JP2002058604A - Hot and cold insulation container - Google Patents

Hot and cold insulation container

Info

Publication number
JP2002058604A
JP2002058604A JP2000247296A JP2000247296A JP2002058604A JP 2002058604 A JP2002058604 A JP 2002058604A JP 2000247296 A JP2000247296 A JP 2000247296A JP 2000247296 A JP2000247296 A JP 2000247296A JP 2002058604 A JP2002058604 A JP 2002058604A
Authority
JP
Japan
Prior art keywords
container
heat insulating
container according
heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000247296A
Other languages
Japanese (ja)
Inventor
Yoshinori Kasabo
美紀 笠坊
Masanobu Takeda
昌信 武田
Masao Seki
昌夫 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000247296A priority Critical patent/JP2002058604A/en
Publication of JP2002058604A publication Critical patent/JP2002058604A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an excellent hot and cold insulation container with hot and cold insulation performance as a vacuum bottle and light weight as a PET bottle. SOLUTION: This hot and cold insulation container is constituted of an insulation material made by sealing and decompressing at least a kind of core material selected from a fiber structure and foam resin and particle resin in a gas barrier film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、保温性、保温性お
よび軽量性に優れた保温保冷容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating / cooling container excellent in heat insulating property, heat insulating property and light weight.

【0002】[0002]

【従来の技術】従来、お茶やジュース、コーヒー等の飲
料を保温保冷する携帯容器としては、魔法瓶が知られて
いる。魔法瓶は、二重容器の中空部を10-5Torr
(1.33×10-3Pa)程度の高真空にし、内瓶の外
側にメッキが施された構造になっている。真空にするこ
とで、熱の伝導・対流を、メッキによって輻射熱をカッ
トすることで優れた断熱性がある。しかし、高真空を保
つため、容器の材質がガラス、ステンレス、チタン等に
限られており、重い、空容器が嵩張って邪魔という問題
があった。
2. Description of the Related Art Conventionally, a thermos is known as a portable container for keeping drinks such as tea, juice, coffee and the like warm and cool. For thermos, fill the hollow part of the double container with 10-5 Torr.
(1.33.times.10@-3 Pa) and a structure in which plating is applied to the outside of the inner bottle. By providing a vacuum, heat conduction and convection are cut off, and radiant heat is cut off by plating, thereby providing excellent heat insulation. However, in order to maintain a high vacuum, the material of the container is limited to glass, stainless steel, titanium or the like, and there is a problem that a heavy, empty container is bulky and obstructive.

【0003】一方、軽量な素材を使用したものとして
は、プラスチックの二重容器に発泡ウレタン等の断熱材
を充填して容器とした保温保冷容器があるが、容器厚み
の薄いコンパクトなものは効果が低く、魔法瓶並の高い
断熱性を得るには5cm以上の厚みが必要となり、コン
パクト性と高い断熱性を併せ持つものはないのが現状で
ある。
[0003] On the other hand, as a material using a lightweight material, there is a heat insulating / cooling container in which a plastic double container is filled with a heat insulating material such as urethane foam, and a container having a small thickness is not effective. And a thickness of 5 cm or more is required to obtain high heat insulation similar to that of a thermos bottle, and at present, there is nothing that has both compactness and high heat insulation.

【0004】また、清涼飲料として、近年ペットボトル
飲料の需要が拡大している。ペットボトル飲料は非常に
軽量で、ふたができるため、水筒代わりに用いられるこ
とも多い。しかし、保冷効果は全くない。そのため、中
綿の入った布や、アルミ蒸着フィルムを張り合わせた不
織布からなる保冷カバーが販売されている。これらのカ
バーは1時間程度の短時間の保冷効果はあるものの、長
時間の効果はなく、遠足やピクニックなど、外出時間が
長い時にはほとんど効果がない。
[0004] In recent years, demand for plastic bottled beverages has been increasing as a soft drink. PET bottle beverages are very lightweight and can be lidded, so they are often used in place of water bottles. However, there is no cooling effect. For this reason, cold insulation covers made of a cloth containing a batting or a nonwoven fabric laminated with an aluminum vapor-deposited film have been sold. These covers have a short-term cooling effect of about one hour, but do not have a long-term effect, and have little effect when going out for a long time such as excursions and picnics.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる従来
技術の背景に鑑み、魔法瓶の保温性および保温性と、ペ
ットボトル飲料の軽量性とを併せ持つ保温保冷容器を提
供せんとするものである。
SUMMARY OF THE INVENTION In view of the background of the prior art, it is an object of the present invention to provide a heat insulating and cooling container having both the heat retaining property of a thermos bottle and the light retaining property of a PET bottle beverage. .

【0006】[0006]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次のような手段を採用する。すなわ
ち、本発明の保温保冷容器は繊維構造体、樹脂発泡体お
よび粒状体から選ばれた少なくとも1種のコア材を、ガ
スバリア性フィルムで減圧封入してなる断熱材で構成さ
れていることを特徴とするものである。
The present invention employs the following means in order to solve the above problems. That is, the heat insulation / cooling container of the present invention is characterized by being constituted by a heat insulating material obtained by sealing at least one kind of core material selected from a fibrous structure, a resin foam and a granular material with a gas barrier film under reduced pressure. It is assumed that.

【0007】[0007]

【発明の実施の形態】本発明は、前記課題、つまり保温
性、保温性および軽量性とを併せ持つ保温保冷容器につ
いて、鋭意検討し、特定なコア材を、ガスバリア性フィ
ルムで減圧封入してみたところ、かかる課題を一挙に解
決することを究明したものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the present inventors have conducted intensive studies on the above-mentioned objects, that is, a heat-insulating and cooling container having both heat-insulating properties, heat-insulating properties and light-weight properties, and enclose a specific core material under reduced pressure with a gas barrier film. However, they have sought to solve these problems at once.

【0008】本発明では、繊維構造体、樹脂発泡体およ
び粒状体から選ばれた少なくとも1種をコア材として使
用し、さらにこれらを減圧封入して断熱材を得るが、こ
の方法によると、比較的低真空で魔法瓶と同等な断熱性
を得ることができる。
In the present invention, at least one selected from the group consisting of a fiber structure, a resin foam and a granular material is used as a core material, and these are further sealed under reduced pressure to obtain a heat insulating material. Insulation equivalent to that of a thermos can be obtained at very low vacuum.

【0009】すなわち、気体分子の自由度を、真空度
と、繊維構造体、樹脂発泡体および粒状体から選ばれた
少なくとも1種のコア材で仕切られる空間によって制限
することで、かかる優れた断熱性を達成することができ
るものである。通常、身近な材料の中で熱伝導率が最も
低いのは空気であるが、その中でも、気体分子同士の衝
突によって熱の受け渡しは起こる。そのため、かかる衝
突を起こさないように低圧にすれば高い断熱性が得られ
るのである。気体分子が他の分子と衝突するまで飛行す
る距離の分布の平均値を平均自由行程というが、圧力が
低くなるにつれて、この平均自由行程は大きくなる。空
気の平均自由行程は、常圧760Torr(104
a)では10-4mm、10-2Torr(1.33Pa)
では7.3mm、10-4Torr(1.33×10-2
a)では7.3×102 mmである。低圧になって気体
分子の平均自由行程が魔法瓶の壁間距離より大きくなる
と、分子同士の衝突がなくなり、気体の見かけの熱伝導
率が急激に低下するが、魔法瓶で安定的に効果が得られ
るのは、10-5Torr(1.33×10-3Pa)の高
真空である。
That is, by limiting the degree of freedom of gas molecules by the degree of vacuum and the space partitioned by at least one kind of core material selected from a fibrous structure, a resin foam and a granular material, such excellent heat insulation is achieved. Sexuality can be achieved. Normally, air has the lowest thermal conductivity among familiar materials. Among them, heat transfer occurs due to collision of gas molecules. Therefore, if the pressure is reduced so as not to cause such collision, a high heat insulating property can be obtained. The average value of the distribution of the distance that gas molecules travel until they collide with other molecules is called the mean free path. As the pressure decreases, the mean free path increases. The mean free path of air is 760 Torr (10 4 P
In a), 10 -4 mm and 10 -2 Torr (1.33 Pa)
7.3 mm, 10 -4 Torr (1.33 × 10 -2 P
In a), it is 7.3 × 10 2 mm. When the mean free path of the gas molecules becomes larger than the distance between the walls of the thermos when the pressure becomes low, the collision between the molecules disappears, and the apparent thermal conductivity of the gas drops sharply. Is a high vacuum of 10 −5 Torr (1.33 × 10 −3 Pa).

【0010】逆に気体分子の飛行する空間を小さくして
も同じ効果が得られ、繊維構造体、樹脂発泡体や粒状体
などを空間に詰めておくと、低真空でも、高度な断熱性
が得られる。本発明では、減圧空間をガスバリアフィル
ムで構成するため、耐久性面のリスクを減らすために
も、かかる手段が好ましく使用される。
Conversely, the same effect can be obtained even if the space in which the gas molecules fly is reduced, and if the fiber structure, resin foam, granular material, etc. are packed in the space, a high degree of heat insulation can be obtained even in a low vacuum. can get. In the present invention, since the decompression space is constituted by the gas barrier film, such means is preferably used also in order to reduce the risk of durability.

【0011】本発明でいうガスバリア性フィルムは、外
部から空気、水蒸気、その他のガスが断熱体の中に透過
しない材料であれば特に制約はないが、アルミ箔等の金
属箔、エチレン・ビニルアルコール共重合体(EVO
H)、ポリ塩化ビニリデン(PVDC)、ポリビニルア
ルコール(PVA)、メタキシリレンダイアミン/アジ
ピン酸(MXD−6)、ポリプロピレン(PP)、ポリ
エステル(PET)、ナイロン(NY)等の熱可塑性フ
ィルムや、ポリ塩化ビニリデンコートフィルムなどが好
ましく使用される。
The gas barrier film referred to in the present invention is not particularly limited as long as it is a material that does not allow air, water vapor, and other gases to penetrate into the heat insulator from the outside. However, metal foil such as aluminum foil, ethylene vinyl alcohol, etc. Copolymer (EVO
H), thermoplastic films such as polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), meta-xylylenediamine / adipic acid (MXD-6), polypropylene (PP), polyester (PET), and nylon (NY); And a polyvinylidene chloride coated film.

【0012】また、本発明のガスバリア性フィルムは、
フィルムに、シリカ、アルミナ等のセラミックを、真空
蒸着またはスパッタリングによって薄膜層を形成したも
のを使用してもよい。かかるセラミックとしては、上述
の他に酸化インジウム錫(ITO)、錫、チタン、亜
鉛、ジルコニウム、バリウム、クロム等の金属酸化物、
窒化珪素、炭化珪素等を使用することができる。
Further, the gas barrier film of the present invention comprises:
A film obtained by forming a thin film layer of a ceramic such as silica or alumina by vacuum evaporation or sputtering may be used. Examples of such ceramics include metal oxides such as indium tin oxide (ITO), tin, titanium, zinc, zirconium, barium, and chromium, in addition to the above.
Silicon nitride, silicon carbide, or the like can be used.

【0013】かかるガスバリア性フィルムのバリア性を
高めるため、積層構造体とするのが好ましく、さらに好
ましくはその少なくとも一層に金属およびセラミックス
から選ばれた少なくとも1種の無機物層を有するものが
良い。さらにより好ましくは7〜12ミクロンの金属箔
を有するものが良い。
In order to enhance the barrier properties of such a gas barrier film, it is preferable to form a laminated structure, and more preferably a film having at least one inorganic layer selected from metals and ceramics on at least one layer thereof. Still more preferably, a material having a metal foil of 7 to 12 microns is good.

【0014】また、かかるガスバリア性フィルムの断熱
性を高めるため、該積層構造体の少なくとも一層に、J
IS A−1412に基づいて測定される熱伝導率が
0.1W/(m・K)以下である材料、例えば発泡ポリ
エチレン、発泡ウレタン等の発泡体、または、繊維織編
物などを積層して使用するのが好ましい。かかるガスバ
リア性フィルムの耐久性をさらに向上させるためには、
好ましくはナイロン、ポリエステル、アラミド等の強度
のある繊維からなる編織物を複合させて使用するのがよ
い。
In order to enhance the heat insulating property of the gas barrier film, at least one layer of the laminated structure is provided with J
A material having a thermal conductivity of 0.1 W / (m · K) or less measured based on IS A-1412, for example, a foamed material such as foamed polyethylene or foamed urethane, or a fiber woven or knitted fabric is used by lamination. Is preferred. In order to further improve the durability of such a gas barrier film,
Preferably, a knitted or woven fabric made of a strong fiber such as nylon, polyester, or aramid is used in combination.

【0015】かかるガスバリア性フィルムを減圧封入す
る際のシール方法は、内部の減圧度が保てる方法であれ
ば、特に制約はないが、該ガスバリア性フィルムを熱融
着させて密封する方法が好ましく使用される。そのため
該フィルムの積層構造体の少なくとも片面に熱可塑性の
合成樹脂フィルムを使用するものが好ましい。かかる熱
可塑性合成樹脂フィルムとしては、例えば無延伸ポリプ
ロピレン(CPP)、高密度ポリエチレン(HDP
E)、低密度ポリエチレン(LDPE)、リニヤー低密
度ポリエチレン(LLDPE)、エチレンビニルアセテ
ート共重合体(EVA)、ポリエステル(PET)、ア
イオノマー(ION)等の熱可塑性合成樹脂フィルムを
使用することができる。
The method of sealing the gas barrier film under reduced pressure is not particularly limited as long as the degree of reduced pressure inside can be maintained, but a method of sealing the gas barrier film by heat sealing is preferably used. Is done. Therefore, it is preferable to use a thermoplastic synthetic resin film on at least one side of the laminated structure of the film. Examples of such a thermoplastic synthetic resin film include unstretched polypropylene (CPP) and high-density polyethylene (HDP).
E) Thermoplastic synthetic resin films such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ethylene vinyl acetate copolymer (EVA), polyester (PET), and ionomer (ION) can be used. .

【0016】また、コア材に繊維構造体を使用する場
合、繊維構造体がウェブ、フェルト、不織布および織編
物から選ばれた少なくとも1種であるのが、容器にする
際の軽量性および成形性が良好で好ましく、さらに繊維
構造体としては、減圧後において0.008〜0.5g
/cm3 の嵩密度を有するものが好ましい。かかる嵩密度
が大きすぎると、減圧にした際、減圧空間内の気体分子
の熱伝導より、空間を形成する骨格(繊維構造体)内を
伝わる熱伝導の方が大きくなり、逆に小さすぎると、該
フィルム間がつぶれてしまい、減圧空間を十分に保持す
ることができない傾向がある。
When a fiber structure is used as the core material, the fiber structure is at least one selected from the group consisting of web, felt, non-woven fabric and woven or knitted fabric, and is used for lightness and moldability in a container. Is preferable, and as a fiber structure, 0.008 to 0.5 g after decompression.
/ Cm 3 is preferred. If the bulk density is too large, when the pressure is reduced, the heat conduction through the skeleton (fibrous structure) forming the space becomes larger than the heat conduction of gas molecules in the reduced pressure space, and conversely, if the bulk density is too small. In addition, the gaps between the films are crushed, and there is a tendency that the reduced pressure space cannot be sufficiently maintained.

【0017】また、中空糸や異形断面糸を含む繊維構造
体を使用するのが好ましい。かかる中空繊維とは、糸断
面の少なくとも一部が空洞になっているものを意味し、
天然繊維では、綿、麻、絹などの繊維を好ましく使用す
ることができ、また、合成繊維では、O型断面糸、異形
断面糸、田形断面糸等の断面形状を有するものが好まし
く使用される。
Further, it is preferable to use a fibrous structure containing a hollow fiber or a modified cross-section yarn. Such a hollow fiber means that at least a part of the yarn cross section is hollow,
In the case of natural fibers, fibers such as cotton, hemp, and silk can be preferably used. In the case of synthetic fibers, fibers having a cross-sectional shape such as an O-shaped cross-section yarn, a modified cross-section yarn, and a rice-shaped cross-section yarn are preferably used. .

【0018】かかる中空繊維は、既に内部空間を保持し
ていることから、減圧空間を細分化しやすく、また同一
太さの普通糸と比較すると、曲げおよびねじり合成率が
高いことから、その減圧空間を維持、保持するという効
果を有するものである。
Since such hollow fibers already retain the internal space, the decompression space is easily divided, and since the bending and torsional synthesis rate is higher than that of ordinary yarn of the same thickness, the decompression space is reduced. Is maintained and held.

【0019】また、異形断面糸とは、溶融紡糸法で作ら
れる合成繊維の中で口金を非円形化して紡糸された、例
えば糸断面がT型、Y型、三つ葉型、四葉型、五葉型の
断面を有するものを意味し、異形化することで、糸同士
の密着、接触が少なくなり、空間を細分化しやすく、剛
直性も向上するいので、安定に空間を維持、保持するこ
とができる。
The modified cross-section yarn is a synthetic fiber produced by a melt spinning method and having a non-circular spinneret and spun. For example, the cross section of the yarn is T-type, Y-type, three-leaf type, four-leaf type, or five-leaf type. The cross-section of the fibers means that by deforming, the tightness and contact between the yarns is reduced, the space is easily divided, and the rigidity is improved, so that the space can be stably maintained and held. .

【0020】かかる繊維構造体の素材に特に制約はない
が、合成樹脂、ガラスおよびセラミックス等からなる繊
維が好ましく使用される。
There are no particular restrictions on the material of the fibrous structure, but fibers made of synthetic resin, glass, ceramics and the like are preferably used.

【0021】また、本発明のコア材には、樹脂発泡体を
使用しても良いが、独立気泡構造のものより、連続気泡
構造を有するものの方が好ましく使用される。これは減
圧の際に、連続気泡構造の方が早く目標の減圧値に達す
る機能を有するためである。
The core material of the present invention may be a resin foam, but those having an open-cell structure are more preferably used than those having a closed-cell structure. This is because at the time of pressure reduction, the open-cell structure has a function of reaching the target pressure reduction value earlier.

【0022】また、本発明のコア材には、粒状体を使用
しても良いが、かかる粒状体としては、JIS−A14
12に基づいて測定される熱伝導率が0.05W/(m
・K)以下である材料が望ましく、その中でも、例えば
パーライト、珪藻土、ガラスバルーン、シラスバルー
ン、珪酸カルシウムおよびシリカエアロゲルから選ばれ
た少なくとも1種が好ましく使用される。
Further, a granular material may be used for the core material of the present invention, and such a granular material may be JIS-A14.
12 is 0.05 W / (m
K) The following materials are desirable, and among them, for example, at least one selected from perlite, diatomaceous earth, glass balloon, shirasu balloon, calcium silicate and silica airgel is preferably used.

【0023】かくして得られる本発明の断熱材の厚み
は、望ましくは1〜10mmであるのが有効容積率(容
器の外観の大きさに対する内容積の割合)を増やすとい
う点からも好ましい。
The thickness of the heat insulating material of the present invention thus obtained is desirably 1 to 10 mm from the viewpoint of increasing the effective volume ratio (the ratio of the inner volume to the outer appearance size of the container).

【0024】さらに、かかる該断熱材が、好ましくはJ
IS−A9514に基づいて測定される曲げ強さが15
Pa以下であると、容器を折り曲げることができ、中の
飲物を飲んだ分だけ容器を曲げて、嵩を減らすこともで
きる。通常、減圧にすると外容器が大気から押されるた
め、堅くなってしまうが、本発明の構成により、外容器
に柔軟なフィルムを使用し、比較的低真空度の2Tor
r(266Pa)〜0.01Torr(1.33Pa)
でコア材として追従性のある繊維構造体、樹脂発泡体、
および粒状体を減圧後の厚みが1〜10mmになるよう
密封すれば、断熱性と折り曲げ性を両立した容器を得る
ことができる。
Further, the heat insulating material is preferably J
When the flexural strength measured based on IS-A9514 is 15
When the pressure is equal to or lower than Pa, the container can be bent, and the container can be bent by the amount of the drink therein to reduce the bulk. Normally, when the pressure is reduced, the outer container is pushed from the atmosphere and becomes stiff. However, according to the configuration of the present invention, a flexible film is used for the outer container, and a relatively low vacuum of 2 Torr is used.
r (266 Pa) to 0.01 Torr (1.33 Pa)
The fiber structure, resin foam,
If the granular material is sealed so that the thickness after decompression becomes 1 to 10 mm, a container having both heat insulating properties and bendability can be obtained.

【0025】本発明の保温保冷容器の容器形状について
は、円筒型、テトラパック型、袋型、スタンディングパ
ウチ型、ボトル型、ブリック型、バックインボックス
型、ケーブルトップ型、コンポジット缶(平巻、スパイ
ラル型)型、ラミチューブ型、封筒型、ピロー型、ガゼ
ット型等とくに制約はない。
With respect to the container shape of the heat insulating and cooling container of the present invention, cylindrical, tetra-pack, bag, standing pouch, bottle, brick, back-in-box, cable top, and composite cans (flat-wound, Spiral type), Lami tube type, envelope type, pillow type, gusset type, etc., are not particularly limited.

【0026】かかる容器の成形方法の例としては、ガス
バリア性フィルムで3方をシールした袋をつくり、これ
にコア材を入れて、減圧にしながら、残りの一辺を熱融
着させて、板状の断熱材をつくり、これを別の内容器の
側面に巻きつけて、保温保冷容器を成形してもよい。ま
た、複数の断熱材の小片をつくり、それを別の内容器の
側面に貼り合わせて、保温保冷容器を成形してもよい。
As an example of a method for forming such a container, a bag is sealed on three sides with a gas barrier film, a core material is placed in the bag, and the other side is heat-fused while reducing the pressure, thereby forming a plate. May be formed and wound around the side of another inner container to form a heat-insulated and cooled container. Alternatively, a plurality of small pieces of heat insulating material may be made and attached to the side surface of another inner container to form a heat insulating and cooling container.

【0027】また、ポリエチレン、ポリプロピレン、ポ
リスチレン、ポリ塩化ビニル、ポリエチレンテレフタレ
ート等の熱可塑性樹脂を用い、中空ブロー成形、インジ
ェクション(射出)成形、インジェクションブロー成形
等の方法により、中空成形容器をつくり、それを2つ重
ねた間に、コア材を充填し、減圧にしながら、口部分を
熱融着させて、断熱材をつくってもよい。
Also, a hollow molded container is made by using a thermoplastic resin such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, etc., by a method such as hollow blow molding, injection (injection) molding, or injection blow molding. The core material may be filled between the two layers, and the mouth portion may be heat-sealed while reducing the pressure to form a heat insulating material.

【0028】本発明によるコア材を減圧封入してなる断
熱材は、容器のどの部分に使用してもよく、他の発泡体
や繊維状物からなる断熱材との組み合わせで使用しても
良いが、容器が市販のペットボトルのように円筒形状等
で側面の占める面積が大きい場合、少なくとも容器側面
に使用するのがよい。これは側面を通過するの熱量が容
器口部、下底部に対し非常に大きいためであり、移動す
る熱量が大きいと断熱効果が低下するためである。側面
に断熱材を使用する際、断熱効果をさらに高めるために
は、断熱材の表面と裏面を結ぶ部分はできるだけ小さい
方が望ましい。これは真空断熱材は中が真空となってい
るため熱伝導率は極端に低く、表面、裏面に温度差が生
じると表面と裏面を結ぶフィルムの部分を通って熱が移
動(ヒートブリッジ、熱橋)しやすくなるためである。
The heat insulating material of the present invention in which the core material is sealed under reduced pressure may be used for any part of the container, or may be used in combination with another heat insulating material made of a foam or a fibrous material. However, when the container occupies a large area on the side surface in a cylindrical shape or the like like a commercially available PET bottle, it is preferable to use at least the container on the side surface. This is because the amount of heat passing through the side surface is extremely large with respect to the container mouth portion and the lower bottom portion, and if the amount of heat moving is large, the heat insulation effect is reduced. When the heat insulating material is used for the side surface, it is desirable that a portion connecting the front surface and the rear surface of the heat insulating material is as small as possible to further enhance the heat insulating effect. This is because the thermal conductivity of a vacuum insulation material is extremely low because the inside is vacuum, and when a temperature difference occurs between the front and back surfaces, heat moves through the film connecting the front and back surfaces (heat bridge, heat bridge). Bridge).

【0029】逆に、断熱性はある程度必要であるが、携
帯性を重視する場合などは複数の真空断熱材を連結し、
連結部分を可動にしてもよい。連結部分が可動である
と、容器を連結部分で折り畳むことができ、例えば飲ん
だ飲料分だけ容器の嵩を減らしたり、空になるとコンパ
クトに折り畳み小さく持ち運ぶことができる。このよう
な構成は、使用中に接触や擦れ等でガスバリア性フィル
ムにピンホールが生じ、真空度が低下する危険性を想定
したとき、一枚の真空断熱材を全面に使用した構成では
一度に断熱性がなくなってしまうが、複数の真空断熱材
が連結されて使用されている構成では真空の破壊がその
部分だけにとどまり、ある程度継続使用できるというメ
リットもある。
Conversely, a certain degree of heat insulation is necessary, but when portability is important, a plurality of vacuum heat insulating materials are connected,
The connecting portion may be movable. When the connecting portion is movable, the container can be folded at the connecting portion. For example, the volume of the container can be reduced by the amount of the drink that has been drunk, or when the container is empty, the container can be folded and compactly carried. In such a configuration, when a pinhole is generated in the gas barrier film due to contact or rubbing during use, and the danger of a reduced vacuum degree is assumed, in a configuration using one piece of vacuum heat insulating material over the entire surface at once. Although the heat insulating property is lost, in a configuration in which a plurality of vacuum heat insulating materials are connected and used, there is a merit that the vacuum is broken only in that portion and the device can be used to some extent.

【0030】本発明による保温保冷容器は、中の液体が
漏れないようにフィルムを貼る、あるいは液漏れのない
内容器と貼り合わせる等の処置を行えば、直接飲料を容
器のなかにいれてもさしつかえないが、市販のペットボ
トル飲料または空ペットボトル容器にお茶やコーヒーを
入れて持ち運ぶ際の保冷カバーとしても好ましく使用す
ることができる。
The container for keeping warm and cool according to the present invention can be used for directly placing a beverage in a container if a film is stuck so as not to leak the liquid inside, or if the container is stuck to an inner container which does not leak liquid. Although it is not a matter of course, it can be preferably used as a cold insulation cover when carrying tea or coffee in a commercially available PET bottle beverage or empty PET bottle container.

【0031】本発明を図面を用いて説明する。The present invention will be described with reference to the drawings.

【0032】図1は、本発明の保温保冷容器を構成する
断熱材の一例を示す断面図であって、1がガスバリア性
フィルム、2がコア材、3が熱融着部である。
FIG. 1 is a cross-sectional view showing an example of a heat insulating material constituting a heat insulating and cooling container of the present invention, wherein 1 is a gas barrier film, 2 is a core material, and 3 is a heat-sealed portion.

【0033】図2は、本発明のガスバリア性フィルムの
一例を示す断面図で、4がPETフィルム、と5がAl
箔、6がCPPフィルムで各フィルムをドライラミネー
トにより積層したものである。ここで、PETフィルム
4は、表面保護性を、Al箔(アルミ箔)5は、ガスバ
リア性を、CPPフィルム6は、熱融着性を、それぞれ
目的として使用しているものである。
FIG. 2 is a cross-sectional view showing an example of the gas barrier film of the present invention, wherein 4 is a PET film and 5 is Al.
Foil 6 is a CPP film and each film is laminated by dry lamination. Here, the PET film 4 is used for surface protection, the Al foil (aluminum foil) 5 is used for gas barrier properties, and the CPP film 6 is used for heat fusion properties.

【0034】図3は、本発明の保温保冷容器の一例を示
すもので、図1によって示される断熱材を両側のシール
部を接着して円筒状に成形し、該円筒の上底部および下
底部を円状にカットした発泡ポリオレフィンを蓋として
成形したもので、7が断熱材、8が発泡ポリオレフィン
である。これは、市販のペットボトル飲物の外容器(カ
バー)として使用することもできる。
FIG. 3 shows an example of the heat insulating / cooling container of the present invention. The heat insulating material shown in FIG. 1 is formed into a cylindrical shape by bonding the seal portions on both sides, and the upper and lower bottom portions of the cylinder are formed. Is molded using a foamed polyolefin obtained by cutting into a lid, 7 is a heat insulating material, and 8 is a foamed polyolefin. This can also be used as an outer container (cover) of a commercially available plastic bottle drink.

【0035】図4は、図3の保温保冷容器を外容器とし
て、これにPET製内容器(ペットボトル)を一体化さ
せたもので、9がそのPET製内容器である。
FIG. 4 shows a case in which the PET container is integrated with the heat and cool container of FIG. 3 as an outer container, and 9 is the PET container.

【0036】図5は、内容器となるフィルム製の袋にキ
ャップ付き飲み口を設けてなるフレキシブルな水筒の一
例を示したもので、10がキャップ、11が飲み口、1
2がナイロン製袋である。
FIG. 5 shows an example of a flexible water bottle in which a cap-equipped spout is provided in a film bag serving as an inner container. 10 is a cap, 11 is a spout, and 1 is a spout.
2 is a nylon bag.

【0037】図6は、図5のフレキシブル容器に、本発
明の保温保冷容器を一体化させた、つまり封筒型保温保
冷容器の一例である。ナイロン製袋12、断熱材7とも
に折り曲げ性があるので、中の飲物が減った分だけ容積
を小さくして持ち運ぶことができる。
FIG. 6 shows an example of an envelope-type heat insulating / cooling container in which the heat insulating / cooling container of the present invention is integrated with the flexible container of FIG. Since both the nylon bag 12 and the heat insulating material 7 are bendable, they can be carried in a reduced volume by the reduced amount of the drink therein.

【0038】[0038]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 [保温・保冷性の評価方法] <保冷性>5℃の冷水500mlを実施例のおよび比較
例の容器に入れ、20℃雰囲気下に静置し、1時間毎の
水の温度上昇を測定した。評価の判定は次のような基準
で行った。
The present invention will be described in more detail with reference to the following examples. [Method for Evaluating Heat Insulation / Cooling Insulation] <Cooling Insulation> 500 ml of 5 ° C. cold water was placed in the containers of Examples and Comparative Examples, and allowed to stand still at 20 ° C. atmosphere, and the temperature rise of the water every hour was measured. . The evaluation was evaluated based on the following criteria.

【0039】 <保温性>95℃の熱水を500mlを実施例および比
較例の容器に入れ、20℃雰囲気下に静置し、1時間毎
の温度降下を測定した。評価の判定は次のような基準で
行った。
[0039] <Heat Insulation> 500 ml of 95 ° C. hot water was placed in the containers of Examples and Comparative Examples, and allowed to stand still at 20 ° C., and the temperature drop was measured every hour. The evaluation was evaluated based on the following criteria.

【0040】 [容器の製造方法]本発明による保温保冷容器の製造方法
を説明する。
[0040] [Method of Manufacturing Container] A method of manufacturing the heat insulating and cooling container according to the present invention will be described.

【0041】<ガスバリア性フィルム>厚さ9μのPE
Tフィルム(二軸延伸ポリエステルフィルム)、厚さ1
2μのAl箔(アルミ箔)、厚さ70μのCPPフィル
ム(無延伸ポリプロピレンフィルム)を、それぞれドラ
イラミネート法により張り合わせ、図2に示す構造のガ
スバリア性フィルムを得た。このフィルム構成を有する
ガスバリア性フィルムを構成1とした。
<Gas barrier film> 9 μm thick PE
T film (biaxially stretched polyester film), thickness 1
A 2 μm Al foil (aluminum foil) and a 70 μm thick CPP film (unstretched polypropylene film) were bonded together by dry lamination to obtain a gas barrier film having the structure shown in FIG. The gas barrier film having this film configuration was referred to as Configuration 1.

【0042】また、この構成1のAl箔とCPPフィル
ムの間に、厚さ15μのONYフィルム(二軸延伸ナイ
ロンフィルム)を挿入した構成を有するガスバリア性フ
ィルムを構成2とした。このONYフィルムは、耐突き
刺し性に優れており、この構成2のものは、前記構成1
の耐久性をさらに高めたものである。
A gas barrier film having a structure in which an ONY film (biaxially stretched nylon film) having a thickness of 15 μm was inserted between the Al foil and the CPP film of the structure 1 was formed as a structure 2. This ONY film is excellent in piercing resistance.
The durability is further improved.

【0043】さらに、厚さ12μのPETフィルム、厚
さ15μのONYフィルム、厚さ17μのAl箔、厚さ
60μのCPPフィルムを、それぞれ積層したフィルム
構成を有するガスバリア性フィルムを構成3とした。
Further, a gas barrier film having a film structure in which a PET film having a thickness of 12 μm, an ONY film having a thickness of 15 μm, an Al foil having a thickness of 17 μm, and a CPP film having a thickness of 60 μm were each laminated was referred to as Structure 3.

【0044】さらに、厚さ15μのONYフィルム、厚
さ15μのPVDCフィルム(ポリ塩化ビニリデン)、
厚さ15μのONYフィルム、厚さ60μのCPPフィ
ルムを、それぞれ積層した金属層のないフィルム構成を
構成4とした。
Further, an ONY film having a thickness of 15 μ, a PVDC film (polyvinylidene chloride) having a thickness of 15 μ,
A film configuration having no metal layer in which an ONY film having a thickness of 15 μm and a CPP film having a thickness of 60 μm were laminated was designated as Configuration 4.

【0045】さらに、OPP(二軸延伸ポリプロピレン
フィルム)20μ、PE(ポリエチレン)12μ、Al
−PET(Al蒸着ポリエステルフィルム)9μ、PE
12μ、CPP70μを積層した金属蒸着層を持つフィ
ルム構成を有するガスバリア性フィルムを構成5とし
た。
Further, OPP (biaxially oriented polypropylene film) 20 μ, PE (polyethylene) 12 μ, Al
-PET (Al evaporated polyester film) 9μ, PE
A gas barrier film having a film configuration having a metal deposition layer in which 12 μ and CPP 70 μ were laminated was designated as Configuration 5.

【0046】かかる構成1〜5のフィルム構成を有する
ガスバリア性フィルムを、表1にまとめて示す。
Table 1 shows the gas barrier films having the above-mentioned structures 1 to 5.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例1 構成1のガスバリア性フィルムを熱融着して作られた袋
(縦30cm×横32cm )の中に、ポリエステル長
繊維不織布(嵩密度0.01g/cm3 、目付1200
g/m2 、厚み20mm、縦22cm×横30cm)を
コア材として入れ、真空度0.01Torr(1.33
Pa)に減圧にしながら、該ガスバリア性フィルムの開
口部を熱融着して閉じて断熱材を得た。この断熱材の断
面図を図1に示す。
Example 1 A polyester long-fiber nonwoven fabric (bulk density 0.01 g / cm 3 , basis weight 1200) was placed in a bag (length 30 cm × width 32 cm) made by heat-sealing the gas barrier film of constitution 1.
g / m 2 , thickness 20 mm, length 22 cm × width 30 cm) as a core material, and a degree of vacuum of 0.01 Torr (1.33)
While reducing the pressure to Pa), the opening of the gas barrier film was heat-sealed and closed to obtain a heat insulating material. FIG. 1 shows a cross-sectional view of this heat insulating material.

【0049】この断熱材を用いて、図3の外容器を得
た。すなわち、該断熱材の両側のシール部を接着して円
筒状に成形し、円筒の上底部および下底部を円状にカッ
トした発泡ポリオレフィン(東レ(株)製“トーレペ
フ”、外径9cm、厚み1cm、熱伝導率0.30W/
m・K)を、それぞれ蓋として成形して外容器をつくっ
た。この外容器の中に入れる内容器として、ブロー成形
したポリエチレンテレフタレート容器(PETボトル)
をつくり、これを中に入れて、外容器と貼り合わせて、
図4のような実施例1の保温保冷容器を得た。この保温
保冷容器の厚みは4mm、重量は131gで、ステンレ
ス魔法瓶の約半分の重さであった。 比較例1 実施例1の断熱材を作る際、減圧にせずに、常圧で熱融
着した以外は、実施例1と同様にして断熱材を得、この
断熱材を用いて、実施例1と同様にして、比較例1の保
温保冷容器を得た。この保温保冷容器の厚さは10m
m、重量は131gであった。 実施例2 実施例1のコア材として用いたポリエステル長繊維不織
布を、目付けを半分の600g/m2 とする以外は、実
施例1と同様に構成して実施例2の保温保冷容器を得
た。この保温保冷容器の厚さは2mm、重量は95gで
あった。 比較例2 実施例2の断熱材を作る際、減圧にせずに、常圧で熱融
着した以外は、実施例2と同様にして断熱材を得、この
断熱材を用いて、実施例2と同様にして、比較例2の保
温保冷容器を得た。この保温保冷容器の厚さは4mm、
重量は95gであった。 実施例3 実施例1のコア材として用いたポリエステル長繊維不織
布を、目付けを4分の1の300g/m2 とする以外
は、実施例1と同様に構成して実施例3の保温保冷容器
を得た。この保温保冷容器の厚さは1.5mm、重量は
77gであった。 比較例3 実施例3の断熱材を作る際、減圧にせずに、常圧で熱融
着した以外は、実施例3と同様にして断熱材を得、この
断熱材を用いて、実施例3と同様にして、比較例3の保
温保冷容器を得た。この保温保冷容器の厚さは2mm、
重量は77gであった。 実施例4〜7 実施例1のガスバリアフィルムの代わりに、表1の構成
2〜5の積層フィルムを用いて、実施例1と同様にし
て、実施例4〜7の保温保冷容器を得た。かかる実施例
4〜7の保温保冷容器の厚さは、いずれも4mm、重さ
は、いずれも131gであった。 実施例8 実施例1の断熱材を形成する際の真空度を0.01To
rr(1.33Pa)とする代わりに、0.02Tor
r(2.66Pa)の真空度で熱融着する以外は、実施
例1と同様にして実施例8の保温保冷容器を得た。この
実施例8の保温保冷容器の厚さは4mm、重量は131
gであった。 実施例9 実施例8において、断熱材を形成する際の真空度を2T
orr(2.66×102 Pa)の真空度で熱融着する
以外は、実施例8と同様にして実施例9の保温保冷容器
得た。この容器の厚さは4mm、重量は131gであっ
た 実施例10 図2に示すようなナイロンフィルム製袋からなる口付き
水筒の側面に、実施例2と同様な方法で作成した断熱材
(20.5cm×28cm)を巻き付けて、一体化し
て、図6に示す実施例10の保温保冷容器得た。この容
器の厚さは2mm、重量は111gであったかかる実施
例1〜10および比較例1〜3の構成を表2にまとめて
示す。
The outer container shown in FIG. 3 was obtained using this heat insulating material. That is, a foamed polyolefin ("Toray Peff" manufactured by Toray Industries, Inc., having an outer diameter of 9 cm, a thickness of 9 mm) was formed by bonding the seal portions on both sides of the heat insulating material to form a cylindrical shape, and cutting the upper and lower portions of the cylinder in a circular shape. 1 cm, thermal conductivity 0.30 W /
m · K) were molded as lids to form outer containers. Blow-molded polyethylene terephthalate container (PET bottle)
And put it inside, glue it to the outer container,
As a result, a heat- and cold-insulated container of Example 1 as shown in FIG. 4 was obtained. The thickness of the heat-retaining cool container was 4 mm, the weight was 131 g, and weighed about half of the stainless steel thermos. Comparative Example 1 A heat insulating material was obtained in the same manner as in Example 1 except that the heat insulating material of Example 1 was heat-sealed at normal pressure without reducing the pressure. In the same manner as in the above, a heat insulating / cooling container of Comparative Example 1 was obtained. The thickness of this insulated container is 10m
m and weight were 131 g. Example 2 A non-woven polyester long-fiber nonwoven fabric used as a core material of Example 1 was configured in the same manner as in Example 1 except that the basis weight was reduced to 600 g / m 2 to obtain a heat-insulated and cooled container of Example 2. . The thickness of the heat-insulated and cooled container was 2 mm, and the weight was 95 g. Comparative Example 2 A heat insulating material was obtained in the same manner as in Example 2 except that the heat insulating material of Example 2 was heat-sealed at normal pressure without reducing the pressure. In the same manner as in the above, a heat insulating / cooling container of Comparative Example 2 was obtained. The thickness of this heat and cold storage container is 4 mm,
The weight was 95 g. Example 3 Except that the polyester long-fiber nonwoven fabric used as the core material of Example 1 was changed to a quarter weight of 300 g / m 2 , the same configuration as in Example 1 was adopted, and the heat-insulated and cooled container of Example 3 was used. I got The thickness of the heat-insulated and cooled container was 1.5 mm, and the weight was 77 g. Comparative Example 3 A heat insulating material was obtained in the same manner as in Example 3 except that the heat insulating material of Example 3 was heat-sealed at normal pressure without reducing the pressure. In the same manner as in the above, a heat insulating / cooling container of Comparative Example 3 was obtained. The thickness of this heat and cold storage container is 2 mm,
The weight was 77 g. Examples 4 to 7 In the same manner as in Example 1 except that the gas barrier films of Example 1 were replaced with the laminated films of Structures 2 to 5 in Table 1, heat- and cold-insulated containers of Examples 4 to 7 were obtained. The thickness of each of the heat insulating and cooling containers of Examples 4 to 7 was 4 mm, and the weight was 131 g. Example 8 The degree of vacuum when forming the heat insulating material of Example 1 was set to 0.01 To.
Instead of rr (1.33 Pa), 0.02 Torr
Except for performing heat fusion at a degree of vacuum of r (2.66 Pa), a heat- and cold-insulated container of Example 8 was obtained in the same manner as in Example 1. The thickness of the heat and cold storage container of Example 8 was 4 mm, and the weight was 131.
g. Example 9 In Example 8, the degree of vacuum when forming the heat insulating material was 2T.
A heat- and cold-insulated container of Example 9 was obtained in the same manner as in Example 8, except that heat fusion was performed at a degree of vacuum of orr (2.66 × 10 2 Pa). This container had a thickness of 4 mm and a weight of 131 g. Example 10 A heat insulating material (20) made in the same manner as in Example 2 was placed on the side of a water bottle with a mouth made of a nylon film bag as shown in FIG. (2.5 cm × 28 cm) and wound into a unit to obtain a heat-insulated and cooled container of Example 10 shown in FIG. Table 2 shows the configurations of Examples 1 to 10 and Comparative Examples 1 to 3 in which the thickness of the container was 2 mm and the weight was 111 g.

【0050】[0050]

【表2】 [Table 2]

【0051】次に、実施例1〜10および比較例1〜3
の容器の保温保冷性試験を行い、保冷性の結果を表3、
保温性の結果を表4に、それぞれ示す。
Next, Examples 1 to 10 and Comparative Examples 1 to 3
The container was tested for heat retention and cooling, and the results of the cooling were shown in Table 3,
Table 4 shows the results of the heat retention.

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】表2からあきらかなように、実施例1〜1
0のものは、比較例1〜3のものに比して、いずれも軽
量で、コンパクトであることがわかる。
As apparent from Table 2, Examples 1 to 1
It can be seen that the case of 0 is lighter and more compact than those of Comparative Examples 1 to 3.

【0055】また、表3から明らかなように、実施例1
〜10のものは、比較例1〜3のものに比して、いずれ
も人間が飲物を冷たく、おいしいと感じる10℃程度の
温度を約3〜4時間保っており、十分な保冷性を有する
ことがわかる。また、表4から明らかなように、実施例
1〜10のものは、比較例1〜3のものに比して、いず
れも人間が飲物を温かく、おいしいと感じる60℃程度
の温度を約4〜5時間保っており、十分な保温性を有す
ることがわかる。
As is clear from Table 3, Example 1
As compared with those of Comparative Examples 1 to 3, the temperature of about 10 ° C., at which humans feel cold and delicious, is maintained for about 3 to 4 hours, and has a sufficient cold-holding property. You can see that. Moreover, as is clear from Table 4, the temperature of about 60 ° C. in which the humans feel that the drink is warm and delicious is about 4 in Examples 1 to 10 compared to Comparative Examples 1 to 3. It has been found that it has been kept for up to 5 hours and has sufficient heat retention.

【0056】特に、実施例10のものは、優れた断熱性
を維持する上に、容器全体として折り曲げ性があり、容
器内の飲物の嵩が減った分だけ折り曲げて、コンパクト
に持ち運ぶことができる利点のあるものであった。
In particular, in the case of the tenth embodiment, in addition to maintaining excellent heat insulating properties, the container as a whole has a bendable property, and can be compactly carried by being bent by the reduced volume of the beverage in the container. It was an advantage.

【0057】[0057]

【発明の効果】本発明によれば、軽量、コンパクトな携
帯用として優れた保温保冷容器を確実に安定して提供す
ることができる。具体的には水筒用途の他、ペットボト
ル飲料用保冷カバー、缶飲料用保温保冷カバー、定温輸
送用断熱シート、クーラーボックス等にも好適に使用す
ることができる。
According to the present invention, it is possible to reliably and stably provide a lightweight, compact and excellent portable heat-retaining and cooling container. Specifically, in addition to water bottle applications, it can also be suitably used as a cold storage cover for PET bottle beverages, a warm and cold storage cover for canned beverages, a heat insulating sheet for constant temperature transport, a cooler box, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この図は、本発明の断熱材の一例を示す模式断
面図である。
FIG. 1 is a schematic sectional view showing one example of a heat insulating material of the present invention.

【図2】この図は、本発明のガスバリア性フィルムの一
例を示す模式断面図である。
FIG. 2 is a schematic sectional view showing an example of the gas barrier film of the present invention.

【図3】この図は、本発明の保温保冷容器の一例を示す
斜視図である。
FIG. 3 is a perspective view showing an example of the heat insulating / cooling container of the present invention.

【図4】この図は、本発明の保温保冷容器の一例を示す
斜視図である。
FIG. 4 is a perspective view showing an example of the heat insulating / cooling container of the present invention.

【図5】この図は、飲料用のフレキシブルな容器の一例
を示す斜視図である。
FIG. 5 is a perspective view showing an example of a flexible container for beverages.

【図6】この図は、飲料用のフレキシブルな容器に本発
明による断熱材を保冷カバーとして一体化した保温保冷
容器の一例を示す斜視図である。
FIG. 6 is a perspective view showing an example of a heat insulating and cooling container in which a heat insulating material according to the present invention is integrated as a cooling cover with a flexible container for beverages.

【符号の説明】[Explanation of symbols]

1:ガスバリア性フィルム 2:コア材 3:熱融着部 4:PETフィルム 5:Al箔 6:CPPフィルム 7:断熱材 8:発泡ポリオレフィン 9:PET製内容器 10:キャップ 11:飲み口 12:ナイロン製袋 13:フレキシブル容器 1: gas barrier film 2: core material 3: heat-sealed portion 4: PET film 5: Al foil 6: CPP film 7: heat insulating material 8: foamed polyolefin 9: PET inner container 10: cap 11: spout 12: Nylon bag 13: Flexible container

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E067 AA11 AC01 BA17A BB25A BC03A CA04 CA18 GA14 4B002 AA03 BA21 CA34 4F100 AA01B AA03A AB01B AC02A AC10A AD00B AG00B AK01A AK01B AK07 AK42 AK46 BA02 DA01 DE01A DE04A DG00A DG01B DG06B DG12B DG13B DG15B DJ01A DJ03A EH66B EJ24B EJ38 GB16 JA13B JB16B JD02B JJ01A JJ01B JJ02 JK04 JK07A JL03 JM02B YY00A YY00B ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3E067 AA11 AC01 BA17A BB25A BC03A CA04 CA18 GA14 4B002 AA03 BA21 CA34 4F100 AA01B AA03A AB01B AC02A AC10A AD00B AG00B AK01A AK01B AK07 AK42 AK46 BA02 DA01B01 DG46 EH66B EJ24B EJ38 GB16 JA13B JB16B JD02B JJ01A JJ01B JJ02 JK04 JK07A JL03 JM02B YY00A YY00B

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】繊維構造体、樹脂発泡体および粒状体から
選ばれた少なくとも1種のコア材を、ガスバリア性フィ
ルムで減圧封入してなる断熱材で構成されていることを
特徴とする保温保冷用容器。
1. A heat insulating and cold insulating material characterized by comprising at least one kind of core material selected from a fibrous structure, a resin foam and a granular material, which is sealed under reduced pressure with a gas barrier film. Container.
【請求項2】該ガスバリア性フィルムが、積層構造体で
ある請求項1記載の保温保冷用容器。
2. The container according to claim 1, wherein said gas barrier film is a laminated structure.
【請求項3】該積層構造体が、その少なくとも一層に、
金属およびセラミックスから選ばれた少なくとも1種の
無機物層を有するものである請求項2記載の保温保冷用
容器。
3. The laminated structure according to claim 1, wherein at least one of the
3. The container according to claim 2, wherein the container has at least one inorganic layer selected from metals and ceramics.
【請求項4】該無機物層が、真空蒸着法、スパッタリン
グ法またはイオンプレーティング法による薄膜である請
求項3記載の保温保冷用容器。
4. The container according to claim 3, wherein said inorganic layer is a thin film formed by a vacuum deposition method, a sputtering method or an ion plating method.
【請求項5】該積層構造体が、その少なくとも一層に、
JIS−A1412に基づいて測定される熱伝導率が
0.1W/(m・K)以下である材料からなる層を有す
るものである請求項2〜4のいずれかに記載の保温保冷
用容器。
5. The laminated structure according to claim 1, wherein at least one of the
The container according to any one of claims 2 to 4, wherein the container has a layer made of a material having a thermal conductivity of 0.1 W / (m · K) or less measured according to JIS-A1412.
【請求項6】該積層構造体が、その少なくとも一層に、
編織物を有するものである請求項2〜5のいずれかに記
載の折り畳み性保温保冷用容器。
6. The laminated structure according to claim 1, wherein at least one of the
The foldable heat insulating / cooling container according to any one of claims 2 to 5, which has a knitted fabric.
【請求項7】該積層構造体が、その少なくとも片面に、
熱可塑性の合成樹脂製フィルムを有するものである請求
項2〜6のいずれかに記載の保温保冷用容器。
7. The laminated structure according to claim 1, wherein at least one surface thereof has
The container for keeping warm and cool according to any one of claims 2 to 6, which has a thermoplastic synthetic resin film.
【請求項8】該繊維構造体が、ウェブ、フェルト、不織
布および編織物から選ばれた少なくとも1種である請求
項1〜7のいずれかに記載の保温保冷用容器。
8. The container according to claim 1, wherein the fibrous structure is at least one selected from the group consisting of web, felt, nonwoven fabric and knitted fabric.
【請求項9】該繊維構造体の嵩密度が、0.008〜
0.5g/cm3 である請求項1〜8のいずれかに記載の
保温保冷用容器。
9. The fibrous structure has a bulk density of 0.008 to 0.008.
0.5 g / cm 3 and thermal insulation cold container according to claim 1 is.
【請求項10】該繊維構造体が、中空糸および異形断面
糸から選ばれた少なくとも1種を含むものである請求項
1〜9のいずれかに記載の保温保冷用容器。
10. The container according to claim 1, wherein said fibrous structure contains at least one selected from hollow fibers and modified cross-section yarns.
【請求項11】該繊維構造体が、合成樹脂、ガラスおよ
びセラミックスから選ばれた少なくとも1種で構成され
たものである請求項1〜10のいずれかに記載の保温保
冷用容器。
11. The container according to claim 1, wherein said fibrous structure is made of at least one kind selected from a synthetic resin, glass and ceramics.
【請求項12】該樹脂発泡体が、連続気泡構造を有する
合成樹脂発泡体である請求項1〜11のいずれかに記載
の保温保冷用容器。
12. The container according to claim 1, wherein said resin foam is a synthetic resin foam having an open cell structure.
【請求項13】該合成樹脂が、弾性樹脂である請求項1
2記載の保温保冷用容器。
13. The method according to claim 1, wherein said synthetic resin is an elastic resin.
2. The container for keeping warm and cool according to 2.
【請求項14】該該粒状体が、JIS A−1412に
基づいて測定される熱伝導率が0.05W/(m・K)
以下である請求項1〜13のいずれかに記載の保温保冷
用容器。
14. The granular material has a thermal conductivity measured according to JIS A-1412 of 0.05 W / (m · K).
The heat insulation / cooling container according to any one of claims 1 to 13, wherein:
【請求項15】該粒状体が、パーライト、珪藻土、ガラ
スバルーン、シラスバルーン、珪酸カルシウムおよびシ
リカエアロゲルから選ばれた少なくとも1種である請求
項14記載の保温保冷用容器。
15. The container according to claim 14, wherein said granular material is at least one selected from pearlite, diatomaceous earth, glass balloon, shirasu balloon, calcium silicate and silica airgel.
【請求項16】該断熱材の厚みが1〜10mmである請
求項1〜15のいずれかに記載の保温保冷容器。
16. The heat insulating and cooling container according to claim 1, wherein said heat insulating material has a thickness of 1 to 10 mm.
【請求項17】該断熱材が、JIS A−9514に基
づいて測定される曲げ強さが15Pa以下である請求項
1〜16のいずれかに記載の保温保冷容器。
17. The heat insulating and cooling container according to claim 1, wherein the heat insulating material has a flexural strength of 15 Pa or less as measured according to JIS A-9514.
【請求項18】該断熱材を少なくとも容器側面に使用し
た請求項1〜17のいずれかに記載の保温保冷容器。
18. The heat insulating / cooling container according to claim 1, wherein said heat insulating material is used at least on a side surface of the container.
【請求項19】該保温保冷容器が、ペットボトルをカバ
ーするものである請求項1〜18のいずれかに記載の保
温保冷容器。
19. The heat insulating and cooling container according to claim 1, wherein said heat insulating and cooling container covers a PET bottle.
JP2000247296A 2000-08-17 2000-08-17 Hot and cold insulation container Pending JP2002058604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247296A JP2002058604A (en) 2000-08-17 2000-08-17 Hot and cold insulation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247296A JP2002058604A (en) 2000-08-17 2000-08-17 Hot and cold insulation container

Publications (1)

Publication Number Publication Date
JP2002058604A true JP2002058604A (en) 2002-02-26

Family

ID=18737421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247296A Pending JP2002058604A (en) 2000-08-17 2000-08-17 Hot and cold insulation container

Country Status (1)

Country Link
JP (1) JP2002058604A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6651444B2 (en) * 1999-12-28 2003-11-25 Nisshinbo Industries, Inc. Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
JP2007050521A (en) * 2005-08-15 2007-03-01 Kurabo Ind Ltd Manufacturing method of vacuum heat insulating member
JP2007085696A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Vacuum heat insulating box body
EP1905976A1 (en) 2006-09-28 2008-04-02 Nichias Corporation Insulated container and method of manufacturing the same
WO2009130992A1 (en) * 2008-04-22 2009-10-29 新日本石油株式会社 Vacuum insulating material and method for producing the same
JP2010121652A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Vacuum thermal insulating material and thermal insulation box
JP2011098573A (en) * 2003-11-10 2011-05-19 Gore Enterprise Holdings Inc Aerogel/ptfe composite insulating material
US8066146B2 (en) 2007-08-10 2011-11-29 Nichias Corporation Insulated container and method of manufacturing the same
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6651444B2 (en) * 1999-12-28 2003-11-25 Nisshinbo Industries, Inc. Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
JP2011098573A (en) * 2003-11-10 2011-05-19 Gore Enterprise Holdings Inc Aerogel/ptfe composite insulating material
JP2007050521A (en) * 2005-08-15 2007-03-01 Kurabo Ind Ltd Manufacturing method of vacuum heat insulating member
JP2007085696A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Vacuum heat insulating box body
EP1905976A1 (en) 2006-09-28 2008-04-02 Nichias Corporation Insulated container and method of manufacturing the same
US8066146B2 (en) 2007-08-10 2011-11-29 Nichias Corporation Insulated container and method of manufacturing the same
WO2009130992A1 (en) * 2008-04-22 2009-10-29 新日本石油株式会社 Vacuum insulating material and method for producing the same
JP2010121652A (en) * 2008-11-17 2010-06-03 Mitsubishi Electric Corp Vacuum thermal insulating material and thermal insulation box
US8617684B2 (en) 2009-01-29 2013-12-31 Mitsubishi Electric Corporation Vacuum thermal insulating material and thermal insulating box including the same

Similar Documents

Publication Publication Date Title
JP2010017437A (en) Heat-retaining lunch bag
JP2001287291A (en) Heat insulation material and heat insulation member
US6182464B1 (en) Self-chilling bottle for a bicycle and the like
JP2002058604A (en) Hot and cold insulation container
US20070175906A1 (en) Insulated Disposable Recyclabe Bottle
JP2001125489A (en) Label for container and container with label
JP2000320786A (en) Vacuum thermal insulation material
CN209480377U (en) A kind of chemical defence condensation protective case
JP3590720B2 (en) Electric water heater
JP2000229679A (en) Heat insulating bag
JP4443727B2 (en) Manufacturing method of vacuum insulation container
JPH07113493A (en) Vacuum insulating member
WO1987001360A1 (en) Heat-insulated container
KR100567310B1 (en) Cooling Pack
JPS6060396A (en) Heat-insulating structure
JP6094088B2 (en) Laminate for vacuum insulation
JP2006124013A (en) Portable heat insulating container
JP4140132B2 (en) Electric water heater
JP2001048249A (en) Drinking water container
JP6569028B2 (en) Cold insulation packaging material
JPH1122896A (en) Vacuum heat insulating material
JPH08152258A (en) Vacuum heat insulator
JP4397214B2 (en) Pouch container with spout
JP2002195711A (en) Cold insulation or heat storage body
KR200354798Y1 (en) Cooling Pack