最終凝固部Tcは、厚さのほぼ1/2の
位置に相当するほぼ直線状の部分である。「鋳片の最終
凝固部を厚さ方向の中央部に含む厚さ中心部10mm以
内の領域」とは、ほぼ直線状の最終凝固部Tcの、図面
上で言えば、上側の5mmの位置の直線T1 と下側の5
mmの位置の直線T2 との間の鋳片の領域(図中に斜線
部で示す領域)のことである。長方形の鋳片の幅方向の
両側端部から、それぞれ1/2×T0 (T 0 は、鋳片厚
さを意味する)の距離までの間は、凝固の進行が速く、
最終凝固部とはならない。なお、図1では、T1 または
2 とTcとの間隔は誇張して示している。
[0010] The continuous cast slab to which the present invention is directed is a cross section.
The surface shape is a rectangular slab. Also, as defined in the present invention
"The thickness center including the final solidified part of the slab at the center in the thickness direction
"Area within 10 mm" means the following slab area.
To taste. FIG. 1 is a schematic view showing a cross section of a slab. Long
The final solidified portion Tc of the square slab 2 is approximately の of the thickness.
This is a substantially linear portion corresponding to the position. "The end of the slab
Thickness center 10mm or less including solidified part at center in thickness direction
The region in the figure is the drawing of the substantially solid final solidified portion Tc.
Speaking above, the straight line T at the upper 5 mm position1 And the lower 5
mm in a straight line TTwo The area of the slab between
(Area indicated by a part). In the width direction of the rectangular slab
1/2 × T from both ends0 (T 0 Is the slab thickness
Up to the distance), the coagulation progresses rapidly,
It does not become the final solidification part. In FIG. 1, T1 Or
TTwo The interval between Tc and Tc is exaggerated.

【0011】鋳片の最終凝固部を厚さ方向の中央部に含
む厚さ中心部10mm以内の領域において、S含有率が
10ppm以下とは、次のことを意味する。すなわち、
鋳片の横断面の上述の両端部近傍以外で、最終凝固部を
厚さ方向の中央部に含む厚さ中心部10mm以内の領域
のいずれの位置でも、たとえば、直径3〜5mmのドリ
ル刃により切り削を採取し、通常の高周波燃焼−赤外線
吸収法などにより分析したSの値が10ppm以下であ
ることを意味する。
The S content of 10 ppm or less in a region within a thickness center portion of 10 mm or less including the final solidified portion of the slab in the center portion in the thickness direction means the following. That is,
Except for the above-mentioned vicinity of both ends of the cross section of the slab, at any position within a thickness center portion of 10 mm or less including the final solidified portion in the center in the thickness direction, for example, with a drill blade having a diameter of 3 to 5 mm. It means that the value of S obtained by cutting out and analyzing by a normal high frequency combustion-infrared absorption method or the like is 10 ppm or less.

【0012】また、鋳片の最終凝固部を厚さ方向の中央
部に含む厚さ中心部10mm以内の領域において、Mn
含有率が2.0質量%以上の面積率が0.2%未満と
は、次のことを意味する。すなわち、鋳片の横断面の上
述の両端部近傍以外で、最終凝固部を厚さ方向の中央部
に含む厚さ中心部10mm以内の領域のいずれの位置で
も、鋳片の幅方向にWmmの範囲を、たとえば、50μ
mビームサイズのX線マイクロアナライザを用いてMn
含有率を測定する際に、Mn含有率が2.0質量%以上
となる測定点の数が、全測定点数の0.2%未満である
ことを意味する。たとえば、W=20mmの場合には、
鋳片厚さ方向の測定点は200点、幅方向の測定点は4
00点であり、全測定点は200×400=80000
点となる。Mn含有率が2.0質量%以上となる測定点
の数が、全測定点の0.2%未満、すなわち160点未
満であることを意味する。
Further, in a region within a thickness center portion of 10 mm or less including a final solidified portion of the slab at a center portion in a thickness direction, Mn is
An area ratio of 2.0% by mass or more and less than 0.2% means the following. That is, except for the vicinity of both ends described above of the cross section of the slab, at any position within the thickness center portion 10 mm including the final solidified portion in the center in the thickness direction, Wmm in the width direction of the slab. Range, for example, 50μ
Mn using an X-ray microanalyzer with m beam size
When measuring the content, it means that the number of measurement points at which the Mn content is 2.0% by mass or more is less than 0.2% of the total number of measurement points. For example, when W = 20 mm,
200 measurement points in the slab thickness direction, 4 measurement points in the width direction
00 points, all measurement points are 200 × 400 = 80,000
Points. It means that the number of measurement points where the Mn content is 2.0% by mass or more is less than 0.2% of all the measurement points, that is, less than 160 points.

【0013】図2は、厚鋼板の水素誘起割れ面積率に及
ぼす鋳片の厚さ中心部近傍10mm以内の領域における
SおよびMnの含有率の影響を示す図である。以下の内
容の試験を行った結果を示す図である。
FIG. 2 is a diagram showing the effect of the S and Mn contents in a region within 10 mm near the center of the thickness of the slab on the hydrogen-induced cracking area ratio of a thick steel plate. It is a figure which shows the result of having performed the test of the following contents.

【0014】すなわち、鋳片の最終凝固部を厚さ方向の
中央部に含む厚さ中心部10mm以内におけるS含有率
およびMn含有率2.0質量%以上の面積率が、それぞ
れ種々の値を有する厚さ230mmの鋳片サンプルを実
機の連続鋳造機で鋳造して準備し、これら鋳片サンプル
を実験室規模の圧延装置を用いて熱間で厚さ19mmの
鋼板に圧延した。得られた鋼板から試験片を採取し、5
質量%NaClおよび0.5質量%CH3 COOHを含
む飽和H2 SのNACE腐食液(pH:約3.0)中に
96時間浸漬し、水素誘起割れの発生状況を調査した結
果を示す。図中に示す水素誘起割れ面積率(%)とは、
超音波探傷(探傷子;ポイントフォーカス型、50MH
z)により割れ発生と判定される部分の面積を超音波探
傷した鋼板の試験片の全表面積で除した割合のことであ
る。
That is, the S content and the Mn content within an area of 10 mm or less including the final solidified portion of the slab at the center in the thickness direction have an area ratio of 2.0% by mass or more, respectively. The cast slab samples having a thickness of 230 mm were prepared by casting using a continuous caster of an actual machine, and these cast slab samples were hot-rolled into a 19-mm-thick steel plate using a laboratory-scale rolling device. A test piece was collected from the obtained steel sheet, and 5
The results of investigating the state of occurrence of hydrogen-induced cracking by immersing for 96 hours in a NACE corrosion solution (pH: about 3.0) of saturated H 2 S containing mass% NaCl and 0.5 mass% CH 3 COOH are shown. The hydrogen-induced cracking area ratio (%) shown in the figure is
Ultrasonic flaw detection (flaw detector; point focus type, 50 MH
This is a ratio obtained by dividing the area of a portion determined to be cracked by z) by the total surface area of a test piece of a steel plate subjected to ultrasonic flaw detection.

【0015】図2から、つぎのことがわかる。つまり、
Caを含有させて、非金属介在物MnSの析出を抑制す
るとともに、MnSを球状化させても、鋳片の最終凝固
部を厚さ方向の中央部に含む厚さ中心部10mm以内の
領域におけるS含有率が10ppmを超えると、これら
の領域におけるMn含有率が2.0質量%以上の面積率
が零でも、水素誘起割れが発生する。
The following can be seen from FIG. That is,
Ca is contained to suppress the precipitation of the nonmetallic inclusions MnS, and even when the MnS is spheroidized, even in a region within a thickness central portion of 10 mm or less including the final solidified portion of the slab in the central portion in the thickness direction. If the S content exceeds 10 ppm, hydrogen-induced cracking occurs even if the Mn content in these regions is 2.0 mass% or more and the area ratio is zero.

【0016】また、鋳片の最終凝固部を厚さ方向の中央
部に含む厚さ中心部10mm以内の領域におけるS含有
率を10ppm以下にしても、Caを含有させないと、
これらの領域におけるMn含有率が2.0質量%以上の
面積率が0.2%未満でも、水素誘起割れが発生する。
Further, even if the S content in a region within a thickness central portion of 10 mm or less including the final solidified portion of the slab at the center in the thickness direction is 10 ppm or less, if Ca is not contained,
Even if the Mn content in these regions is less than 0.2% when the Mn content is 2.0% by mass or more, hydrogen-induced cracking occurs.

【0017】さらに、鋳片の最終凝固部を厚さ方向の中
央部に含む厚さ中心部10mm以内の領域におけるS含
有率を10ppm以下にし、Caを含有させ、これらの
領域におけるMn含有率が2.0質量%以上の面積率を
0.2%未満とすると、水素誘起割れの発生を抑制でき
る。これらの領域に存在する非金属介在物MnSの析出
量が少なく、かつ存在するMnSの形状が安定して球状
となっているので、これらの領域の硬度は均一になる。
そのため、鋼材の水素誘起割れの発生を抑制できるので
ある。
Further, the S content in a region within a thickness center portion of 10 mm or less including the final solidified portion of the slab in the center in the thickness direction is set to 10 ppm or less, Ca is contained, and the Mn content in these regions is reduced. When the area ratio of 2.0% by mass or more is less than 0.2%, the occurrence of hydrogen-induced cracking can be suppressed. Since the amount of nonmetallic inclusions MnS existing in these regions is small and the shape of the existing MnS is stable and spherical, the hardness of these regions becomes uniform.
Therefore, the occurrence of hydrogen-induced cracking of the steel material can be suppressed.

【0018】本発明の連続鋳造方法では、未凝固部を含
む鋳片をバルジングさせた後に、厚さ中心部が凝固完了
するまでの間に鋳片を圧下するので、鋳片の厚さ中心部
近傍を効果的に圧下できる。
In the continuous casting method of the present invention, after the slab including the unsolidified portion is bulged, the slab is lowered until the thickness center portion is completely solidified. The vicinity can be effectively reduced.

【0019】さらに、中心固相率が0.2〜0.7の鋳
片の位置で、前述の(A)式で表される圧下率Lfが
0.9〜1.5を満足する条件で鋳片を圧下するので、
圧下効果が鋳片の厚さ中心部にまで効果的に及び、最終
凝固部近傍に存在する偏析成分の濃化した溶鋼を鋳造方
向の上流側に速い速度で排出することができる。そのた
め、圧下により圧着される鋳片の厚さ方向の両側の凝固
界面に偏析成分の濃化した溶鋼が捕捉されることがない
ので、SおよびMnの含有率の低い領域が鋳造方向の全
長、鋳片の全幅にわたって、安定して生成する。
Further, at the position of the slab having the center solid phase ratio of 0.2 to 0.7, under the condition that the rolling reduction Lf represented by the above-mentioned formula (A) satisfies 0.9 to 1.5. Since the slab is reduced,
The rolling effect is effectively extended to the center of the thickness of the cast slab, and the molten steel having a segregated component concentrated near the final solidified portion can be discharged at a high speed to the upstream side in the casting direction. Therefore, since the molten steel in which the segregation component is concentrated is not captured at the solidification interface on both sides in the thickness direction of the slab to be pressed by pressing, the region where the content of S and Mn is low is the entire length in the casting direction, Produces stably over the entire width of the slab.

【0020】前述の(A)式において、圧下開始時の鋳
片の未凝固部の厚さD2を、鋳片内部の厚さ方向の両側
の固相率0.8の凝固界面の間の厚さとする理由は、こ
のような固相率が0.8以下の厚さの領域では、圧下力
が伝達しないからであり、この領域を未凝固部とする。
この固相率0.8の凝固界面は、鋳片サイズ、溶鋼過熱
度、鋳造速度、二次冷却比水量などが決まれば、通常用
いられている凝固伝熱解析方法を用いて計算できる。
In the above formula (A), the thickness D2 of the unsolidified portion of the slab at the start of the reduction is defined as the thickness between the solidification interfaces with a solid fraction of 0.8 on both sides in the thickness direction inside the slab. The reason is that the rolling force is not transmitted in such a region where the solid phase ratio is 0.8 or less, and this region is defined as an unsolidified portion.
The solidification interface having a solid phase ratio of 0.8 can be calculated using a commonly used solidification heat transfer analysis method if the slab size, molten steel superheat, casting speed, secondary cooling specific water amount, and the like are determined.

【0021】さらに、本発明の厚鋼板の製造方法では、
前述の鋼の連続鋳造鋳片を用いて熱間圧延する。
Further, in the method for manufacturing a thick steel plate according to the present invention,
Hot rolling is performed using the continuous cast slab of the steel described above.

【0022】[0022]

【発明の実施の形態】本発明では、質量%で、Mn含有
率が1.0〜2.5%、S含有率が0.0001〜0.
0060%である炭素鋼および低合金鋼を対象とするの
に好適である。この程度のMnおよびSを含有する炭素
鋼および低合金鋼では、連続鋳造鋳片に中心偏析が発生
しやすく、その鋳片を素材とする厚鋼板などに、水素誘
起割れが発生しやすいからである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the Mn content is 1.0 to 2.5% and the S content is 0.0001 to 0.
It is suitable for targeting carbon steel and low alloy steel of 0060%. In carbon steel and low alloy steel containing Mn and S of this degree, center segregation is apt to occur in a continuous cast slab, and hydrogen-induced cracking is likely to occur in a thick steel plate or the like using the slab as a material. is there.

【0023】さらに、本発明ではCaを含有する鋼を対
象とする。鋼のCa含有率は、質量%で10〜50pp
mとするのが望ましい。10ppm未満では、Caを添
加することによる非金属介在物MnSの形態制御の効果
が発揮されにくく、また50ppmを超えると、Ca添
加によって生成した硫化物、酸化物などが多くなりす
ぎ、かえって水素誘起割れ感受性が高くなる。
Further, the present invention is directed to a steel containing Ca. The Ca content of the steel is 10 to 50 pp in mass%.
m is desirable. If it is less than 10 ppm, the effect of controlling the form of the nonmetallic inclusion MnS by adding Ca is difficult to exert, and if it exceeds 50 ppm, sulfides and oxides generated by the addition of Ca become too large, and on the contrary hydrogen-induced The crack sensitivity increases.

【0024】本発明の連続鋳造鋳片は、鋳片の最終凝固
部を厚さ方向の中央部に含む厚さ中心部10mm以内の
領域において、S含有率が10ppm以下であり、か
つ、Mn含有率が2.0質量%以上の面積率が0.2%
未満である鋳片とする。
In the continuous cast slab of the present invention, the S content is 10 ppm or less and the Mn content is 10 ppm or less in a region within a thickness center portion of 10 mm including a final solidified portion of the slab in a center portion in a thickness direction. Area ratio of 2.0% by mass or more is 0.2%
Less than the slab.

【0025】鋳片の最終凝固部を厚さ方向の中央部に含
む厚さ中心部10mm以内の領域とするのは、鋼材の水
素誘起割れの発生の起点が多い領域に相当する鋳片の領
域であるからである。
The region within the center of the thickness of 10 mm or less including the final solidified portion of the slab in the center in the thickness direction is defined as the region of the slab corresponding to the region where the starting point of hydrogen-induced cracking of the steel material is large. Because it is.

【0026】また、Mn含有率が2.0質量%以上の面
積率を規定するのは、Mn含有率が2.0質量%以上に
なると、その鋼材の硬度が330Hvに達し、水素誘起
割れが発生しやすくなるからである。その際、Mn含有
率の上限は、とくに限定しない。ただし、本発明が対象
とする鋼が、前述のとおり、Mn含有率が1.0〜2.
5質量%の炭素鋼または低合金鋼であるので、たとえ
ば、前述の50μmビームサイズのX線マイクロアナラ
イザを用いて分析する際、Mn含有率が3.8質量%程
度となる場合がある。いずれにせよ、Mn含有率が2.
0質量%以上である面積率を求めるものとする。
The reason why the area ratio when the Mn content is 2.0% by mass or more is that when the Mn content becomes 2.0% by mass or more, the hardness of the steel material reaches 330 Hv, and hydrogen-induced cracking occurs. This is because it easily occurs. At that time, the upper limit of the Mn content is not particularly limited. However, the steel targeted by the present invention has a Mn content of 1.0 to 2.
Since it is 5 mass% of carbon steel or low alloy steel, for example, when analyzed using the above-mentioned X-ray microanalyzer having a beam size of 50 μm, the Mn content may be about 3.8 mass%. In any case, the Mn content is 2.
An area ratio of 0% by mass or more is determined.

【0027】さらに、上述の鋳片の領域におけるS含有
率およびMn含有率が2.0質量%以上の面積率をそれ
ぞれ上限を規定する理由は、これらの鋳片の領域に存在
する非金属介在物MnSの析出量が少なくなるからであ
る。Caを含有させることによるMnSの形態制御の効
果も合わさって、これらの鋳片の領域の硬度は均一にな
り、鋼材の水素誘起割れの発生を抑制できる。
Further, the reason why the upper limit is set for the area ratios of the S content and the Mn content of 2.0% by mass or more in the above-described slab regions is that the non-metallic intervening existing in these slab regions. This is because the precipitation amount of the substance MnS decreases. The effect of controlling the morphology of MnS by containing Ca is also combined, so that the hardness of these cast slab regions becomes uniform, and the occurrence of hydrogen-induced cracking of the steel material can be suppressed.

【0028】鋳片の最終凝固部を厚さ方向の中央部に含
む厚さ中心部10mm以内の領域から、たとえば直径3
mm〜5mmのドリル刃により切り削を採取してS含有
率を分析するに際し、鋳片幅中央部および幅の1/4部
の少なくとも2カ所から切り削を採取するのが好まし
い。また、Mn含有率を、たとえば、50μmビームサ
イズのX線マイクロアナライザを用いて分析するに際
し、鋳片幅中央部および幅の1/4部の少なくとも2カ
所において、鋳片の幅方向にW=20mm程度の領域を
測定するのが好ましい。図3は、本発明の連続鋳造方法
を実施するための連続鋳造機の例を示す模式図である。
浸漬ノズル4を経て鋳型1内に注入された溶鋼3は、鋳
型で冷却されて凝固する。形成された凝固殻2aは、鋳
型の下方のノズル群(図示していない)から噴射される
冷却水により冷却され、その厚さが増していく。内部に
未凝固部2bを含む鋳片2は、ガイドロール5により支
持、案内されながら、ピンチロール7により引き抜かれ
る。その際、未凝固部を含む鋳片を、ガイドロールの鋳
片厚さ方向の間隔を拡げることにより、バルジングゾー
ン8内でバルジングさせる。さらに、バルジングさせた
鋳片を、厚さ中心部が凝固完了するまでの間の圧下ゾー
ン9で、圧下ロール対6を用いて圧下する。図3では、
2つの圧下ロール対を用いて鋳片を圧下する例を示す。
本発明の連続鋳造方法では、未凝固部を含む鋳片をバル
ジングさせた後、厚さ中心部が凝固完了するまでの間
の、中心固相率が0.2〜0.7の鋳片の位置で、1つ
以上の圧下ロール対を用いて鋳片を圧下する。
From a region within a central portion of 10 mm in thickness including a final solidified portion of the slab at a central portion in a thickness direction, for example, a diameter of 3 mm
In analyzing the S content by extracting a cut with a drill blade having a diameter of 5 mm to 5 mm, it is preferable to collect a cut from at least two places, that is, the center of the slab width and 1/4 of the width. Further, when analyzing the Mn content using, for example, an X-ray microanalyzer having a beam size of 50 μm, at least two locations, ie, the central part of the slab width and 1 / part of the width, W = W in the width direction of the slab. It is preferable to measure an area of about 20 mm. FIG. 3 is a schematic view showing an example of a continuous casting machine for performing the continuous casting method of the present invention.
The molten steel 3 injected into the mold 1 through the immersion nozzle 4 is cooled by the mold and solidified. The formed solidified shell 2a is cooled by cooling water injected from a group of nozzles (not shown) below the mold, and its thickness increases. The slab 2 including the unsolidified portion 2 b therein is pulled out by the pinch roll 7 while being supported and guided by the guide roll 5. At this time, the slab including the unsolidified portion is bulged in the bulging zone 8 by increasing the interval between the guide rolls in the slab thickness direction. Further, the bulged slab is reduced using the pair of reduction rolls 6 in the reduction zone 9 until the thickness center portion is completely solidified. In FIG.
The example which reduces a cast slab using two reduction roll pairs is shown.
In the continuous casting method of the present invention, after bulging the slab including the unsolidified portion, until the thickness center portion is completely solidified, the center solid phase ratio of the slab of 0.2 to 0.7 At the location, the slab is reduced using one or more reduction roll pairs.

【0029】未凝固部を含む鋳片をバルジングさせた後
に鋳片を圧下するので、鋳片の厚さ中心部近傍を効果的
に圧下できる。中心固相率が0.2未満では、圧下時期
が早すぎて、未凝固部の厚さが厚く、圧下率Lfを0.
9以上とするためには圧下量を過大に大きくする必要が
あり、実際にはこのような大きな圧下量を確保すること
は困難である。また、中心固相率が0.7を超えると、
圧下時期が遅すぎるため未凝固部の溶鋼の流動性が悪い
ので、偏析成分の濃化した溶鋼を鋳造方向の上流側に完
全に排出できず、局所的に偏析成分の濃化した溶鋼が残
存する。
Since the slab is reduced after bulging the slab including the unsolidified portion, the vicinity of the center of the thickness of the slab can be reduced effectively. When the central solid phase ratio is less than 0.2, the rolling period is too early, the thickness of the unsolidified portion is large, and the rolling ratio Lf is set to 0.1.
In order to make it 9 or more, it is necessary to make the rolling reduction excessively large, and it is actually difficult to secure such a large rolling reduction. Also, when the center solid fraction exceeds 0.7,
Because the rolling time is too late, the fluidity of the molten steel in the unsolidified part is poor, so the molten steel with concentrated segregation components cannot be completely discharged upstream in the casting direction, and the molten steel with locally concentrated segregation components remains. I do.

【0030】本発明の連続鋳造方法では、前述の(A)
式で表される圧下率Lfが0.9〜1.5を満足する条
件で鋳片を圧下する。
In the continuous casting method of the present invention, the aforementioned (A)
The slab is reduced under the condition that the reduction ratio Lf represented by the formula satisfies 0.9 to 1.5.

【0031】圧下率Lfが0.9未満では、圧下量が小
さいので、偏析成分の濃化した溶鋼が鋳造方向の上流側
に排出される量が少なくなったり、その排出速度が遅く
なる。したがって、偏析成分の濃化した溶鋼が鋳片の厚
さ中心部近傍に取り残されやすい。圧下率Lfが1.5
を超えると、圧下量が過大に大きくなり、実際にはこの
ような大きな圧下量を確保することは困難である。
If the rolling reduction Lf is less than 0.9, the rolling reduction is small, so that the amount of molten steel in which the segregated component is concentrated is discharged to the upstream side in the casting direction, or the discharging speed is reduced. Therefore, the molten steel in which the segregation component is concentrated is likely to be left near the center of the thickness of the slab. Reduction ratio Lf is 1.5
When it exceeds, the reduction amount becomes excessively large, and it is actually difficult to secure such a large reduction amount.

【0032】さらに、圧下量はバルジング量の50%以
上とするのが望ましい。50%以上の場合に、鋳片の厚
さ中心部近傍をより効果的に圧下できる。
Further, it is desirable that the amount of reduction be 50% or more of the bulging amount. When it is 50% or more, the vicinity of the center of the thickness of the slab can be reduced more effectively.

【0033】圧下ロール対は1対を1台とすれば、1台
以上で圧下する。複数台で圧下する場合は、それぞれの
圧下ロール対ごとに、前述の(A)式で表される圧下率
Lfが0.9〜1.5となる条件で圧下する。
Assuming that one pair of reduction rolls is one, the reduction is performed by one or more rolls. In the case of rolling down by a plurality of rolls, rolling down is performed under the condition that the rolling-down rate Lf represented by the above-mentioned formula (A) is 0.9 to 1.5 for each rolling roll pair.

【0034】図3の模式図では、垂直型連続鋳造機を示
しているが、湾曲型連続鋳造機、垂直曲げ型連続鋳造機
にも本発明の方法を適用できる。
Although the vertical type continuous casting machine is shown in the schematic diagram of FIG. 3, the method of the present invention can be applied to a curved type continuous casting machine and a vertical bending type continuous casting machine.

【0035】耐水素誘起割れ性に優れた厚鋼板は、本発
明の連続鋳造鋳片を熱間で圧延して製造することができ
る。鋳片の加熱温度、在炉時間、圧延温度などは、通常
の同様な化学組成の連続鋳造鋳片を熱間で圧延する場合
と同じ条件で構わない。
A steel plate having excellent resistance to hydrogen-induced cracking can be produced by hot rolling the continuous cast slab of the present invention. The heating temperature, the in-furnace time, the rolling temperature, etc. of the slab may be the same conditions as in the case of hot rolling a continuous cast slab having a similar chemical composition.

【0036】[0036]

【実施例】垂直曲げ型連続鋳造機を用いて、合計12ヒ
ートの鋳造試験を行った。鋳片サイズは、いずれも厚さ
230mm、幅2300mmとし、1ヒートの単鋳で鋳
造した。1ヒートは約250tonである。表1に、用
いた鋼の化学組成を示す。用いた鋼は、Mn含有率が
1.50質量%、Nb含有率が0.042質量%で、C
a含有率が0.0025質量%の厚鋼板用の鋼とした。
EXAMPLE Using a vertical bending type continuous casting machine, a casting test was conducted for a total of 12 heats. Each of the cast pieces had a thickness of 230 mm and a width of 2300 mm, and was cast by single casting with one heat. One heat is about 250 tons. Table 1 shows the chemical composition of the steel used. The steel used had a Mn content of 1.50% by mass, a Nb content of 0.042% by mass, and C
The steel for thick steel plates having a content of 0.0025% by mass was used.

【0037】[0037]

【表1】 タンディッシュ内における溶鋼の過熱度は25〜35℃
とした。鋳造速度は0.90〜1.13m/分とし、ま
た二次冷却比水量は1.2〜1.5リットル/kg−鋼
とし、これら鋳造速度、二次冷却比水量を変更すること
により、圧下開始時の中心固相率を変化させて試験し
た。中心固相率は、通常の凝固伝熱解析方法を用いて計
算により求めた。
[Table 1] Superheat degree of molten steel in tundish is 25-35 ° C
And The casting speed is 0.90 to 1.13 m / min, and the secondary cooling specific water amount is 1.2 to 1.5 liter / kg-steel. By changing the casting speed and the secondary cooling specific water amount, The test was performed by changing the center solid phase ratio at the start of reduction. The center solid fraction was determined by calculation using an ordinary solidification heat transfer analysis method.

【0038】圧下前のバルジング量は鋳片幅中央部で2
0mmとし、その後、直径400mmの1つの圧下ロー
ル対で未凝固部を含む鋳片を圧下した。この圧下ロール
対は溶鋼のメニスカスから21mの位置に配置した。鋳
造方向で長さ100mmの鋳片横断面サンプルを採取し
た。この横断面サンプルの厚さ中心部で、鋳片幅方向中
心部および幅の1/4部から、直径3mmのドリル刃に
より切り削を採取してSを分析し、その平均値を求め
た。また、ドリル刃で切り削を採取した部分を外して、
鋳片幅方向中心部および幅の1/4部から、幅方向に2
0mmで全厚のサンプルを切り出し、X線マイクロアナ
ライザを用いて、50μmビームサイズでMn含有率を
測定した。その際、Mn含有率が2.0質量%以上とな
る測定点の数を、全測定点数で除した面積率を求めた。
測定サンプル毎の全測定点は200×400=8000
0点である。
The bulging amount before the reduction is 2 at the center of the slab width.
After that, the slab including the unsolidified portion was reduced by one reduction roll pair having a diameter of 400 mm. This rolling roll pair was arranged at a position 21 m from the meniscus of the molten steel. A slab cross section sample having a length of 100 mm in the casting direction was collected. At the center of the thickness of this cross-sectional sample, a cut was taken from the center of the slab in the width direction of the slab and 1 / of the width with a drill blade having a diameter of 3 mm, S was analyzed, and the average value was obtained. Also, remove the part where the cut was collected with the drill blade,
From the center in the slab width direction and 1/4 of the width, 2
A sample having a total thickness of 0 mm was cut out, and the Mn content was measured using an X-ray microanalyzer with a beam size of 50 μm. At that time, the area ratio was obtained by dividing the number of measurement points at which the Mn content was 2.0% by mass or more by the total number of measurement points.
All measurement points for each measurement sample are 200 × 400 = 8000
0 points.

【0039】また、得られた鋳片を素材として厚さ19
mmの厚鋼板に圧延し、厚鋼板の引張強度を調査した。
また、縦100mm、横150mmの厚鋼板サンプルを
採取し、5質量%NaClおよび0.5質量%CH3
OOHを含む飽和H2 SのNACE腐食液(pH:約
3.0)中に96時間浸漬し、水素誘起割れの発生状況
を調査した。水素誘起割れの発生の有無は、超音波探傷
(感度8dB)により調査した。超音波探傷した厚鋼板
サンプルの面積に対して、水素誘起割れの発生している
領域の面積の割合を、水素誘起割れ面積率として求め
た。試験条件および試験結果を表2に示す。
The obtained cast slab is used as a raw material and has a thickness of 19 mm.
mm, and the tensile strength of the steel plate was investigated.
In addition, a thick steel plate sample having a length of 100 mm and a width of 150 mm was sampled, and 5% by mass of NaCl and 0.5% by mass of CH 3 C were collected.
It was immersed in a saturated H 2 S NACE etchant containing OOH (pH: about 3.0) for 96 hours, and the state of occurrence of hydrogen-induced cracking was examined. The presence or absence of hydrogen-induced cracking was examined by ultrasonic testing (8 dB sensitivity). The ratio of the area of the region where the hydrogen-induced cracking occurred to the area of the steel plate sample subjected to ultrasonic flaw detection was determined as the hydrogen-induced cracking area ratio. Table 2 shows the test conditions and test results.

【0040】[0040]

【表2】 試験No.1では、鋳造速度を1.0m/分、二次冷却
の比水量を1.4リットル/kg−鋼、圧下量D1を2
0mmとした。圧下開始時の、中心固相率は0.5、未
凝固部の厚さD2は20mmとなるので、圧下率Lfは
1.0であった。また、試験No.2では、鋳造速度を
0.95m/分、二次冷却の比水量を1.3リットル/
kg−鋼、圧下量D1を20mmとした。圧下開始時
の、中心固相率は0.7、未凝固部の厚さD2は15m
mとなるので、圧下率Lfは1.3であった。これら試
験No.1およびNo.2での中心固相率および圧下率
Lfは、それぞれ本発明で規定する条件の範囲内の値で
ある。
[Table 2] Test No. In No. 1, the casting speed was 1.0 m / min, the specific water volume of the secondary cooling was 1.4 L / kg-steel, and the rolling reduction D1 was 2
0 mm. At the start of the reduction, the center solid phase ratio was 0.5, and the thickness D2 of the unsolidified portion was 20 mm. Therefore, the reduction ratio Lf was 1.0. Test No. In No. 2, the casting speed was 0.95 m / min, and the specific water volume of the secondary cooling was 1.3 liters / minute.
kg-steel and the amount of reduction D1 were 20 mm. At the start of the reduction, the central solid phase ratio is 0.7, and the thickness D2 of the unsolidified portion is 15 m.
m, the rolling reduction Lf was 1.3. These test Nos. 1 and No. The center solid phase ratio and the rolling reduction Lf in 2 are values within the range of the conditions defined in the present invention, respectively.

【0041】試験No.1では、鋳片の厚さ中心部近傍
10mm以内の領域において、S含有率は9ppm、M
n含有率が2.0質量%以上の面積率は0.1%で低い
値であった。また、試験No.2では、鋳片の厚さ中心
部近傍10mm以内の領域において、S含有率は7pp
m、Mn含有率が2.0質量%以上の面積率は0.05
%で低い値であった。これら試験No.1およびNo.
2でのS含有率、およびMn含有率が2.0質量%以上
の面積率は、本発明で規定する条件の範囲内である。厚
さ中心部にまで圧下の効果が効果的に及んだので、鋳片
の厚さ方向の両側の凝固界面に、偏析成分の濃化した溶
鋼が捕捉されることがなく、SおよびMnの含有率の低
い領域が安定して生成した。さらに、これら試験No.
1およびNo.2の鋳片を素材とする厚鋼板には、水素
誘起割れは発生しなかった。また、これら厚鋼板の引張
強度は590MPaまたは591MPaであった。この
引張強度は目標とする強度の範囲内である。なお、目標
とする厚鋼板の引張強度は、前述の表1に示す化学組成
の鋼であるので、500Mpa以上である。
Test No. In No. 1, the S content was 9 ppm in the region within 10 mm near the center of the thickness of the slab,
The area ratio where the n content was 2.0% by mass or more was a low value of 0.1%. Test No. In No. 2, the S content was 7 pp in a region within 10 mm near the center of the thickness of the slab.
The area ratio where the m and Mn content is 2.0% by mass or more is 0.05.
% Was a low value. These test Nos. 1 and No.
The S content and the Mn content of 2.0 in the area ratio of 2.0% by mass or more are within the range defined by the present invention. Since the effect of the reduction was effectively applied to the center of the thickness, the solidified interface on both sides in the thickness direction of the slab did not capture the molten steel in which the segregated component was concentrated. A region with a low content was formed stably. Further, in these test nos.
1 and No. No hydrogen-induced cracking occurred in a thick steel plate made of the cast slab No. 2. The tensile strength of these thick steel plates was 590 MPa or 591 MPa. This tensile strength is within the target strength range. Note that the target tensile strength of the thick steel plate is 500 Mpa or more because the steel plate has the chemical composition shown in Table 1 described above.

【0042】試験No.3では、鋳造速度を1.05m
/分、二次冷却の比水量を1.4リットル/kg−鋼、
圧下量D1を20mmとした。圧下開始時の、中心固相
率は0.3、未凝固部の厚さD2は25mmとなるの
で、圧下率Lfは0.8であった。また、試験No.4
では、鋳造速度を0.95m/分、二次冷却の比水量を
1.3リットル/kg−鋼、圧下量D1を10mmとし
た。圧下開始時の、中心固相率は0.7、未凝固部の厚
さD2は15mmとなるので、圧下率Lfは0.7であ
った。これら試験No.3およびNo.4での圧下率L
fは、それぞれ本発明で規定する条件を外れて小さな値
である。
Test No. In 3, the casting speed was 1.05m
/ Min, the specific water volume of the secondary cooling is 1.4 liter / kg-steel,
The rolling reduction D1 was set to 20 mm. At the start of the reduction, the central solid phase ratio was 0.3, and the thickness D2 of the unsolidified portion was 25 mm. Therefore, the reduction ratio Lf was 0.8. Test No. 4
In this test, the casting speed was 0.95 m / min, the specific water volume of the secondary cooling was 1.3 liter / kg-steel, and the reduction D1 was 10 mm. At the start of the reduction, the center solid phase ratio was 0.7, and the thickness D2 of the unsolidified portion was 15 mm. Therefore, the reduction ratio Lf was 0.7. These test Nos. 3 and No. 3 Reduction ratio L at 4
f is a small value outside the conditions defined in the present invention.

【0043】試験No.3では、鋳片の厚さ中心部近傍
10mm以内の領域において、S含有率は13ppm、
Mn含有率が2.0質量%以上の面積率は0.5%であ
った。また、試験No.4では、鋳片の厚さ中心部近傍
10mm以内の領域において、S含有率は14ppm、
Mn含有率が2.0質量%以上の面積率は0.8%であ
った。これら試験No.3およびNo.4でのS含有
率、およびMn含有率が2.0質量%以上の面積率は、
本発明で規定する条件を外れた大きな値である。圧下率
Lfが小さい値であったので、厚さ中心部にまで圧下の
効果が十分及ばなかったためである。さらに、これら試
験No.3およびNo.4の鋳片を素材とする厚鋼板に
は、水素誘起割れが発生し、これらの水素誘起割れ面積
率は7.6%または9.2%であった。また、これら厚
鋼板の引張強度は589MPaまたは592MPaであ
った。
Test No. In 3, the S content was 13 ppm in a region within 10 mm near the center of the thickness of the slab,
The area ratio where the Mn content was 2.0% by mass or more was 0.5%. Test No. In 4, the S content was 14 ppm in a region within 10 mm near the center of the thickness of the slab,
The area ratio where the Mn content was 2.0% by mass or more was 0.8%. These test Nos. 3 and No. 3 4, the S content and the Mn content are 2.0% by mass or more in area ratio.
This is a large value outside the conditions defined in the present invention. This is because the rolling reduction Lf was a small value, and the rolling reduction effect did not sufficiently reach the center of the thickness. Further, in these test nos. 3 and No. 3 Hydrogen-induced cracks occurred in the thick steel plate using the slab of No. 4 as a material, and the hydrogen-induced cracking area ratio was 7.6% or 9.2%. Further, the tensile strength of these thick steel plates was 589 MPa or 592 MPa.

【0044】試験No.5では、鋳造速度を1.13m
/分、二次冷却の比水量を1.5リットル/kg−鋼、
圧下量D1を20mmとした。圧下開始時の、中心固相
率は0.1、未凝固部の厚さD2は35mmとなるの
で、圧下率Lfは0.57であった。また試験No.6
では、鋳造速度を0.9m/分、二次冷却の比水量を
1.2リットル/kg−鋼、圧下量D1を20mmとし
た。圧下開始時の、中心固相率は0.8、未凝固部の厚
さD2は11mmとなるので、圧下率Lfは1.8であ
った。これら試験No.5およびNo.6での圧下開始
時の中心固相率、および圧下率Lfは、それぞれ本発明
で規定する条件を外れて、小さいかまたは大きな値であ
る。
Test No. In 5, the casting speed was 1.13 m
/ Min, the specific water volume of the secondary cooling is 1.5 liter / kg-steel,
The rolling reduction D1 was set to 20 mm. At the start of the reduction, the center solid phase ratio was 0.1, and the thickness D2 of the unsolidified portion was 35 mm. Therefore, the reduction ratio Lf was 0.57. Test No. 6
In the test, the casting speed was 0.9 m / min, the specific water volume of the secondary cooling was 1.2 liter / kg-steel, and the reduction D1 was 20 mm. At the start of the reduction, the center solid phase ratio was 0.8, and the thickness D2 of the unsolidified portion was 11 mm. Therefore, the reduction ratio Lf was 1.8. These test Nos. 5 and No. 5 The center solid phase ratio at the start of rolling and the rolling ratio Lf at 6 are smaller or larger values, respectively, outside the conditions defined in the present invention.

【0045】試験No.5では、鋳片の厚さ中心部近傍
10mm以内の領域において、S含有率は13ppm、
Mn含有率が2.0質量%以上の面積率は2.1%であ
った。また、試験No.6では、鋳片の厚さ中心部近傍
10mm以内の領域において、S含有率は16ppm、
Mn含有率が2.0質量%以上の面積率は6.3%であ
った。これら試験No.5およびNo.6でのS含有
率、およびMn含有率が2.0質量%以上の面積率は、
本発明で規定する条件を外れた大きな値である。試験N
o.5では、中心固相率および圧下率Lfがともに小さ
く、厚さ中心部にまで圧下の効果が十分及ばなかったた
めである。また、試験No.6では、中心固相率および
圧下率Lfがともに大きく、厚さ中心部にまで圧下の効
果が十分及ばなかったためである。さらに、これら試験
No.5およびNo.6の鋳片を素材とする厚鋼板に
は、水素誘起割れが発生し、これらの水素誘起割れ面積
率は26.8%または32.2%であった。また、これ
ら厚鋼板の引張強度は590MPaまたは592MPa
であった。
Test No. 5, the S content was 13 ppm in a region within 10 mm near the center of the thickness of the slab,
The area ratio where the Mn content was 2.0% by mass or more was 2.1%. Test No. In 6, the S content was 16 ppm in a region within 10 mm near the center of the thickness of the slab,
The area ratio where the Mn content was 2.0% by mass or more was 6.3%. These test Nos. 5 and No. 5 6, the S content and the Mn content are 2.0% by mass or more in area ratio.
This is a large value outside the conditions defined in the present invention. Test N
o. In No. 5, both the central solid phase ratio and the reduction ratio Lf were small, and the reduction effect did not sufficiently reach the center of the thickness. Test No. In No. 6, both the central solid phase ratio and the reduction ratio Lf were large, and the reduction effect did not sufficiently reach the center of the thickness. Further, in these test nos. 5 and No. 5 Hydrogen-induced cracking occurred in a thick steel plate made of the cast slab No. 6, and the hydrogen-induced cracking area ratio was 26.8% or 32.2%. Further, the tensile strength of these thick steel plates is 590 MPa or 592 MPa.
Met.

【0046】[0046]

【発明の効果】本発明の連続鋳造鋳片、その鋳片の鋳造
方法およびその鋳片を熱間圧延する厚鋼板の製造方法の
適用により、ラインパイプ、油井管などの用途に適した
耐水素誘起割れ性に優れた厚鋼板などを得ることができ
る。
According to the present invention, the continuous cast slab, the method for casting the slab, and the method for producing a thick steel plate obtained by hot rolling the slab are applied to hydrogen-resistant steel suitable for use in line pipes and oil country tubular goods. It is possible to obtain a thick steel plate or the like having excellent induced cracking properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋳片の横断面を示す模式図である。FIG. 1 is a schematic view showing a cross section of a slab.

【図2】厚鋼板の水素誘起割れ面積率に及ぼす鋳片の厚
さ中心部近傍10mm以内の領域におけるSおよびMn
の含有率の影響を示す図である。
FIG. 2 shows the effect of S and Mn in a region within 10 mm near the center of the thickness of a slab on the hydrogen-induced cracking area ratio of a thick steel plate.
It is a figure which shows the influence of the content rate of.

【図3】本発明の連続鋳造方法を実施するための連続鋳
造機の例を示す模式図である。
FIG. 3 is a schematic view showing an example of a continuous casting machine for performing the continuous casting method of the present invention.

【符号の説明】[Explanation of symbols]

1:鋳型 2:鋳片 2a:凝固殻 2b:未凝固部 3:溶鋼 4:浸漬ノズル 5:ガイドロール 6:圧下ロール対 7:ピンチロール 8:バルジングゾーン 9:圧下ゾーン Tc:ほぼ直線状の最終凝固部 T1 :Tcの上側の5mmの位置の直線 T2 :Tcの下側の5mmの位置の直線 T0 :鋳片厚さ1: mold 2: cast slab 2a: solidified shell 2b: unsolidified portion 3: molten steel 4: immersion nozzle 5: guide roll 6: reduction roll pair 7: pinch roll 8: bulging zone 9: reduction zone Tc: substantially linear Final solidified portion T 1 : straight line at 5 mm above Tc T 2 : straight line at 5 mm below Tc T 0 : slab thickness

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/16 B22D 11/16 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) B22D 11/16 B22D 11/16 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋳片の最終凝固部を厚さ方向の中央部に含
む厚さ中心部10mm以内の領域において、S含有率が
10ppm以下であり、かつMn含有率が2.0質量%
以上の面積率が0.2%未満であることを特徴とするC
aを含有する鋼の連続鋳造鋳片。
An S content is 10 ppm or less and a Mn content is 2.0% by mass in a region within a thickness center portion of 10 mm including a final solidified portion of a slab in a center portion in a thickness direction.
C, wherein the above area ratio is less than 0.2%.
Continuous cast slab of steel containing a.
【請求項2】未凝固部を含む鋳片をバルジングさせた
後、厚さ中心部が凝固完了するまでの間に1つ以上の圧
下ロール対により圧下する方法において、中心固相率が
0.2〜0.7の鋳片の位置で、下記(A)式で表され
る圧下率Lfが0.9〜1.5を満足する条件で鋳片を
圧下することを特徴とする請求項1に記載の連続鋳造鋳
片の鋳造方法。 Lf=D1/D2 ・・・(A) ここで、D1:未凝固部を含む鋳片の幅中央部における
圧下量(mm) D2:圧下開始時の固相率0.8以下の未凝固部の厚さ
(mm)
2. A method in which a slab including an unsolidified portion is bulged and then reduced by one or more pairs of reduction rolls until solidification of a thickness central portion is completed. The slab is reduced at a position of the slab of 2 to 0.7 under a condition that a reduction ratio Lf represented by the following formula (A) satisfies 0.9 to 1.5. The method for casting a continuous cast slab according to item 1. Lf = D1 / D2 (A) Here, D1: The amount of reduction (mm) at the center of the width of the slab including the unsolidified portion. D2: The unsolidified portion having a solid phase ratio of 0.8 or less at the start of the reduction. Thickness (mm)
【請求項3】請求項1に記載の連続鋳造鋳片を熱間で圧
延することを特徴とする厚鋼板の製造方法。
3. A method for producing a thick steel plate, comprising hot rolling the continuous cast slab according to claim 1.
JP2000249633A 2000-08-21 2000-08-21 Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate Expired - Fee Related JP3494136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249633A JP3494136B2 (en) 2000-08-21 2000-08-21 Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249633A JP3494136B2 (en) 2000-08-21 2000-08-21 Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Publications (2)

Publication Number Publication Date
JP2002066705A true JP2002066705A (en) 2002-03-05
JP3494136B2 JP3494136B2 (en) 2004-02-03

Family

ID=18739348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249633A Expired - Fee Related JP3494136B2 (en) 2000-08-21 2000-08-21 Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Country Status (1)

Country Link
JP (1) JP3494136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341297A (en) * 2005-06-10 2006-12-21 Sumitomo Metal Ind Ltd Continuous casting method, and continuously cast slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341297A (en) * 2005-06-10 2006-12-21 Sumitomo Metal Ind Ltd Continuous casting method, and continuously cast slab
JP4548231B2 (en) * 2005-06-10 2010-09-22 住友金属工業株式会社 Steel continuous casting method and continuous cast slab

Also Published As

Publication number Publication date
JP3494136B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
JP4830612B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP6115735B2 (en) Steel continuous casting method
CA2686301A1 (en) Compact strip or thin slab processing of boron/titanium steels
JP3705101B2 (en) Continuous casting method
EP2881196B1 (en) Method for continuously casting steel
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP3508715B2 (en) High Cr steel slab and seamless steel pipe
JP4508087B2 (en) Continuous casting method and continuous cast slab
JP3702807B2 (en) Continuous casting method
JP5206239B2 (en) Continuous casting method of high N content duplex stainless steel
JP7147477B2 (en) Continuous casting method for billet slab
JP4997983B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP5648300B2 (en) Steel continuous casting method
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JP4241137B2 (en) Quality judgment method for continuous cast slabs
JP2008062251A (en) Method for reducing central segregation of spring steel in continuous casting of large cross section bloom
JP3960249B2 (en) Continuous casting method
Huitron et al. Identification of cracking issues and process improvements through plant monitoring and numerical modelling of secondary cooling during continuous casting of HSLA steels
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3356100B2 (en) Continuous casting method
JPWO2019203137A1 (en) Continuous casting method for steel
JP3671868B2 (en) Method for casting high Cr steel
JP7355285B1 (en) Continuous steel casting method
JPH11179509A (en) Continuous casting method of billet cast slab

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3494136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees