JP2002056717A - Terminal electrode paste for laminated ceramic electronic component - Google Patents

Terminal electrode paste for laminated ceramic electronic component

Info

Publication number
JP2002056717A
JP2002056717A JP2000242894A JP2000242894A JP2002056717A JP 2002056717 A JP2002056717 A JP 2002056717A JP 2000242894 A JP2000242894 A JP 2000242894A JP 2000242894 A JP2000242894 A JP 2000242894A JP 2002056717 A JP2002056717 A JP 2002056717A
Authority
JP
Japan
Prior art keywords
paste
terminal electrode
copper powder
electrode paste
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000242894A
Other languages
Japanese (ja)
Other versions
JP3698032B2 (en
Inventor
Masami Akagi
正美 赤木
Takashi Kato
隆 加藤
Mikio Yamazoe
幹夫 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2000242894A priority Critical patent/JP3698032B2/en
Publication of JP2002056717A publication Critical patent/JP2002056717A/en
Application granted granted Critical
Publication of JP3698032B2 publication Critical patent/JP3698032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal electrode paste having a fine film structure for a laminated ceramic electronic component wherein combustion, decomposition, and removal of organic binder are easily performed, and wherein generation of blister is prevented without deteriorating ceramic dielectric. SOLUTION: This paste has copper powder, glass powder and organic vehicle as the main component, and is the terminal electrode paste for the laminated ceramic electronic component whose dried film density is from 3.0 to 4.8 g/cm3 when it is applied and dried.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミック電
子部品の端子電極ペースト、特に内部電極がニッケル及
び又は銅を含む積層セラミックコンデンサの端子電極ペ
ーストに関するものである。
The present invention relates to a terminal electrode paste for a multilayer ceramic electronic component, and more particularly to a terminal electrode paste for a multilayer ceramic capacitor whose internal electrodes contain nickel and / or copper.

【0002】[0002]

【従来の技術】内部電極を有する積層セラミック電子部
品、例えば積層セラミックコンデンサは誘電体等の未焼
成セラミック誘電体シートと内部電極ペースト層とを交
互に複数層積み重ねて未焼成の積層体を得る。次いでこ
の未焼成の積層体を個々の電子部品となる様、例えば直
方体状に切断した後、これを高温で焼成しセラミック誘
電体素体(以下「素体」という)とする。更に、該素体
の内部電極の露出端面に端子電極ペーストが塗布される
よう、該素体をペースト中に浸漬し引き上げるというデ
ィッピング法により該ペーストを塗布、乾燥、焼成し、
内部電極に電気的に導通した端子電極を形成する。この
後、バレルメッキ装置等を用いて該端子電極上に電気メ
ッキによりニッケルメッキ層を、次いでこの上にスズ若
しくはその合金メッキ層を形成し積層セラミックコンデ
ンサが得られる。
2. Description of the Related Art A multilayer ceramic electronic component having internal electrodes, for example, a multilayer ceramic capacitor, is obtained by alternately stacking a plurality of unfired ceramic dielectric sheets such as dielectrics and internal electrode paste layers to obtain an unfired laminate. Next, the unfired laminate is cut into, for example, a rectangular parallelepiped so as to become individual electronic components, and then fired at a high temperature to obtain a ceramic dielectric element (hereinafter, referred to as an element). Further, so that the terminal electrode paste is applied to the exposed end surfaces of the internal electrodes of the element body, the paste is applied by a dipping method of dipping the element body into the paste and lifting it up, drying and firing,
A terminal electrode electrically connected to the internal electrode is formed. Thereafter, a nickel plating layer is formed on the terminal electrodes by electroplating using a barrel plating device or the like, and then a tin or alloy plating layer is formed thereon to obtain a multilayer ceramic capacitor.

【0003】内部電極材料としては、従来パラジウム、
銀―パラジウム、白金等の貴金属が用いられていたが、
省資源やコストダウン、パラジウム、銀―パラジウムの
焼成時の酸化膨張に起因するデラミネーション、クラッ
クの発生防止などの要求からニッケルや銅等の卑金属材
料が内部電極材料として用いられるようになってきてい
る。このため、端子電極材料もAg、Ag-Pdに替わり内部
電極のニッケルや銅等と良好な電気的接続を形成しやす
いニッケル、コバルト、銅等が用いられている。
Conventionally, palladium,
Noble metals such as silver-palladium and platinum were used,
Base metals such as nickel and copper have been used as internal electrode materials due to demands for resource saving, cost reduction, and prevention of delamination and cracking caused by oxidative expansion during firing of palladium and silver-palladium. I have. For this reason, instead of Ag and Ag-Pd, nickel, cobalt, copper, and the like, which easily form good electrical connection with nickel, copper, and the like of the internal electrode, are used as the terminal electrode material.

【0004】ところで、積層セラミックコンデンサの内
部電極材料にニッケルが使用され端子電極材料として銅
が用いられる場合には、端子電極の焼成は内部電極と端
子電極とを構成するこれら卑金属が焼成の際に酸化して
導電不良を生じない様に、焼成雰囲気を窒素雰囲気や中
性雰囲気となる様に制御しながら最高温度が700〜900℃
の温度範囲で行われる。
In the case where nickel is used as the internal electrode material of the multilayer ceramic capacitor and copper is used as the terminal electrode material, the terminal electrodes are fired when these base metals forming the internal electrodes and the terminal electrodes are fired. The maximum temperature is 700-900 ° C while controlling the firing atmosphere to be a nitrogen atmosphere or a neutral atmosphere so that oxidation does not cause conductive failure.
The temperature range is as follows.

【0005】このため、銅粉末が用いられる端子電極ペ
ーストを使用した場合には、空気中で焼成した場合と異
なり、銅粉末が焼結を開始する前までに有機ビヒクル中
の有機バインダの燃焼、分解、除去(以下「脱バイン
ダ」という)が完全に行われることができず、種々の問
題を生じていた。例えば、素体の劣化による信頼性の低
下やクラックの発生である。また、電極膜にはブリスタ
が発生したり膜構造がポーラスとなったりした。これ
は、焼成の際に幾らかの有機バインダが電極膜中に残留
カーボンとして閉じ込められて残り、このカーボンが焼
成時の高温のもとでセラミック誘電体に対して還元剤と
して作用し、該セラミック誘電体の一部を還元させ素体
の劣化やクラックの発生を引起こすためと考えられる。
このときに発生するガスにより電極膜中にブリスタと呼
ばれる空洞が発生し電極膜の一部がドーム状にもりあが
る現象が生じる。また、電極膜中に残った残留カーボン
は銅粉末の焼結抑制剤として作用するため、焼結が十分
に進まず得られた電極膜はポーラスとなる。このため、
その後行われる電気メッキ工程の際、ニッケルメッキ液
やスズ若しくはその合金メッキ液が電極膜中に侵入し、
IR等の低下や素体クラックの発生が起こり積層セラミッ
クコンデンサの信頼性が低下する。
For this reason, when the terminal electrode paste using copper powder is used, the burning of the organic binder in the organic vehicle before the sintering of the copper powder is started, unlike the case of firing in air. Decomposition and removal (hereinafter referred to as "binder removal") cannot be performed completely, and various problems have occurred. For example, there is a decrease in reliability or cracks due to deterioration of the element body. In addition, blisters were generated in the electrode film, and the film structure became porous. This is because, during firing, some organic binder remains trapped in the electrode film as residual carbon, and this carbon acts as a reducing agent for the ceramic dielectric under the high temperature during firing, and It is considered that a part of the dielectric material is reduced to cause deterioration of the element body and generation of cracks.
The gas generated at this time generates a cavity called a blister in the electrode film, and a phenomenon occurs in which a part of the electrode film rises in a dome shape. Further, since the residual carbon remaining in the electrode film acts as a sintering inhibitor for the copper powder, sintering does not proceed sufficiently and the obtained electrode film becomes porous. For this reason,
During the subsequent electroplating process, nickel plating solution or tin or alloy plating solution thereof penetrates into the electrode film,
A decrease in IR and the like and the occurrence of elementary cracks occur, and the reliability of the multilayer ceramic capacitor is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は、積層セラミ
ック電子部品の端子電極ペースト、特に内部電極がニッ
ケル及び又は銅を含む積層セラミックコンデンサの端子
電極ペーストにおいて、窒素雰囲気や中性雰囲気中で焼
成した時に脱バインダが容易に行われ、このため素体を
劣化させることなく又ブリスタの発生のない緻密な焼成
膜を形成できる端子電極ペーストを提供するものであ
る。更に塗布乾燥の際に突起や凹みのない優れた形状の
塗膜を得ることができできる端子電極ペーストを提供す
るものである。更に電気メッキ工程の際にニッケルメッ
キ液やスズ若しくは合金メッキ液が焼成膜中に侵入しIR
等の低下やクラックの発生の無い、信頼性の高い積層セ
ラミックコンデンサを製造することが可能である端子電
極ペーストを提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a terminal electrode paste for a multilayer ceramic electronic component, particularly a terminal electrode paste for a multilayer ceramic capacitor whose internal electrodes contain nickel and / or copper, which is fired in a nitrogen atmosphere or a neutral atmosphere. It is an object of the present invention to provide a terminal electrode paste which can easily remove the binder when it is formed, and can form a dense fired film without deteriorating the element body and without generating blisters. It is another object of the present invention to provide a terminal electrode paste capable of obtaining a coating film having an excellent shape without protrusions and depressions during coating and drying. Furthermore, during the electroplating process, a nickel plating solution or tin or alloy plating solution enters the fired film and
It is an object of the present invention to provide a terminal electrode paste capable of manufacturing a highly reliable multilayer ceramic capacitor free from deterioration and cracks.

【0007】[0007]

【課題を解決するための手段】本発明は、銅粉末とガラ
ス粉末と有機ビヒクルとを主成分とするペーストであっ
て、これを塗布乾燥した時の乾燥膜密度が3.0〜4.8g/cm
3であることを特徴とする積層セラミック電子部品用端
子電極ペーストを要旨とするものである。また本発明
は、銅粉末とガラス粉末と有機ビヒクルとを主成分とす
るペーストであって、これを塗布乾燥した時の乾燥膜密
度が3.0〜4.8g/cm3であることを特徴とする積層セラミ
ック電子部品用端子電極ペーストにおいて、銅粉末が平
均粒径3.0〜10.0μm、平均粒径/平均厚みが5〜40、比表
面積が0.1m2/g以上1.0m2/g未満のフレーク状銅粉末であ
ることを特徴とする端子電極ペーストを要旨とするもの
である。
The present invention is a paste containing copper powder, glass powder and an organic vehicle as main components, and has a dry film density of 3.0 to 4.8 g / cm when coated and dried.
3. A multi-layer ceramic electronic component terminal electrode paste, which is characterized in that: The present invention also provides a paste comprising a paste containing copper powder, glass powder, and an organic vehicle as main components, and having a dry film density of 3.0 to 4.8 g / cm 3 when the paste is applied and dried. In the terminal electrode paste for ceramic electronic parts, flake copper having an average particle size of 3.0 to 10.0 μm, an average particle size / average thickness of 5 to 40, and a specific surface area of 0.1 m 2 / g or more and less than 1.0 m 2 / g in the terminal electrode paste for ceramic electronic components. A gist of the present invention is a terminal electrode paste, which is a powder.

【0008】更に本発明は、銅粉末とガラス粉末と有機
ビヒクルとを主成分とするペーストであって、これを塗
布乾燥した時の乾燥膜密度が3.0〜4.8g/cm3であること
を特徴とする積層セラミック電子部品用端子電極ペース
トにおいて、銅粉末が平均粒径3.0〜10.0μm、平均粒径
/平均厚みが5〜40、比表面積が0.1m2/g以上1.0m2/g未満
のフレーク状銅粉末と比表面積が0.1m2/g以上1.0m2/g未
満の球状銅粉末とからなることを特徴とする端子電極ペ
ーストを要旨とするものである。
Further, the present invention is a paste comprising copper powder, glass powder and an organic vehicle as main components, wherein the paste has a dry film density of 3.0 to 4.8 g / cm 3 when applied and dried. In the multilayer ceramic electronic component terminal electrode paste, the average particle size of the copper powder is 3.0 to 10.0 μm,
From / average thickness 5 to 40, a specific surface area of 0.1 m 2 / g or more 1.0m flaky copper powder and the specific surface area of less than 2 / g is a spherical copper powder of less than 0.1 m 2 / g or more 1.0m 2 / g A gist of the present invention is a terminal electrode paste.

【0009】[0009]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る。素体の劣化やクラックの発生をなくすため脱バイン
ダについて種々検討した所、端子電極ペーストの乾燥膜
密度を特定の範囲に限定することでこれらの問題を解決
できるとの知見を得て本発明を成すに到った。この乾燥
膜密度はガラス粉末や有機ビヒクルの種類や配合割合に
は依存せず端子電極ペーストの主成分である銅粉末によ
りほぼその値が決り、このため銅粉末が電極膜中に作り
出す空隙が窒素雰囲気や中性雰囲気中で焼成した時の脱
バインダに対して有効に働いているものと思われる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. After various studies on binder removal in order to eliminate the deterioration of the element body and the occurrence of cracks, the inventors obtained the knowledge that these problems can be solved by limiting the dry film density of the terminal electrode paste to a specific range, and obtained the present invention. It came to accomplish. The dry film density does not depend on the type and blending ratio of the glass powder and the organic vehicle, and its value is substantially determined by the copper powder which is the main component of the terminal electrode paste. It seems that it effectively works on the binder removal when fired in an atmosphere or a neutral atmosphere.

【0010】尚、ペーストの乾燥膜密度(Dg/cm3)は次
のようにして測定したものである。端子電極ペーストを
ペースト厚が約250μmとなるようにPETフィルム上に塗
布、150℃で10分間乾燥後直径20mmの円形の大きさに切
出しPETフィルムからはがした後、重量(Wg)と乾燥膜
の厚さ(Tμm)を測定し下式により算出したものであ
る。
Incidentally, the dry film density (Dg / cm 3 ) of the paste is measured as follows. Apply the terminal electrode paste on a PET film to a paste thickness of about 250μm, dry at 150 ° C for 10 minutes, cut out into a circular shape with a diameter of 20mm, peel off the PET film, and weigh (Wg) and dry film. Is measured by the following equation.

【0011】[0011]

【数1】D=W/(πT×104)[Equation 1] D = W / (πT × 10 4 )

【0012】本発明の端子電極ペーストは、銅粉末とガ
ラス粉末と有機ビヒクルとを主成分とするペーストであ
ってこれを塗布乾燥した時の乾燥膜密度が3.0〜4.8g/cm
3であることを特徴とするものである。乾燥膜密度が4.8
g/cm3より大きい場合には銅粉末により電極膜中に作り
出される空隙が小さく膜外との繋がりも悪くなり脱バイ
ンダが十分でなく、カーボンが電極膜中に残るため、素
体の劣化を起こしたり、ブリスタが発生したり、電極膜
も緻密とはならない。乾燥膜密度が3.0g/cm3より小さい
時は乾燥膜中に形成される空隙が大きくなり、有機バイ
ンダの除去は十分行われるが、この空隙が焼結後でも残
り電極膜はポーラスとなり好ましくない。この様に乾燥
膜密度が3.0〜4.8g/cm3の場合には素体の劣化やブリス
タの発生のない緻密な膜構造の電極膜を得ることができ
る。このため、その後の電気メッキ工程においてニッケ
ルメッキ液やスズ若しくは合金メッキ液が電極膜中に侵
入することがなくIR等の低下やクラックの発生の無い、
信頼性の高い積層セラミックコンデンサを製造すること
ができる。
The terminal electrode paste of the present invention is a paste containing copper powder, glass powder and an organic vehicle as main components, and has a dry film density of 3.0 to 4.8 g / cm when coated and dried.
3 is characterized. 4.8 dry film density
g / cm 3 greater than case not connected even is sufficiently poor becomes debinding the membrane outer small voids created in the electrode film of copper powder, because the carbon remains in the electrode film, the deterioration of the element body Or an electrode film does not become dense. Dry film at density 3.0 g / cm 3 less than large voids formed in the dry film is, but removal of the organic binder is sufficiently performed, the remaining electrode film this gap even after sintering unfavorably porous . As described above, when the dry film density is 3.0 to 4.8 g / cm 3 , it is possible to obtain an electrode film having a dense film structure without deteriorating the element body or generating blisters. For this reason, in the subsequent electroplating process, the nickel plating solution or tin or alloy plating solution does not enter the electrode film, so that there is no decrease in IR or the like and no generation of cracks.
A highly reliable multilayer ceramic capacitor can be manufactured.

【0013】また、本発明は、平均粒径が3.0〜10.0μ
m、平均粒径/平均厚みが5〜40、比表面積が0.1m2/g以上
1.0m2/g未満であるフレーク状銅粉末を用いることによ
り優れた効果を発揮できる。このようなフレーク状銅粉
末を使用することでブリスタの発生のないより緻密な電
極膜が得られる。更に、ディッピング法により塗布され
得られた電極の乾燥塗膜は突起も凹みも無く均一な厚み
を有するものであった。ここで使用されるフレーク状銅
粉末は一種類でも良く、また二種類以上を混合して使用
しても良く、この場合には混合した時の平均粒径、平均
粒径/平均厚み、比表面積の平均値が前記範囲に入って
いれば良い。
Further, according to the present invention, the average particle size is from 3.0 to 10.0 μm.
m, the average particle diameter / average thickness 5 to 40, a specific surface area of 0.1 m 2 / g or more
An excellent effect can be exerted by using flake-like copper powder of less than 1.0 m 2 / g. By using such flake-like copper powder, a denser electrode film free of blisters can be obtained. Further, the dried coating film of the electrode obtained by the dipping method had a uniform thickness without any protrusions or depressions. The flake-like copper powder used here may be one kind, or two or more kinds may be mixed and used. In this case, the average particle diameter, average particle diameter / average thickness, and specific surface area when mixed are used. It suffices that the average of the values falls within the above range.

【0014】平均粒径が3.0μmより小さいとカーボンが
残留しやすく銅粉末の焼結が抑制されポーラスな電極膜
となる。また、平均粒径が10.0μmより大きいと脱バイ
ンダが十分に行われ銅粉末の焼結も低温からスムーズに
進行するが、この空隙が焼結後でも残り電極膜はポーラ
スとなり、電極表面も荒れてしまい好ましくない。平均
粒径/平均厚みが40より大きいとペーストのチクソ性が
大きく前記焼成体の内部電極の露出端面にディッピング
法により塗布した時にペーストの流動性が十分でなく塗
布形状が悪く突起状となる。平均粒径/平均厚みが5より
小さいと乾燥塗膜中に形成される空隙の大きさや膜外へ
の繋がりが十分とならず脱バインダが不十分となり、素
体の劣化やブリスタが発生したり電極膜がポーラスとな
ったりする。
If the average particle size is smaller than 3.0 μm, carbon is likely to remain and sintering of the copper powder is suppressed, resulting in a porous electrode film. If the average particle size is larger than 10.0 μm, the binder is sufficiently removed and the sintering of the copper powder proceeds smoothly from a low temperature.However, even after sintering, the remaining electrode film becomes porous and the electrode surface becomes rough. It is not preferable. When the average particle diameter / average thickness is more than 40, the thixotropy of the paste is large, and when applied to the exposed end face of the internal electrode of the fired body by dipping, the fluidity of the paste is not sufficient and the applied shape is poor, resulting in a projection. If the average particle size / average thickness is less than 5, the size of the voids formed in the dried coating film and the connection to the outside of the film will not be sufficient, and the binder removal will be insufficient, and the element body will deteriorate and blisters will occur. The electrode film becomes porous.

【0015】比表面積が0.1m2/gより小さいと焼成によ
り得られた電極膜がポーラスとなり、1.0m2/g以上であ
るとペーストの流動性が十分でなく突起状となりやす
く、またブリスタを発生するなど好ましくない。
When the specific surface area is less than 0.1 m 2 / g, the electrode film obtained by firing becomes porous, and when it is 1.0 m 2 / g or more, the fluidity of the paste is insufficient and the paste tends to be protruded. It is not preferable because it occurs.

【0016】また、本発明は、上記フレーク状銅粉末に
比表面積が0.1m2/g以上1.0m2/g未満の球状銅粉末を混合
して使用しても良い。乾燥膜密度が3.0〜4.8g/cm3とな
る範囲内であれば該フレーク状銅粉末に該球状銅粉末を
添加することでより一層緻密な電極膜を形成することが
できる。球状銅粉末の比表面積が1.0m2/g以上の時には
乾燥膜密度が大きくなり脱バインダが不十分で電極膜は
緻密にならず、ブリスタの発生が見られた。また、0.1m
2/gより小さい時には乾燥膜中に形成された空隙が大き
くなり、脱バインダは十分行われるが、この空隙が焼成
後でも残ってしまい電極膜はポーラスとなり好ましくな
い。
In the present invention, a spherical copper powder having a specific surface area of 0.1 m 2 / g or more and less than 1.0 m 2 / g may be mixed with the flake copper powder. If the dry film density is in the range of 3.0 to 4.8 g / cm 3 , a more dense electrode film can be formed by adding the spherical copper powder to the flake copper powder. When the specific surface area of the spherical copper powder was 1.0 m 2 / g or more, the dry film density increased, the binder removal was insufficient, the electrode film was not dense, and blisters were generated. Also, 0.1m
When it is smaller than 2 / g, the voids formed in the dried film become large and the binder is sufficiently removed, but these voids remain even after firing and the electrode film becomes porous, which is not preferable.

【0017】ガラス粉末は、例えばBaO-ZnO-B2O3系、Zn
O-B2O3系のものを使用できる。好ましくは銅粉末100重
量部に対して5〜20重量部が好ましい。5重量部より少な
い場合には前記素体と端子電極の接着強度が小さくなり
好ましくない。20重量部より多いと焼成後の電極表面に
ガラスが多く分布するようになり電気メッキによるニッ
ケル、スズおよびその合金のメッキ皮膜形成が困難とな
る。有機ビヒクルは通常使用される樹脂である有機バイ
ンダを有機溶剤に溶かしたもので、例えばアクリル樹脂
をテルピネオールに溶解し20重量%の溶液としたものを
使用した。また、本発明の効果を損わない程度で粘度調
整剤、無機結合剤、酸化剤等種々の添加剤を加えても良
い。
Glass powder is, for example, BaO—ZnO—B 2 O 3 system, Zn
OB 2 O 3 type can be used. Preferably, the amount is 5 to 20 parts by weight based on 100 parts by weight of the copper powder. If the amount is less than 5 parts by weight, the adhesive strength between the element body and the terminal electrode becomes small, which is not preferable. If the amount is more than 20 parts by weight, a large amount of glass will be distributed on the electrode surface after firing, and it will be difficult to form a plating film of nickel, tin and its alloy by electroplating. The organic vehicle was prepared by dissolving an organic binder, which is a commonly used resin, in an organic solvent. For example, an acrylic resin dissolved in terpineol to form a 20% by weight solution was used. Various additives such as a viscosity modifier, an inorganic binder, and an oxidizing agent may be added to such an extent that the effects of the present invention are not impaired.

【0018】[0018]

【実施例】以下、本発明を実施例に沿って具体的に説明
する。尚、平均粒径とは、レーザー式粒度分布測定装置
を用いて粒度分布を測定し、この粒度分布の体積基準の
積算分率50%値であり、平均厚みはSEM観察によりフ
レーク状銅粉末の厚みを測定し求めたものである。平均
粒径/平均厚みはそれぞれこのようにして求めた平均粒
径を平均厚みで割り算出した。比表面積は、BET法によ
り測定した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to embodiments. The average particle size is a particle size distribution measured using a laser-type particle size distribution measuring device, and the volume-based integrated fraction of the particle size distribution is 50%, and the average thickness of the flaky copper powder is determined by SEM observation. It is obtained by measuring the thickness. The average particle diameter / average thickness was calculated by dividing the average particle diameter thus obtained by the average thickness. The specific surface area was measured by the BET method.

【0019】実施例1〜4、比較例1、2 各粒径のフレーク状銅粉末100重量部に対してBaO-Zn
O-B2O3系ガラス粉末を12重量部、アクリル樹脂をテル
ピネオールに溶解した有機ビヒクルを40重量部の割合で
配合し、三本ロールミルで混合しペースト状にした。得
られたペーストについて前述の方法で乾燥膜密度を測定
した。次いで、内部電極にニッケルを使用し焼成して得
られた平面寸法が2.0mm×1.25mmで厚みが1.25mmサイズ
の積層セラミックコンデンサ用素体を用意し、本ペース
トを該素体のニッケル内部電極の露出端面に焼成後の膜
厚が60μmとなる様にディッピング法により塗布し、
熱風式乾燥機中150℃で10分間保持し乾燥させた。
この乾燥体を窒素雰囲気としたベルト式マッフル炉で焼
成し積層セラミックコンデンサを得た。この時の焼成条
件は、ピーク温度が800℃でピーク温度のキープ時間
は10分間、焼成の開始から終了まで1時間であった。
次いでこの電極表面に電気メッキによりニッケルメッキ
膜を、更にスズメッキ膜を形成し試料とした。各試料に
ついて外観観察を行い、研磨断面試料を作成しSEMによ
り電極膜の緻密性、メッキ液の浸透の有無を調べ、その
結果を乾燥膜密度の測定結果等とともに表1に示した。
但し、ブリスタの発生が見られた試料については電気メ
ッキによるメッキ膜の形成を行わなかった。
Examples 1 to 4 and Comparative Examples 1 and 2 BaO-Zn was added to 100 parts by weight of flake copper powder of each particle size.
12 parts by weight of OB 2 O 3 based glass powder, an acrylic resin were blended in a ratio of 40 parts by weight of an organic vehicle dissolved in terpineol, and the paste was mixed in a three-roll mill. The dry film density of the obtained paste was measured by the method described above. Next, a body for a multilayer ceramic capacitor having a plane size of 2.0 mm × 1.25 mm and a thickness of 1.25 mm obtained by firing using nickel for the internal electrode was prepared, and the paste was applied to the nickel internal electrode of the body. Is applied by dipping so that the film thickness after firing becomes 60 μm on the exposed end face of
It was kept at 150 ° C. for 10 minutes in a hot-air dryer and dried.
The dried body was fired in a belt type muffle furnace in a nitrogen atmosphere to obtain a multilayer ceramic capacitor. The firing conditions at this time were a peak temperature of 800 ° C., a peak temperature keeping time of 10 minutes, and one hour from the start to the end of firing.
Next, a nickel plating film and a tin plating film were further formed on the electrode surface by electroplating to obtain a sample. The appearance of each sample was observed, a polished cross-section sample was prepared, and the denseness of the electrode film and the presence or absence of a plating solution were examined by SEM. The results are shown in Table 1 together with the measurement results of the dry film density.
However, no plating film was formed by electroplating on the sample in which blistering was observed.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例5〜6、比較例3 銅粉末の一部を平均粒径1.5μm比表面積0.65m2/gの球状
銅粉末と置きかえる以外は実施例1と同じようにして試
料作製を行なった。ペーストについて乾燥膜密度の測定
を行い、コンデンサについて電極の外観観察、電極膜の
緻密性、メッキ液の浸透の有無を調べた。これらの結果
を表2にまとめて示した。
Examples 5 to 6, Comparative Example 3 A sample was prepared in the same manner as in Example 1 except that a part of the copper powder was replaced with a spherical copper powder having an average particle size of 1.5 μm and a specific surface area of 0.65 m 2 / g. Was. The dried film density of the paste was measured, and the appearance of the electrode was observed, the denseness of the electrode film, and the presence or absence of permeation of the plating solution were examined for the capacitor. These results are summarized in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】以上の様に、本発明のペーストを用いる
ことにより窒素雰囲気や中性雰囲気中で焼成しても脱バ
インダが十分に行われ、その結果素体の劣化がなく、ブ
リスタのない緻密な膜構造を有する端子電極を形成する
ことができる。このため、電気メッキを行ってもメッキ
液が電極膜中に侵入することが無くIR不良やクラックの
発生の無い信頼性の高い積層セラミックコンデンサを製
造できる。更に、電極の形状にも優れるため回路基板に
実装する際に実装機につまったり位置ずれをおこしたり
することのない積層セラミックコンデンサを得ることが
できる。
As described above, by using the paste of the present invention, the binder can be sufficiently removed even when fired in a nitrogen atmosphere or a neutral atmosphere, and as a result, there is no deterioration of the element body and no blister. A terminal electrode having a dense film structure can be formed. For this reason, even if electroplating is performed, a highly reliable multilayer ceramic capacitor can be manufactured without a plating solution penetrating into the electrode film and no IR failure or cracking. Further, since the electrodes are excellent in shape, it is possible to obtain a multilayer ceramic capacitor which does not cause jamming or displacement in a mounting machine when mounted on a circuit board.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山添 幹夫 東京都新宿区西新宿2丁目1番1号 昭栄 化学工業株式会社内 Fターム(参考) 5E001 AB03 AF06 AH01 AJ03 5G301 DA06 DA34 DD01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mikio Yamazoe 2-1-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shoei Chemical Industry Co., Ltd. F-term (reference) 5E001 AB03 AF06 AH01 AJ03 5G301 DA06 DA34 DD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅粉末とガラス粉末と有機ビヒクルとを
主成分とするペーストであって、これを塗布乾燥した時
の乾燥膜密度が3.0〜4.8g/cm3であることを特徴とする
積層セラミック電子部品用端子電極ペースト。
1. A paste comprising copper powder, glass powder and an organic vehicle as main components, and having a dry film density of 3.0 to 4.8 g / cm 3 when applied and dried. Terminal electrode paste for ceramic electronic components.
【請求項2】 銅粉末が、平均粒径が3.0〜10.0μm、平
均粒径/平均厚みが5〜40、比表面積が0.1m2/g以上1.0m2
/g未満であるフレーク状銅粉末である請求項1記載の積
層セラミック電子部品用端子電極ペースト。
2. The copper powder has an average particle size of 3.0 to 10.0 μm, an average particle size / average thickness of 5 to 40, and a specific surface area of 0.1 m 2 / g or more and 1.0 m 2 or more.
2. The terminal electrode paste for a multilayer ceramic electronic component according to claim 1, wherein the paste is a flake-like copper powder having a content of less than / g.
【請求項3】 銅粉末が、平均粒径が3.0〜10.0μm、平
均粒径/平均厚みが5〜40、比表面積が0.1m2/g以上1.0m2
/g未満であるフレーク状銅粉末と比表面積が0.1m2/g以
上1.0m2/g未満である球状銅粉末とからなる請求項1記
載の積層セラミック電子部品用端子電極ペースト。
3. The copper powder has an average particle size of 3.0 to 10.0 μm, an average particle size / average thickness of 5 to 40, and a specific surface area of 0.1 m 2 / g or more and 1.0 m 2.
2. The terminal electrode paste for a multilayer ceramic electronic component according to claim 1, comprising a flaky copper powder having a specific surface area of 0.1 m 2 / g or more and less than 1.0 m 2 / g.
JP2000242894A 2000-08-10 2000-08-10 Terminal electrode paste for multilayer ceramic electronic components Expired - Fee Related JP3698032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242894A JP3698032B2 (en) 2000-08-10 2000-08-10 Terminal electrode paste for multilayer ceramic electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242894A JP3698032B2 (en) 2000-08-10 2000-08-10 Terminal electrode paste for multilayer ceramic electronic components

Publications (2)

Publication Number Publication Date
JP2002056717A true JP2002056717A (en) 2002-02-22
JP3698032B2 JP3698032B2 (en) 2005-09-21

Family

ID=18733836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242894A Expired - Fee Related JP3698032B2 (en) 2000-08-10 2000-08-10 Terminal electrode paste for multilayer ceramic electronic components

Country Status (1)

Country Link
JP (1) JP3698032B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331649A (en) * 2002-05-15 2003-11-21 Kyoto Elex Kk Copper paste composition for outer electrodes of multilayer ceramic capacitor
JP2004128470A (en) * 2002-07-29 2004-04-22 Murata Mfg Co Ltd Ceramic electronic parts
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts
JP2005191317A (en) * 2003-12-25 2005-07-14 Kyocera Corp Conductive paste for external electrode formation and laminated ceramics electronic component using it
JP2005268204A (en) * 2004-02-19 2005-09-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
EP1583107A1 (en) * 2004-03-30 2005-10-05 Shoei Chemical Inc. Conductive paste for terminal electrode of multilayer ceramic electronic part
JP2005325357A (en) * 2004-05-06 2005-11-24 Natl Starch & Chem Investment Holding Corp Terminal coating
JP2006004905A (en) * 2004-03-10 2006-01-05 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using this
JP2014209551A (en) * 2013-03-26 2014-11-06 株式会社村田製作所 Ceramic electronic component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331649A (en) * 2002-05-15 2003-11-21 Kyoto Elex Kk Copper paste composition for outer electrodes of multilayer ceramic capacitor
JP2004128470A (en) * 2002-07-29 2004-04-22 Murata Mfg Co Ltd Ceramic electronic parts
JP2004172383A (en) * 2002-11-20 2004-06-17 Murata Mfg Co Ltd Conductive paste and method for manufacturing ceramic electronic parts
JP2005191317A (en) * 2003-12-25 2005-07-14 Kyocera Corp Conductive paste for external electrode formation and laminated ceramics electronic component using it
JP2005268204A (en) * 2004-02-19 2005-09-29 Murata Mfg Co Ltd Conductive paste and ceramic electronic component
JP2006004905A (en) * 2004-03-10 2006-01-05 Murata Mfg Co Ltd Conductive paste and ceramic electronic component using this
JP2005286111A (en) * 2004-03-30 2005-10-13 Shoei Chem Ind Co Conductive paste for laminates ceramic electronic part terminal electrodes
EP1583107A1 (en) * 2004-03-30 2005-10-05 Shoei Chemical Inc. Conductive paste for terminal electrode of multilayer ceramic electronic part
KR100680461B1 (en) 2004-03-30 2007-02-08 소에이 가가쿠 고교 가부시키가이샤 Conductive paste for terminal electrode of multilayer ceramic electronic part
CN1322518C (en) * 2004-03-30 2007-06-20 昭荣化学工业株式会社 Conductive paste for terminal electrode of multilayer ceramic electronic part
US7368070B2 (en) 2004-03-30 2008-05-06 Shoei Chemical Inc. Conductive paste for terminal electrode of multilayer ceramic electronic part
JP4647224B2 (en) * 2004-03-30 2011-03-09 昭栄化学工業株式会社 Conductive paste for multilayer ceramic electronic component terminal electrode
JP2005325357A (en) * 2004-05-06 2005-11-24 Natl Starch & Chem Investment Holding Corp Terminal coating
JP2014209551A (en) * 2013-03-26 2014-11-06 株式会社村田製作所 Ceramic electronic component
US9667174B2 (en) 2013-03-26 2017-05-30 Murata Manufacturing Co., Ltd. Ceramic electronic component

Also Published As

Publication number Publication date
JP3698032B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
KR102426098B1 (en) Chip-type ceramic electronic component
JP2002056717A (en) Terminal electrode paste for laminated ceramic electronic component
JP3744439B2 (en) Conductive paste and multilayer ceramic electronic components
JP2012182355A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP4333594B2 (en) Conductive paste and ceramic electronic components
JP3561115B2 (en) Conductive paste and multilayer ceramic capacitors
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JP2000216046A (en) Laminated ceramic electronic component
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP2005228610A (en) Conductive paste and ceramic electronic component
JP2007234330A (en) Conductor paste and electronic part
JP2001338830A (en) Conductive paste and laminated ceramic capacitor using the same
JP4826881B2 (en) Conductive paste, multilayer ceramic electronic component manufacturing method, and multilayer ceramic electronic component
JP2005222831A (en) Conductive paste for terminal electrode of laminated electronic component
JPH1092226A (en) Conductive composition
JP3965075B2 (en) Copper paste composition for multilayer ceramic capacitor external electrode
JP2001307941A (en) Terminal electrode paste and method for manufacturing laminated ceramic capacitor
JP2003059337A (en) Conductive paste and chip electronic component using it
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JPH09115772A (en) External electrode for chip electronic component
JP4387150B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2002134351A (en) Conductive paste and laminated ceramic capacitor using the same
JP2001338831A (en) Conductive paste laminated ceramic capacitor using the same
JPS59215367A (en) Electrically conductive paste composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees