JP2002061637A - Dynamic pressure type bearing device - Google Patents

Dynamic pressure type bearing device

Info

Publication number
JP2002061637A
JP2002061637A JP2000252943A JP2000252943A JP2002061637A JP 2002061637 A JP2002061637 A JP 2002061637A JP 2000252943 A JP2000252943 A JP 2000252943A JP 2000252943 A JP2000252943 A JP 2000252943A JP 2002061637 A JP2002061637 A JP 2002061637A
Authority
JP
Japan
Prior art keywords
bearing
housing
dynamic pressure
thrust
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000252943A
Other languages
Japanese (ja)
Inventor
Tsuguto Nakaseki
嗣人 中関
Kazuo Okamura
一男 岡村
Masayuki Kuroda
正幸 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2000252943A priority Critical patent/JP2002061637A/en
Publication of JP2002061637A publication Critical patent/JP2002061637A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily set a thrust bearing clearance in a thrust bearing portion with precision. SOLUTION: A positioning member 9 is interposed between an inner bottom surface 7c1 of a housing 7 and a lower end surface 8b of a shaft bearing member 8. When the bearing member 8 is inserted along an inner peripheral surface 7a of the housing 7 until it abuts a step portion 7a1, a position of a lower end surface 8b of the bearing member 8 with respect to the inner bottom surface 7c1 of the housing 7 is decided at a given position W by the dimension from the inner bottom surface 7c1 of the step portion 7a1. Therefore, if a width dimension W of the positioning member 9 is controlled to a value obtained by adding thrust bearing clearances S2, S3 on both sides to the width dimension W1 of the thrust plate 2b W=W1+(S3+S4)}, then the thrust bearing clearances S3, S4 can be easily set with precision by the positioning member 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動圧型軸受装置に
関する。この軸受装置は、特に情報機器、例えばHD
D、FDD等の磁気ディスク装置、CD−ROM、DV
D−ROM等の光ディスク装置、MD、MO等の光磁気
ディスク装置などのスピンドルモータ、あるいはレーザ
ビームプリンタ(LBP)のポリゴンスキャナモータな
どのスピンドル支持用として好適である。
The present invention relates to a dynamic pressure bearing device. This bearing device is particularly suitable for information equipment such as HD
D, FDD, etc., magnetic disk drive, CD-ROM, DV
It is suitable for supporting a spindle motor such as an optical disk device such as a D-ROM, a magneto-optical disk device such as an MD or MO, or a polygon scanner motor of a laser beam printer (LBP).

【0002】[0002]

【従来の技術】上記各種情報機器のスピンドルモータに
は、高回転精度の他、高速化、低コスト化、低騒音化な
どが求められている。これらの要求性能を決定づける構
成要素の一つに当該モータのスピンドルを支持する軸受
があり、近年では、この種の軸受として、上記要求性能
に優れた特性を有する動圧型軸受の使用が検討され、あ
るいは実際に使用されている。
2. Description of the Related Art Spindle motors for various information devices are required to have high rotational accuracy, high speed, low cost, low noise, and the like. One of the components that determine these required performances is a bearing that supports the spindle of the motor.In recent years, as this type of bearing, the use of a dynamic pressure bearing having characteristics excellent in the required performance has been studied. Or they are actually used.

【0003】図8は、HDD等のディスク装置のスピン
ドルモータに組込まれる動圧型軸受装置の一構成例を示
している。この動圧軸受装置には、軸部材としての回転
軸20をラジアル方向に回転自在に非接触支持するラジ
アル軸受部21と、回転軸20をスラスト方向に回転自
在に非接触支持するスラスト軸受部22とが設けられ、
これらの軸受部21、22は何れも軸受面に動圧発生用
の溝(動圧溝)を有する動圧型軸受である。ラジアル軸
受部21の動圧溝は、ハウジング23の内周面(ラジア
ル軸受面)23a又は回転軸20の外周面に形成され、
スラスト軸受部22の動圧溝は、回転軸20の下端に設
けられたスラスト板20bの両端面20b1、20b
2、あるいは、これに対向する面(スラスト軸受面)に
それぞれ形成される。ハウジング23の側部23bの下
方部分には、スラスト板20bの幅寸法にスラスト軸受
隙間の大きさ(両側で10〜20μm程度)を加算した
幅寸法の段差部23cが設けられ、この段差部23cに
続くインロー部23dに底部(バックメタル)23eを
組み込むことによって、スラスト板20bの軸方向両側
に所定値のスラスト軸受隙間S1、S2が形成される。
FIG. 8 shows a configuration example of a dynamic pressure type bearing device incorporated in a spindle motor of a disk device such as an HDD. This dynamic pressure bearing device includes a radial bearing portion 21 that rotatably supports a rotating shaft 20 as a shaft member in a radial direction in a non-contact manner, and a thrust bearing portion 22 that supports a rotating shaft 20 in a non-contact manner so as to be rotatable in a thrust direction. Is provided,
Each of these bearing portions 21 and 22 is a dynamic pressure bearing having a groove (dynamic pressure groove) for generating dynamic pressure on the bearing surface. The dynamic pressure groove of the radial bearing portion 21 is formed on the inner peripheral surface (radial bearing surface) 23 a of the housing 23 or the outer peripheral surface of the rotating shaft 20.
The dynamic pressure grooves of the thrust bearing portion 22 are provided at both end surfaces 20b1, 20b of a thrust plate 20b provided at the lower end of the rotating shaft 20.
2, or a surface (a thrust bearing surface) opposed thereto. A step portion 23c having a width obtained by adding the size of the thrust bearing gap (about 10 to 20 μm on both sides) to the width of the thrust plate 20b is provided below the side portion 23b of the housing 23. By incorporating the bottom portion (back metal) 23e in the spigot portion 23d following the above, thrust bearing gaps S1 and S2 of a predetermined value are formed on both axial sides of the thrust plate 20b.

【0004】[0004]

【発明が解決しようとする課題】上記軸受装置におい
て、スラスト軸受隙間S1、S2を所定値に設定するた
めには、ハウジング23の段差部23cの幅寸法(軸方
向寸法)とスラスト板20bの幅寸法を精度良く管理す
る必要があり、段差部23cの幅寸法を精度良く管理す
ることは、ハウジング23の製造工数や製造コストを増
加させる一因となる。
In the above bearing device, in order to set the thrust bearing gaps S1 and S2 to predetermined values, the width dimension (axial dimension) of the step portion 23c of the housing 23 and the width of the thrust plate 20b are set. It is necessary to control the dimensions with high accuracy, and managing the width of the step portion 23c with high accuracy contributes to an increase in man-hours and manufacturing costs of the housing 23.

【0005】そこで、本発明は、スラスト軸受部のスラ
スト軸受隙間を簡易かつ精度良く設定することができる
構成を提供し、それによって、この種の動圧型軸受装置
の優れた軸受性能を確保しつつ、製造コストをさらに低
減させることを目的とする。
Therefore, the present invention provides a structure capable of easily and accurately setting a thrust bearing gap of a thrust bearing portion, thereby ensuring excellent bearing performance of this type of dynamic pressure bearing device. Another object of the present invention is to further reduce manufacturing costs.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、円筒状の内周面を有する有底筒状のハウ
ジングと、ハウジングの内周面に固定された軸受部材
と、軸部材と、軸部材と軸受部材との相対回転時に生じ
る動圧作用で軸部材を回転自在に非接触支持するラジア
ル軸受部およびスラスト軸受部とを備え、スラスト軸受
部のスラスト軸受面を構成する軸受部材の下端面が、ハ
ウジングの内底面から定寸位置に形成されている構成を
提供する。この構成によれば、スラスト軸受面を構成す
る軸受部材の下端面がハウジングの内底面から定寸位置
に形成されているので、スラスト軸受隙間を所定値に精
度良く設定することができる。
In order to achieve the above object, the present invention provides a bottomed cylindrical housing having a cylindrical inner peripheral surface, a bearing member fixed to the inner peripheral surface of the housing, and a shaft. A bearing comprising a member, a radial bearing portion and a thrust bearing portion rotatably supporting the shaft member in a non-contact manner by a dynamic pressure effect generated at the time of relative rotation between the shaft member and the bearing member, and forming a thrust bearing surface of the thrust bearing portion. Provided is a configuration in which the lower end surface of the member is formed at a fixed position from the inner bottom surface of the housing. According to this configuration, since the lower end surface of the bearing member constituting the thrust bearing surface is formed at a fixed position from the inner bottom surface of the housing, the thrust bearing gap can be accurately set to a predetermined value.

【0007】上記構成において、軸受部材の下端面を定
寸位置に形成するための位置決め手段をハウジングの内
周面に設けた構成とすることができる。この構成によれ
ば、軸受部材をハウジングの内周面に沿って位置決め手
段に当接するまで押し込むと、軸受部材の下端面の位置
が精度良く決まり、それによって、スラスト軸受隙間が
所定値に精度良く設定される。位置決め手段は、ハウジ
ングの内周面に装着された位置決め部材で構成し、ある
いは、ハウジングの内周面に設けられた段部で構成する
ことができる。
In the above configuration, a positioning means for forming the lower end surface of the bearing member at a fixed size position may be provided on the inner peripheral surface of the housing. According to this configuration, when the bearing member is pushed along the inner peripheral surface of the housing until it comes into contact with the positioning means, the position of the lower end surface of the bearing member is accurately determined, whereby the thrust bearing gap is accurately adjusted to a predetermined value. Is set. The positioning means may be constituted by a positioning member mounted on the inner peripheral surface of the housing, or may be constituted by a step provided on the inner peripheral surface of the housing.

【0008】また、本発明は、上記目的を達成するた
め、円筒状の内周面を有する有底筒状のハウジングと、
ハウジングの内周面に固定された軸受部材と、軸受部材
の内周面に挿入される軸部と、軸部に設けられたスラス
ト板とを有する軸部材と、軸受部材の内周面と、軸部材
の軸部の外周面との間に設けられ、軸部材と軸受部材と
の相対回転時に生じる動圧作用で軸部をラジアル方向に
回転自在に非接触支持するラジアル軸受部と、軸部材の
スラスト板の両端面と、軸受部材の下端面およびハウジ
ングの内底面との間にそれぞれ設けられ、軸部材と軸受
部材との相対回転時に生じる動圧作用で前記スラスト板
をスラスト方向に回転自在に非接触支持するスラスト軸
受部とを備えた動圧型軸受装置であって、この動圧型軸
受装置の組立て時に、ハウジングの内底面とスラスト板
の下端面との間、および軸受部材の下端面とスラスト板
の上端面との間のうち、少なくとも一の部位に所定厚さ
の樹脂層を介在させることによって、軸受部材のハウジ
ングに対する固定位置を調整し、その後、樹脂層を溶剤
によって溶解して除去することによって、スラスト軸受
隙間を所定値に設定した構成を提供する。
In order to achieve the above object, the present invention provides a bottomed cylindrical housing having a cylindrical inner peripheral surface,
A bearing member fixed to the inner peripheral surface of the housing, a shaft inserted into the inner peripheral surface of the bearing member, a shaft member having a thrust plate provided on the shaft, and an inner peripheral surface of the bearing member, A radial bearing portion provided between the outer peripheral surface of the shaft portion of the shaft member and supporting the shaft portion rotatably in the radial direction in a non-contact manner by a dynamic pressure effect generated when the shaft member and the bearing member rotate relative to each other; Are provided between both end surfaces of the thrust plate, the lower end surface of the bearing member, and the inner bottom surface of the housing, and the thrust plate is rotatable in the thrust direction by a dynamic pressure action generated when the shaft member and the bearing member rotate relative to each other. A thrust bearing portion for non-contact support to the dynamic pressure bearing device, during assembly of the dynamic pressure bearing device, between the inner bottom surface of the housing and the lower end surface of the thrust plate, and the lower end surface of the bearing member. Between the top surface of the thrust plate That is, the fixing position of the bearing member to the housing is adjusted by interposing a resin layer of a predetermined thickness in at least one portion, and thereafter, the resin layer is dissolved and removed by a solvent to remove the thrust bearing gap by a predetermined amount. Provide the configuration set to the value.

【0009】上記の部位に樹脂層を介在させることによ
って、軸受部材はハウジング内で樹脂層の厚さを加えた
位置に固定される。従って、樹脂層を除去すると、スラ
スト板の両端面と、ハウジングの内底面および軸受部材
の下端面との間に樹脂層の厚さに等しい隙間ができ、こ
の隙間がスラスト軸受隙間になる。この構成によって
も、スラスト軸受隙間を所定値に簡易かつ精度良く設定
することができる。
By interposing the resin layer in the above-mentioned portion, the bearing member is fixed at a position in the housing in which the thickness of the resin layer is added. Therefore, when the resin layer is removed, a gap equal to the thickness of the resin layer is formed between both end faces of the thrust plate and the inner bottom face of the housing and the lower end face of the bearing member, and this gap becomes a thrust bearing gap. Also with this configuration, the thrust bearing gap can be set to a predetermined value simply and accurately.

【0010】上記構成において、樹脂層はスラスト板の
下端面に形成することができ、その場合、樹脂層は、ス
ラスト板の下端面に滴下した樹脂液を軸部材の回転に伴
う遠心力で流動させて所定厚さの層状にした後、これを
乾燥固化させて形成することができる。これにより、所
定厚さの樹脂層を簡易かつ精度良く形成することができ
る。また、ハウジングの底部に、樹脂層の溶解液を排出
するための排出部を設けることにより、溶解液の排出作
業が容易になる。
In the above configuration, the resin layer can be formed on the lower end surface of the thrust plate. In this case, the resin layer flows the resin liquid dropped on the lower end surface of the thrust plate by centrifugal force accompanying rotation of the shaft member. After being formed into a layer having a predetermined thickness, the layer can be formed by drying and solidifying the layer. Thus, a resin layer having a predetermined thickness can be easily and accurately formed. Further, by providing a discharge portion for discharging the solution of the resin layer at the bottom of the housing, the operation of discharging the solution is facilitated.

【0011】以上の構成において、軸受部材は好ましく
は多孔質体で形成され、より好ましくは燒結金属で形成
される。これにより、軸受部材に動圧溝を形成する場合
の加工が容易になり、また、軸受部材の気孔内に潤滑油
又は潤滑グリースを含浸させて動圧型含油軸受とした
り、動圧型気体軸受として、軸受性能の向上を図ること
ができる。
In the above configuration, the bearing member is preferably formed of a porous body, and more preferably formed of a sintered metal. This facilitates processing when forming a dynamic pressure groove in the bearing member, and also impregnates the lubricating oil or lubricating grease into the pores of the bearing member to form a hydrodynamic oil-impregnated bearing, or as a hydrodynamic gas bearing. Bearing performance can be improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0013】図1は、本発明の第1の実施形態に係る動
圧型軸受装置1を組み込んだ情報機器用スピンドルモー
タの一構成例を示している。このスピンドルモータは、
HDD等のディスク駆動装置に用いられるもので、軸部
材としての回転軸2を回転自在に非接触支持する動圧型
軸受装置1と、回転軸2に装着されたディスクハブ3
と、半径方向のギャップを介して対向させたモータステ
ータ4およびモータロータ5とを備えている。ステータ
4はケーシング6の外周に取付けられ、ロータ5はディ
スクハブ3の内周に取付けられる。動圧型軸受装置1の
ハウジング7は、ケーシング6の内周に装着される。デ
ィスクハブ3には、磁気ディスク等のディスクDが一又
は複数枚保持される。ステータ4に通電すると、ステー
タ4とロータ5との間の励磁力でロータ5が回転し、そ
れによって、ディスクハブ3および回転軸2が一体とな
って回転する。
FIG. 1 shows an example of the configuration of a spindle motor for information equipment incorporating a dynamic pressure bearing device 1 according to a first embodiment of the present invention. This spindle motor
A dynamic pressure bearing device 1 that is used in a disk drive device such as an HDD and rotatably supports a rotating shaft 2 as a shaft member in a non-contact manner, and a disk hub 3 mounted on the rotating shaft 2.
And a motor stator 4 and a motor rotor 5 opposed to each other via a radial gap. The stator 4 is mounted on the outer circumference of the casing 6, and the rotor 5 is mounted on the inner circumference of the disk hub 3. The housing 7 of the dynamic pressure bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 rotates by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the rotating shaft 2 rotate integrally.

【0014】図2は、動圧型軸受装置1を示している。
動圧型軸受装置1は、円筒状の内周面7aを有する有底
筒状のハウジング7と、ハウジング7の内周面7aに固
定された円筒状の軸受部材8と、軸部材としての回転軸
2と、ハウジング7の内周面7aに装着された位置決め
手段としての位置決め部材9と、軸受部材8の上端面側
(ハウジング7の開口側)を密封するシール部材10と
を主要な構成要素とする。
FIG. 2 shows the dynamic pressure type bearing device 1.
The dynamic pressure bearing device 1 includes a bottomed cylindrical housing 7 having a cylindrical inner peripheral surface 7a, a cylindrical bearing member 8 fixed to the inner peripheral surface 7a of the housing 7, and a rotating shaft as a shaft member. 2, a positioning member 9 as positioning means mounted on the inner peripheral surface 7a of the housing 7, and a seal member 10 for sealing the upper end surface side (opening side of the housing 7) of the bearing member 8 as main components. I do.

【0015】ハウジング7は、円筒状の側部7bと、底
部7cとで構成され、側部7bの内周面7aは上端から
下端にかけて同一内径に形成される。尚、この実施形態
では、ハウジング7の側部7bと底部7cとを一体構造
にしているが、両者を別体構造としても良い。
The housing 7 includes a cylindrical side 7b and a bottom 7c, and the inner peripheral surface 7a of the side 7b has the same inner diameter from the upper end to the lower end. In addition, in this embodiment, the side part 7b and the bottom part 7c of the housing 7 are made into an integral structure, but they may be made into separate structures.

【0016】回転軸2は、軸部2aと、軸部2aに一体
又は別体に設けられたスラスト板2bとを備えている。
スラスト板2bの幅寸法はW1である。軸部2aは、軸
受部材8の内周面8aに所定のラジアル軸受隙間S5を
もって挿入され、スラスト板2bは、軸受部材8の下端
面8bとハウジング7の内底面7c1との間の空間部に
収容される。スラスト板2bの上端面2b1と軸受部材
8の下端面8bとの間、および、スラスト板2bの下端
面2b2とハウジング7の内底面7c1との間には、そ
れぞれ、所定の大きさをもったスラスト軸受隙間S3、
S4が設けられる。
The rotating shaft 2 has a shaft portion 2a and a thrust plate 2b provided integrally with or separately from the shaft portion 2a.
The width dimension of the thrust plate 2b is W1. The shaft portion 2a is inserted into the inner peripheral surface 8a of the bearing member 8 with a predetermined radial bearing gap S5, and the thrust plate 2b is inserted into the space between the lower end surface 8b of the bearing member 8 and the inner bottom surface 7c1 of the housing 7. Will be accommodated. A predetermined size was provided between the upper end surface 2b1 of the thrust plate 2b and the lower end surface 8b of the bearing member 8, and between the lower end surface 2b2 of the thrust plate 2b and the inner bottom surface 7c1 of the housing 7, respectively. Thrust bearing gap S3,
S4 is provided.

【0017】軸受部材8は、例えば多孔質材、特に燒結
金属で形成され、その内部の気孔に潤滑油又は潤滑グリ
ースが含浸されて含油軸受とされる。軸受部材8の内周
面8aの、ラジアル軸受面となる領域には動圧溝が形成
される。この動圧溝は圧縮成形、例えば、コアロッドの
外周面にラジアル軸受面の動圧溝形状(図3(a)参
照)に対応した凹凸パターンを有する溝型を形成し、コ
アロッドの外周に焼結金属を供給して焼結金属を圧迫
し、焼結金属の内周部に溝型形状に対応した動圧溝を転
写することによって、低コストにかつ高精度に成形する
ことができる。回転軸2が回転すると、ラジアル軸受隙
間S5に動圧作用が発生し、回転軸2の軸部2aがラジ
アル軸受隙間S5内に形成される潤滑油の油膜によって
ラジアル方向に回転自在に非接触支持される。これによ
り、回転軸2をラジアル方向に回転自在に非接触支持す
るラジアル軸受部11が構成される。尚、軸受部材8
は、燒結金属の他、軟質金属あるいは合金(例えば銅、
真鍮等)で形成しても良い。また、ラジアル軸受面の動
圧溝は、回転軸2の軸部2aの外周面に形成しても良
い。
The bearing member 8 is formed of, for example, a porous material, particularly a sintered metal, and its pores are impregnated with lubricating oil or lubricating grease to form an oil-impregnated bearing. A dynamic pressure groove is formed in a region of the inner peripheral surface 8a of the bearing member 8 to be a radial bearing surface. This dynamic pressure groove is formed by compression molding, for example, by forming a groove mold having an uneven pattern corresponding to the shape of the dynamic pressure groove on the radial bearing surface (see FIG. 3A) on the outer peripheral surface of the core rod, and sintering the outer periphery of the core rod. By supplying the metal and pressing the sintered metal and transferring the dynamic pressure groove corresponding to the groove shape to the inner peripheral portion of the sintered metal, the molding can be performed at low cost and with high precision. When the rotating shaft 2 rotates, a dynamic pressure action is generated in the radial bearing gap S5, and the shaft portion 2a of the rotating shaft 2 is rotatably and non-contactly supported in the radial direction by a lubricating oil film formed in the radial bearing gap S5. Is done. As a result, a radial bearing portion 11 that rotatably supports the rotating shaft 2 in the radial direction in a non-contact manner is configured. The bearing member 8
Means soft metals or alloys (such as copper,
Brass or the like). Further, the dynamic pressure groove on the radial bearing surface may be formed on the outer peripheral surface of the shaft portion 2 a of the rotating shaft 2.

【0018】スラスト板2bの上端面2b1又は軸受部
材8の下端面8b、および、スラスト板2bの下端面2
b2又はハウジング7の内底面7c1の、スラスト軸受
面となる領域には、それぞれ動圧溝が形成される。回転
軸2が回転すると、スラスト軸受隙間S3およびS4に
動圧作用が発生し、回転軸2のスラスト板2bがスラス
ト軸受隙間S3、S4内に形成される潤滑油の油膜によ
ってスラスト方向に回転自在に非接触支持される。これ
により、回転軸2をスラスト方向に回転自在に非接触支
持するスラスト軸受部12が構成される。
The upper end surface 2b1 of the thrust plate 2b or the lower end surface 8b of the bearing member 8, and the lower end surface 2b of the thrust plate 2b
A dynamic pressure groove is formed in each of the regions b2 and the inner bottom surface 7c1 of the housing 7 to be the thrust bearing surface. When the rotating shaft 2 rotates, a dynamic pressure action is generated in the thrust bearing gaps S3 and S4, and the thrust plate 2b of the rotating shaft 2 is freely rotatable in the thrust direction by a lubricating oil film formed in the thrust bearing gaps S3 and S4. Non-contact support. As a result, a thrust bearing portion 12 that rotatably supports the rotating shaft 2 in the thrust direction in a non-contact manner is configured.

【0019】ラジアル軸受面およびスラスト軸受面の動
圧溝形状は任意に選択することができ、公知のへリング
ボーン型、スパイラル型、ステップ型、多円弧型等の何
れかを選択し、あるいはこれらを適宜組合わせて使用す
ることができる。図3(a)(b)は、一例としてへリ
ングボーン型を示すもので、図3(a)は軸受部材8の
内周面8aにおけるラジアル軸受面8a1に動圧溝14
を設けた例、図3(b)は、スラスト板2bの下端面2
b2におけるスラスト軸受面2b21に動圧溝16を設
けた例を示している。例えば、軸受部材8の内周面8a
には、2つのラジアル軸受面8a1が軸方向に離間して
設けられている。スラスト軸受面2b1の動圧溝16
は、半径方向のほぼ中心部に屈曲部分を有するほぼV字
状をなしている。
The shape of the dynamic pressure grooves on the radial bearing surface and the thrust bearing surface can be arbitrarily selected, and any of the well-known herringbone type, spiral type, step type, multi-arc type, or the like is selected. Can be used in appropriate combination. 3 (a) and 3 (b) show a herringbone type as an example. FIG. 3 (a) shows a hydrodynamic groove 14 on a radial bearing surface 8a1 of the inner peripheral surface 8a of the bearing member 8. FIG.
FIG. 3B shows the lower end surface 2 of the thrust plate 2b.
The example in which the dynamic pressure groove 16 is provided on the thrust bearing surface 2b21 in b2 is shown. For example, the inner peripheral surface 8a of the bearing member 8
, Two radial bearing surfaces 8a1 are provided apart from each other in the axial direction. Dynamic pressure groove 16 in thrust bearing surface 2b1
Has a substantially V-shape having a bent portion substantially at the center in the radial direction.

【0020】図2に示すように、この実施形態におい
て、位置決め部材9は金属製又は樹脂製のリングで、ハ
ウジング7の内底面7c1と軸受部材8の下端面8bと
の間に介装される。位置決め部材9の外周面はハウジン
グ7の内周面7aに装着され、位置決め部材9の内周面
はスラスト板2bの外周面と僅かな隙間を介して対向す
る。位置決め部材9の下端面がハウジング7の内底面7
c1と当接し、上端面が軸受部材8の下端面8bと当接
することによって、軸受部材8のハウジング7に対する
固定位置が決まる。すなわち、軸受部材8をハウジング
7の内周面7aに沿って位置決め部材9に当接するまで
押し込むと、ハウジング7の内底面7c1に対する軸受
部材8の下端面8bの位置が、位置決め部材9の幅寸法
Wによって定寸位置Wに決まる。この状態で、軸受部材
8をハウジング7の内周面7aに固定する。固定方法と
しては、圧入、接着等がある。従って、位置決め部材9
の幅寸法Wを、スラスト板2bの幅寸法W1に両側のス
ラスト軸受隙間S3、S4の値を加えた値に管理してお
けば{W=W1+(S3+S4)}、位置決め部材9に
よってスラスト軸受隙間S3、S4を簡易かつ精度良く
設定することができる。位置決め部材9の幅寸法Wの管
理は比較的容易であり、かつ、高精度な管理が可能であ
る。また、使用条件等によって、スラスト軸受隙間S
3、S4の設定値を変更する必要が生じた場合でも、変
更後のスラスト軸受隙間S3、S4に対応する幅寸法W
をもった位置決め部材9を用いることによって容易に対
応することができる。
As shown in FIG. 2, in this embodiment, the positioning member 9 is a metal or resin ring and is interposed between the inner bottom surface 7c1 of the housing 7 and the lower end surface 8b of the bearing member 8. . The outer peripheral surface of the positioning member 9 is mounted on the inner peripheral surface 7a of the housing 7, and the inner peripheral surface of the positioning member 9 faces the outer peripheral surface of the thrust plate 2b with a small gap. The lower end surface of the positioning member 9 is the inner bottom surface 7 of the housing 7.
The fixed position of the bearing member 8 with respect to the housing 7 is determined by contacting the upper end surface of the bearing member 8 with the lower end surface 8b of the bearing member 8. That is, when the bearing member 8 is pushed along the inner peripheral surface 7 a of the housing 7 until it comes into contact with the positioning member 9, the position of the lower end surface 8 b of the bearing member 8 with respect to the inner bottom surface 7 c 1 of the housing 7 becomes the width dimension of the positioning member 9. W determines the fixed size position W. In this state, the bearing member 8 is fixed to the inner peripheral surface 7a of the housing 7. As a fixing method, there are press-fitting, bonding and the like. Therefore, the positioning member 9
If the width W of the thrust plate is controlled to a value obtained by adding the values of the thrust bearing gaps S3 and S4 on both sides to the width W1 of the thrust plate 2b, {W = W1 + (S3 + S4)} S3 and S4 can be set easily and accurately. Management of the width dimension W of the positioning member 9 is relatively easy, and high-precision management is possible. In addition, the thrust bearing clearance S
Even when it is necessary to change the set values of S3 and S4, the width dimension W corresponding to the changed thrust bearing gaps S3 and S4
By using the positioning member 9 having the above, it is possible to easily cope with the problem.

【0021】上記のようにして、回転軸2、軸受部材
8、位置決め部材9、シール部材10をアッセンブリし
た後、ハウジング7内を潤滑油で満たすと、図1に示す
動圧型軸受装置1が得られる。
After the rotary shaft 2, the bearing member 8, the positioning member 9, and the seal member 10 are assembled as described above, and the housing 7 is filled with lubricating oil, the dynamic pressure bearing device 1 shown in FIG. 1 is obtained. Can be

【0022】図9は、本発明の第2の実施形態に係る動
圧型軸受装置1’を示している。この実施形態の動圧型
軸受装置1’が、上述した実施形態の動圧型軸受装置1
と異なる点は、位置決め手段として、位置決め部材9に
代えて、ハウジング7の内周面7aに段部7a1を設け
ている点にある。軸受部材8をハウジング7の内周面7
aに沿って段部7a1に当接するまで押し込むと、ハウ
ジング7の内底面7c1に対する軸受部材8の下端面8
bの位置が、段部7a1の内底面7c1からの寸法Wに
よって定寸位置Wに決まる。この状態で、軸受部材8を
ハウジング7の内周面7aに固定する。従って、段部7
a1の内底面7c1からの寸法Wを、スラスト板2bの
幅寸法W1に両側のスラスト軸受隙間S3、S4の値を
加えた値に管理しておけば{W=W1+(S3+S
4)}、段部7a1によってスラスト軸受隙間S3、S
4を簡易かつ精度良く設定することができる。また、上
述した第1の実施形態に比べ、部品点数の削減にもな
る。
FIG. 9 shows a dynamic pressure bearing device 1 'according to a second embodiment of the present invention. The hydrodynamic bearing device 1 'of this embodiment is different from the hydrodynamic bearing device 1 of the above-described embodiment.
The difference from the first embodiment is that a step 7a1 is provided on the inner peripheral surface 7a of the housing 7 instead of the positioning member 9 as the positioning means. The bearing member 8 is connected to the inner peripheral surface 7 of the housing 7.
a until it comes into contact with the stepped portion 7a1 until the lower end surface 8 of the bearing member 8 with respect to the inner bottom surface 7c1 of the housing 7.
The position b is determined as the fixed size position W by the dimension W from the inner bottom surface 7c1 of the step portion 7a1. In this state, the bearing member 8 is fixed to the inner peripheral surface 7a of the housing 7. Therefore, the step 7
If the dimension W from the inner bottom surface 7c1 of a1 is controlled to a value obtained by adding the width dimension W1 of the thrust plate 2b to the values of the thrust bearing gaps S3 and S4 on both sides, then ΔW = W1 + (S3 + S
4) Thrust bearing gaps S3, S by step 7a1
4 can be set simply and accurately. Further, the number of parts can be reduced as compared with the first embodiment.

【0023】図4は、本発明の第3の実施形態に係る動
圧型軸受装置1”を示している。この実施形態におい
て、スラスト軸受隙間S3、S4は、例えば以下の手順
での設定されている。
FIG. 4 shows a hydrodynamic bearing device 1 ″ according to a third embodiment of the present invention. In this embodiment, the thrust bearing gaps S3 and S4 are set, for example, in the following procedure. I have.

【0024】まず、図5に示す態様で、回転軸2のスラ
スト板2bの下端面2b2に所定厚さδの樹脂層19を
形成する。樹脂層19の形成材料となる合成樹脂材料を
溶剤で溶かして樹脂液Lを作り、その樹脂液Lをスラス
ト板2bの下端面2b2に所定量滴下する。その後、回
転軸2を所定速度で回転させる。そうすると、滴下され
た樹脂液Lが遠心力で外径側に流動して、スラスト板2
bの下端面2b2に均一厚さで広がる。その後、樹脂液
Lを乾燥固化させると、スラスト板2bの下端面2b2
に所定厚さδの樹脂層19が形成される。この方法によ
れば、均一厚さの樹脂層19を精度良く形成することが
できる。樹脂層19の厚さδは、スラスト軸受隙間S3
とS4の設定値を合計した値(δ=S3+S4)となる
ように管理する(10〜20μm程度)。
First, in the mode shown in FIG. 5, a resin layer 19 having a predetermined thickness δ is formed on the lower end surface 2b2 of the thrust plate 2b of the rotating shaft 2. A resin liquid L is prepared by dissolving a synthetic resin material as a material for forming the resin layer 19 with a solvent, and the resin liquid L is dropped on the lower end surface 2b2 of the thrust plate 2b in a predetermined amount. Thereafter, the rotating shaft 2 is rotated at a predetermined speed. Then, the dropped resin liquid L flows to the outer diameter side by centrifugal force, and the thrust plate 2
b spreads on the lower end surface 2b2 with a uniform thickness. Thereafter, when the resin liquid L is dried and solidified, the lower end surface 2b2 of the thrust plate 2b is formed.
Then, a resin layer 19 having a predetermined thickness δ is formed. According to this method, the resin layer 19 having a uniform thickness can be accurately formed. The thickness δ of the resin layer 19 is determined by the thrust bearing gap S3.
And S4 are managed so as to be a total value (δ = S3 + S4) (about 10 to 20 μm).

【0025】つぎに、図6に示すように、回転軸2をハ
ウジング7に挿入し、スラスト板2bの下端面2b2を
樹脂層19を介してハウジング7の内底面7c1に当接
させる。その後、軸受部材8をハウジング7の内周面7
aに沿ってスラスト板2bの上端面2b1に当接するま
で押し込むと、軸受部材8のハウジング7に対する固定
位置が決まる。すなわち、軸受部材8の下端面8bとハ
ウジング7の内底面7c1との間の間隔(軸方向寸法)
が、スラスト板2bの幅寸法W1と樹脂層19の厚さδ
によって寸法(W1+δ)に決まる。この状態で、軸受
部材8をハウジング7の内周面7aに固定する。固定方
法としては、圧入、接着等がある。尚、回転軸2と軸受
部材8とを予めアッセンブリしておき、両者を一緒にハ
ウジング7に挿入しても良い。
Next, as shown in FIG. 6, the rotating shaft 2 is inserted into the housing 7, and the lower end surface 2b2 of the thrust plate 2b is brought into contact with the inner bottom surface 7c1 of the housing 7 via the resin layer 19. Then, the bearing member 8 is connected to the inner peripheral surface 7 of the housing 7.
When the bearing member 8 is pushed along the upper end surface 2b1 of the thrust plate 2b along a, the fixing position of the bearing member 8 to the housing 7 is determined. That is, the distance between the lower end surface 8b of the bearing member 8 and the inner bottom surface 7c1 of the housing 7 (axial dimension).
Is the width dimension W1 of the thrust plate 2b and the thickness δ of the resin layer 19.
Determines the size (W1 + δ). In this state, the bearing member 8 is fixed to the inner peripheral surface 7a of the housing 7. As a fixing method, there are press-fitting, bonding and the like. Note that the rotating shaft 2 and the bearing member 8 may be assembled in advance, and both may be inserted into the housing 7 together.

【0026】上記のようにして軸受部材8の固定位置を
決めた後、ハウジング7の内部に溶剤を供給して樹脂層
19を溶解する。この溶解液は、ハウジング7の底部7
cに設けられた排出部7dから排出される。溶解液を排
出した後、排出部7dは適当な栓、例えば図4に示すよ
うなボール栓7d1によって封止される。
After the fixing position of the bearing member 8 is determined as described above, a solvent is supplied into the housing 7 to dissolve the resin layer 19. This solution is supplied to the bottom 7 of the housing 7.
c is discharged from a discharge section 7d provided in the printer. After draining the lysis solution, the outlet 7d is sealed with a suitable stopper, for example a ball stopper 7d1 as shown in FIG.

【0027】上記の態様で樹脂層19を除去すると、図
4に示すように、スラスト板2bの両端面2b1、2b
2と、軸受部材8の下端面8bおよびハウジング7の内
底面7c1との間に、樹脂層19の厚さδに等しい大き
さをもったスラスト軸受隙間S3、S4(δ=S3+S
4)が形成される。その後、軸受部材8の上面側をシー
ル部材10でシールし、ハウジング7内を潤滑油で満た
すと、図4に示す動圧型軸受装置1”が得られる。
When the resin layer 19 is removed in the above manner, as shown in FIG. 4, both end surfaces 2b1, 2b of the thrust plate 2b are removed.
2 and the lower end surface 8b of the bearing member 8 and the inner bottom surface 7c1 of the housing 7, the thrust bearing gaps S3, S4 having a size equal to the thickness δ of the resin layer 19 (δ = S3 + S
4) is formed. Thereafter, the upper surface side of the bearing member 8 is sealed with a seal member 10 and the inside of the housing 7 is filled with lubricating oil, whereby the dynamic pressure bearing device 1 ″ shown in FIG. 4 is obtained.

【0028】この実施形態によれば、スラスト軸受隙間
S3、S4の合計値が樹脂層19の厚さδと等しくなる
ので(δ=S3+S4)、樹脂層19の厚さδを正確に
管理すれば、スラスト板2bの幅寸法W1に多少の寸法
誤差がある場合でも、スラスト軸受隙間S3、S4を高
精度に設定することができる。
According to this embodiment, since the total value of the thrust bearing gaps S3 and S4 becomes equal to the thickness δ of the resin layer 19 (δ = S3 + S4), if the thickness δ of the resin layer 19 is accurately managed. Also, even when there is some dimensional error in the width dimension W1 of the thrust plate 2b, the thrust bearing gaps S3 and S4 can be set with high accuracy.

【0029】尚、供給した溶剤がスムーズに樹脂層19
まで達するよう、軸受部材8の外周面に溶剤供給用の軸
方向溝8cを形成しておくのが望ましい。
Incidentally, the supplied solvent is smoothly applied to the resin layer 19.
It is desirable to form an axial groove 8c for supplying a solvent on the outer peripheral surface of the bearing member 8 so as to reach the height.

【0030】また、この実施形態では、スラスト軸受隙
間S3、S4の設定工程において、樹脂層19をスラス
ト板2bの下端面2b2とハウジング7の内底面7c1
との間に介在させる構成にしているが、樹脂層19をス
ラスト板2bの上端面2b1と軸受部材8の下端面8b
との間に介在させても良く、あるいは、これらの2つの
部位に同時に介在させても良い。
Further, in this embodiment, in the step of setting the thrust bearing gaps S3, S4, the resin layer 19 is provided with the lower end face 2b2 of the thrust plate 2b and the inner bottom face 7c1 of the housing 7.
Between the upper surface 2b1 of the thrust plate 2b and the lower surface 8b of the bearing member 8.
And may be interposed between these two parts at the same time.

【0031】樹脂層19を形成する合成樹脂材料と溶剤
との組合わせは、樹脂層19を確実に溶解させ得る限り
任意に選択することができるが、含塩素樹脂、塩素系溶
剤、腐食性溶剤は除外するのが好ましい。樹脂材料と溶
剤の具体的な組合わせとしては、例えば図7の○印で示
すものが考えられる。
The combination of the synthetic resin material and the solvent for forming the resin layer 19 can be arbitrarily selected as long as the resin layer 19 can be surely dissolved. Examples of the combination include a chlorine-containing resin, a chlorine-based solvent, and a corrosive solvent. Is preferably excluded. As a specific combination of the resin material and the solvent, for example, a combination indicated by a circle in FIG. 7 is considered.

【0032】[0032]

【発明の効果】本発明によれば、スラスト軸受部のスラ
スト軸受隙間を簡易かつ精度良く設定することができ、
それによって、この種の動圧型軸受装置の優れた軸受性
能を確保しつつ、製造コストをさらに低減させることが
できる。
According to the present invention, the thrust bearing clearance of the thrust bearing can be set easily and accurately.
As a result, it is possible to further reduce the manufacturing cost while securing excellent bearing performance of this type of dynamic pressure bearing device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る動圧型軸受装置
を有するスピンドルモータの断面図である。
FIG. 1 is a sectional view of a spindle motor having a dynamic pressure bearing device according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係る動圧型軸受装置
を示す断面図である。
FIG. 2 is a cross-sectional view showing the dynamic pressure bearing device according to the first embodiment of the present invention.

【図3】軸受部材の断面図{図3(a)}、スラスト板
の上端面を示す平面図{図3(b)}である。
FIG. 3 is a sectional view of the bearing member {FIG. 3A} and a plan view {FIG. 3B} showing the upper end surface of the thrust plate.

【図4】本発明の第3の実施形態に係る動圧型軸受装置
の断面図である。
FIG. 4 is a sectional view of a dynamic pressure bearing device according to a third embodiment of the present invention.

【図5】樹脂層の形成工程を示す概念図である。FIG. 5 is a conceptual diagram showing a step of forming a resin layer.

【図6】スラスト軸受隙間の設定工程を説明する図であ
る。
FIG. 6 is a diagram illustrating a process of setting a thrust bearing gap.

【図7】実施形態で適用され得る樹脂材料と溶剤の組合
わせを示す図である。
FIG. 7 is a diagram showing a combination of a resin material and a solvent that can be applied in the embodiment.

【図8】従来の動圧型軸受装置を示す断面図である。FIG. 8 is a sectional view showing a conventional hydrodynamic bearing device.

【図9】本発明の第2の実施形態に係る動圧型軸受装置
の断面図である。
FIG. 9 is a sectional view of a hydrodynamic bearing device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 動圧型軸受装置 1’ 動圧型軸受装置 11” 動圧型軸受装置 2 回転軸 2a 軸部 2b スラスト板 2b1 上端面 2b2 下端面 7 ハウジング 7a 内周面 7a1 段部 7c 底部 7c1 内底面 7d 排出部 8 軸受部材 8b 下端面 9 位置決め部材 11 ラジアル軸受部 12 スラスト軸受部 19 樹脂層 S3 スラスト軸受隙間 S4 スラスト軸受隙間 S5 ラジアル軸受隙間 REFERENCE SIGNS LIST 1 dynamic pressure bearing device 1 ′ dynamic pressure bearing device 11 ″ dynamic pressure bearing device 2 rotating shaft 2a shaft portion 2b thrust plate 2b1 upper end surface 2b2 lower end surface 7 housing 7a inner peripheral surface 7a1 stepped portion 7c bottom 7c1 inner bottom surface 7d discharge portion 8 Bearing member 8b Lower end surface 9 Positioning member 11 Radial bearing portion 12 Thrust bearing portion 19 Resin layer S3 Thrust bearing gap S4 Thrust bearing gap S5 Radial bearing gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 正幸 大阪府大阪市西区京町堀1丁目3番17号 エヌティエヌ株式会社内 Fターム(参考) 3J011 AA02 BA04 BA06 CA02 DA02 JA02 KA02 KA03 LA01 MA21 SB19 3J017 AA02 AA03 BA01 CA03 CA06 DA01 DB07 DB10 HA01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masayuki Kuroda 1-3-17 Kyomachibori, Nishi-ku, Osaka-shi, Osaka F-term in NTN Corporation (reference) 3J011 AA02 BA04 BA06 CA02 DA02 JA02 KA02 KA03 LA01 MA21 SB19 3J017 AA02 AA03 BA01 CA03 CA06 DA01 DB07 DB10 HA01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】円筒状の内周面を有する有底筒状のハウジ
ングと、ハウジングの内周面に固定された軸受部材と、
軸部材と、前記軸部材と軸受部材との相対回転時に生じ
る動圧作用で前記軸部材を回転自在に非接触支持するラ
ジアル軸受部およびスラスト軸受部とを備え、前記スラ
スト軸受部のスラスト軸受面を構成する前記軸受部材の
下端面が、前記ハウジングの内底面から定寸位置に形成
されている動圧型軸受装置。
A bottomed cylindrical housing having a cylindrical inner peripheral surface; a bearing member fixed to the inner peripheral surface of the housing;
A thrust bearing surface of the thrust bearing portion, comprising: a shaft member; and a radial bearing portion and a thrust bearing portion rotatably supporting the shaft member in a non-contact manner by a dynamic pressure effect generated when the shaft member and the bearing member rotate relative to each other. A dynamic pressure bearing device wherein a lower end surface of the bearing member is formed at a fixed position from an inner bottom surface of the housing.
【請求項2】前記軸受部材の下端面を定寸位置に形成す
るための位置決め手段を前記ハウジングの内周面に設け
た請求項1記載の動圧型軸受装置。
2. A dynamic pressure bearing device according to claim 1, wherein a positioning means for forming a lower end surface of said bearing member at a fixed position is provided on an inner peripheral surface of said housing.
【請求項3】前記位置決め手段が、前記ハウジングの内
周面に装着された位置決め部材である請求項2記載の動
圧型軸受装置。
3. The dynamic pressure bearing device according to claim 2, wherein said positioning means is a positioning member mounted on an inner peripheral surface of said housing.
【請求項4】前記位置決め手段が、前記ハウジングの内
周面に設けられた段部である請求項2記載の動圧型軸受
装置。
4. A dynamic pressure bearing device according to claim 2, wherein said positioning means is a step provided on an inner peripheral surface of said housing.
【請求項5】円筒状の内周面を有する有底筒状のハウジ
ングと、 ハウジングの内周面に固定された軸受部材と、 前記軸受部材の内周面に挿入される軸部と、前記軸部に
設けられたスラスト板とを有する軸部材と、 前記軸受部材の内周面と、前記軸部材の軸部の外周面と
の間に設けられ、前記軸部材と軸受部材との相対回転時
に生じる動圧作用で前記軸部をラジアル方向に回転自在
に非接触支持するラジアル軸受部と、 前記軸部材のスラスト板の両端面と、前記軸受部材の下
端面および前記ハウジングの内底面との間にそれぞれ設
けられ、前記軸部材と軸受部材との相対回転時に生じる
動圧作用で前記スラスト板をスラスト方向に回転自在に
非接触支持するスラスト軸受部とを備えた動圧型軸受装
置であって、 前記動圧型軸受装置の組立て時に、前記ハウジングの内
底面と前記スラスト板の下端面との間、および前記軸受
部材の下端面と前記スラスト板の上端面との間のうち、
少なくとも一の部位に所定厚さの樹脂層を介在させるこ
とによって、前記軸受部材の前記ハウジングに対する固
定位置を調整し、その後、前記樹脂層を溶剤によって溶
解して除去することによって、前記スラスト軸受隙間を
所定値に設定したことを特徴とする動圧型軸受装置。
A bottomed cylindrical housing having a cylindrical inner peripheral surface; a bearing member fixed to the inner peripheral surface of the housing; a shaft portion inserted into the inner peripheral surface of the bearing member; A shaft member having a thrust plate provided on a shaft portion; a shaft member provided between an inner peripheral surface of the bearing member and an outer peripheral surface of the shaft portion of the shaft member; and a relative rotation between the shaft member and the bearing member. A radial bearing portion that rotatably and non-contactably supports the shaft portion in a radial direction by a dynamic pressure effect that occurs at the time; a both end surface of a thrust plate of the shaft member; a lower end surface of the bearing member and an inner bottom surface of the housing; A thrust bearing portion provided between the shaft members and rotatably supporting the thrust plate in a thrust direction in a non-contact manner by a dynamic pressure effect generated when the shaft member and the bearing member rotate relative to each other. Assembling the dynamic pressure bearing device , Out between the lower end surface and the upper end surface of the thrust plate between the lower end surface of the thrust plate and the inner bottom surface of said housing, and said bearing member,
By interposing a resin layer of a predetermined thickness in at least one part, the fixing position of the bearing member with respect to the housing is adjusted, and then the resin layer is dissolved and removed by a solvent to remove the thrust bearing gap. Is set to a predetermined value.
【請求項6】前記樹脂層を、前記スラスト板の下端面に
形成した請求項5記載の動圧型軸受装置。
6. A dynamic pressure bearing device according to claim 5, wherein said resin layer is formed on a lower end surface of said thrust plate.
【請求項7】前記樹脂層が、前記スラスト板の下端面に
滴下した樹脂液を前記軸部材の回転に伴う遠心力で流動
させて所定厚さの層状にした後、これを乾燥固化させて
形成したものである請求項6記載の動圧型軸受装置。
7. The resin layer is formed such that the resin liquid dropped on the lower end surface of the thrust plate is flowed by centrifugal force accompanying rotation of the shaft member to form a layer having a predetermined thickness, and then dried and solidified. 7. The dynamic pressure bearing device according to claim 6, wherein the bearing is formed.
【請求項8】前記ハウジングの底部に、前記樹脂層の溶
解液を排出するための排出部を設けた請求項5記載の動
圧型軸受装置。
8. The dynamic pressure bearing device according to claim 5, wherein a discharge portion for discharging a solution of the resin layer is provided at a bottom portion of the housing.
【請求項9】前記軸受部材が多孔質体で形成されている
請求項1又は5記載の動圧型軸受装置。
9. The dynamic pressure bearing device according to claim 1, wherein said bearing member is formed of a porous body.
【請求項10】前記多孔質体が燒結金属である請求項9
記載の動圧型軸受装置。
10. The porous body is a sintered metal.
The dynamic pressure bearing device according to the above.
JP2000252943A 2000-08-23 2000-08-23 Dynamic pressure type bearing device Pending JP2002061637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252943A JP2002061637A (en) 2000-08-23 2000-08-23 Dynamic pressure type bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252943A JP2002061637A (en) 2000-08-23 2000-08-23 Dynamic pressure type bearing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006259446A Division JP2006342975A (en) 2006-09-25 2006-09-25 Dynamic pressure type bearing device

Publications (1)

Publication Number Publication Date
JP2002061637A true JP2002061637A (en) 2002-02-28

Family

ID=18742113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252943A Pending JP2002061637A (en) 2000-08-23 2000-08-23 Dynamic pressure type bearing device

Country Status (1)

Country Link
JP (1) JP2002061637A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029471A1 (en) * 2002-09-26 2004-04-08 Ntn Corporation Hydrodynamic bearing device
SG111931A1 (en) * 2001-03-05 2005-06-29 Sankyo Seiki Seisakusho Kk Fluid dynamic pressure bearing apparatus
JP2006022951A (en) * 2004-06-11 2006-01-26 Minebea Co Ltd Fluid dynamic pressure bearing, and spindle motor and recording disc drive unit comprising the same
JP2006214543A (en) * 2005-02-04 2006-08-17 Ntn Corp Dynamic-pressure bearing device
JP2008043075A (en) * 2006-08-07 2008-02-21 Nidec Sankyo Corp Motor
JP2008169942A (en) * 2007-01-12 2008-07-24 Ntn Corp Fluid bearing device
JP2008267531A (en) * 2007-04-23 2008-11-06 Ntn Corp Method for manufacturing dynamic pressure bearing device
US7556433B2 (en) * 2005-02-17 2009-07-07 Ntn Corporation Fluid dynamic bearing device and motor equipped with the same
KR100951630B1 (en) * 2002-04-05 2010-04-09 엔티엔 가부시키가이샤 Hydrodynamic bearing device
KR101244271B1 (en) * 2004-03-30 2013-03-18 엔티엔 가부시키가이샤 Dynamic pressure bearing device
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG111931A1 (en) * 2001-03-05 2005-06-29 Sankyo Seiki Seisakusho Kk Fluid dynamic pressure bearing apparatus
US6962443B2 (en) 2001-03-05 2005-11-08 Sankyo Seiki Mfg. Co., Ltd. Fluid dynamic pressure bearing apparatus
KR100951630B1 (en) * 2002-04-05 2010-04-09 엔티엔 가부시키가이샤 Hydrodynamic bearing device
KR100970884B1 (en) * 2002-09-26 2010-07-16 에누티에누 가부시기가이샤 Hydrodynamic bearing device
US7985025B2 (en) 2002-09-26 2011-07-26 Ntn Corporation Hydrodynamic bearing device
CN100458196C (en) * 2002-09-26 2009-02-04 Ntn株式会社 Hydrodynamic bearing device
WO2004029471A1 (en) * 2002-09-26 2004-04-08 Ntn Corporation Hydrodynamic bearing device
US8506167B2 (en) 2004-03-30 2013-08-13 Ntn Corporation Dynamic bearing device having a thrust bearing portion
KR101244271B1 (en) * 2004-03-30 2013-03-18 엔티엔 가부시키가이샤 Dynamic pressure bearing device
JP2006022951A (en) * 2004-06-11 2006-01-26 Minebea Co Ltd Fluid dynamic pressure bearing, and spindle motor and recording disc drive unit comprising the same
JP2006214543A (en) * 2005-02-04 2006-08-17 Ntn Corp Dynamic-pressure bearing device
JP4615328B2 (en) * 2005-02-04 2011-01-19 Ntn株式会社 Hydrodynamic bearing device
US7556433B2 (en) * 2005-02-17 2009-07-07 Ntn Corporation Fluid dynamic bearing device and motor equipped with the same
JP2008043075A (en) * 2006-08-07 2008-02-21 Nidec Sankyo Corp Motor
JP2008169942A (en) * 2007-01-12 2008-07-24 Ntn Corp Fluid bearing device
WO2008132908A1 (en) * 2007-04-23 2008-11-06 Ntn Corporation Method of producing dynamic pressure bearing
JP2008267531A (en) * 2007-04-23 2008-11-06 Ntn Corp Method for manufacturing dynamic pressure bearing device
US8578610B2 (en) 2007-04-23 2013-11-12 Ntn Corporation Method for manufacturing fluid dynamic bearing device
WO2016080137A1 (en) * 2014-11-20 2016-05-26 Ntn株式会社 Manufacturing method for fluid dynamic bearing devices
JP2016098891A (en) * 2014-11-20 2016-05-30 Ntn株式会社 Manufacturing method of fluid dynamic pressure bearing device
CN107002762A (en) * 2014-11-20 2017-08-01 Ntn株式会社 The manufacture method of fluid dynamic-pressure bearing device
US9964144B2 (en) 2014-11-20 2018-05-08 Ntn Corporation Manufacturing method for fluid dynamic bearing devices
CN107002762B (en) * 2014-11-20 2019-05-28 Ntn株式会社 The manufacturing method of fluid dynamic-pressure bearing device

Similar Documents

Publication Publication Date Title
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2005321089A (en) Dynamic pressure bearing device
JP2007024146A (en) Dynamic pressure bearing device
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP4874004B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
WO2007072775A1 (en) Fluid bearing device
JP2002061637A (en) Dynamic pressure type bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
JP2002061641A (en) Dynamic pressure type bearing device
WO2005098250A1 (en) Dynamic pressure bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JP2006342975A (en) Dynamic pressure type bearing device
JP3782918B2 (en) Hydrodynamic bearing unit
JP2005163903A (en) Dynamic bearing device
JP4152707B2 (en) Hydrodynamic bearing device
JP2004190786A (en) Dynamic-pressure bearing device and manufacturing method therefor
JP2000220633A (en) Dynamic pressure type bearing device and its manufacture
JP2004316926A (en) Dynamic pressure-type bearing unit and method for manufacturing the same
JP2003269444A (en) Dynamic pressure bearing device and manufacturing method thereof
JP2003314533A (en) Fluid bearing device
JP2005140344A (en) Dynamic pressure type bearing device
JP2006300178A (en) Fluid bearing device
JP2007309496A (en) Fluid bearing device
JP4554324B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061213