JP2002053990A - Method of manufacturing hydrogen peroxide water - Google Patents

Method of manufacturing hydrogen peroxide water

Info

Publication number
JP2002053990A
JP2002053990A JP2000233896A JP2000233896A JP2002053990A JP 2002053990 A JP2002053990 A JP 2002053990A JP 2000233896 A JP2000233896 A JP 2000233896A JP 2000233896 A JP2000233896 A JP 2000233896A JP 2002053990 A JP2002053990 A JP 2002053990A
Authority
JP
Japan
Prior art keywords
seawater
hydrogen peroxide
electrolytic cell
organic compound
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000233896A
Other languages
Japanese (ja)
Inventor
Masaharu Uno
雅晴 宇野
Yoshinori Nishiki
善則 錦
Yasuo Nakajima
保夫 中島
Akira Katsumoto
暁 勝本
Kunio Nishimura
国男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Inc
De Nora Permelec Ltd
Original Assignee
Katayama Chemical Inc
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Inc, Permelec Electrode Ltd filed Critical Katayama Chemical Inc
Priority to JP2000233896A priority Critical patent/JP2002053990A/en
Publication of JP2002053990A publication Critical patent/JP2002053990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which is capable of manufacturing hydrogen peroxide water not containing organic halogen compounds by solving such a problem heretofore that harmful organic halogen compounds have been included in the hydrogen peroxide water exerting an adverse influence on the environment when the hydrogen peroxide water is manufactured by seawater electrolysis. SOLUTION: A branched seawater is subjected to various kinds of treatment, such as mechanical separation by a strainer, separation after flocculation of floc, etc., in the seawater, chemical separation of the seawater like activated carbon treatment and decomposition by irradiation with UV rays, by which the organic compounds in the branch seawater are removed and thereafter the branch seawater is supplied to an electrolytic cell to which gaseous oxygen is supplied. The gaseous chlorine and hypochlorous acid ions occurring in the chlorine ions in the seawater are formed in the electrolytic cell but the organic compounds which are raw materials do not exist and therefore the organic halogen compounds are not formed and the hydrogen peroxide water not containing the harmful component can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物とハロ
ゲンを含有する電解水からトリハロメタン(THM)等
の有機ハロゲン化合物を生成することなく過酸化水素水
を電解製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically producing hydrogen peroxide from an electrolyzed water containing an organic compound and halogen without producing an organic halogen compound such as trihalomethane (THM).

【0002】[0002]

【従来の技術】産業及び生活廃棄物に起因する大気汚染
や、河川及び湖沼の水質悪化などによる環境や人体への
悪影響が憂慮され、その問題解決のための技術対策が急
務となっている。例えば飲料水、下水及び廃水の処理に
おいて、その脱色やCOD低減及び殺菌のために塩素な
どの薬剤が投入されてきたが、多量の塩素注入により危
険物質つまり環境ホルモン(外因性内分泌攪乱物質)、
発ガン性物質などが生成するため、塩素注入は禁止され
る傾向にある。過酸化水素は、食品、医薬品、パルプ、
繊維、半導体工業において不可欠の基礎薬品として有用
であり、特に今後の用途として電子部品の洗浄や、医療
機器、設備の殺菌処理などが注目されている。この過酸
化水素は現状ではアントラキノン法により大量に合成さ
れている。
2. Description of the Related Art Air pollution caused by industrial and domestic wastes, and adverse effects on the environment and human bodies due to deterioration of water quality in rivers and lakes are of concern, and there is an urgent need for technical measures to solve the problems. For example, in the treatment of drinking water, sewage and wastewater, chemicals such as chlorine have been introduced for the purpose of decolorization, COD reduction and sterilization, but dangerous injection of a large amount of chlorine, that is, environmental hormones (exogenous endocrine disruptors),
Chlorine injection tends to be prohibited because of the generation of carcinogenic substances. Hydrogen peroxide is used in foods, pharmaceuticals, pulp,
It is useful as an indispensable basic chemical in the textile and semiconductor industries, and in particular, is expected to be used for cleaning electronic components and sterilizing medical equipment and equipment as future applications. At present, this hydrogen peroxide is synthesized in large quantities by the anthraquinone method.

【0003】従来から、例えば冷却水として海水を使用
する発電所や工場では、復水器内部への貝類や藻類等の
生物付着を防止するために、海水を直接電解して次亜塩
素酸を生成させ、該次亜塩素酸を有効利用することが試
みられている。しかし次亜塩素酸をそのまま放流するこ
とは、次亜塩素酸自体、及び分解により生成する有機塩
素化合物や塩素ガスが有毒で環境保全上問題があり、そ
の規制が強化されつつある。一方微量の過酸化水素を前
記冷却水中に添加すると、良好な生物付着防止効果があ
ることが報告され、又養魚場の水質維持にも過酸化水素
の添加が効果的であるという報告がなされている。しか
も過酸化水素は分解しても無害な水と酸素に変換される
のみで環境衛生上の問題も生じない。
Conventionally, for example, in power plants and factories that use seawater as cooling water, in order to prevent shellfish and algae from adhering to the inside of the condenser, seawater is directly electrolyzed to remove hypochlorous acid. Attempts have been made to produce and effectively utilize the hypochlorous acid. However, if the hypochlorous acid is discharged as it is, the hypochlorous acid itself and the organic chlorine compound and chlorine gas generated by the decomposition are toxic, and there is a problem in terms of environmental protection, and the regulation is being strengthened. On the other hand, it has been reported that when a small amount of hydrogen peroxide is added to the cooling water, there is a good effect of preventing biofouling, and that addition of hydrogen peroxide is also effective in maintaining the water quality of fish farms. I have. Moreover, even if hydrogen peroxide is decomposed, it is only converted into harmless water and oxygen, and there is no problem in environmental hygiene.

【0004】しかしながら過酸化水素は不安定であり、
長期間の保存が不可能であるため、又輸送に伴う安全
性、汚染対策の面から、オンサイト型装置の需要が高ま
っている。そしてこのオンサイトで過酸化水素を製造す
る手法として電解法が提案されている。電解法はクリー
ンな電気エネルギーを利用して、電極表面で化学反応を
制御することにより、過酸化水素の他にも水素、酸素、
オゾン等を製造できる。陽極での酸化反応では、水処理
に有効な酸化剤(有効塩素やオゾンなど)やOHラジカ
ルなどの活性種が生成し、活性水、機能水、イオン水、
殺菌水などの名称で汎用されている。陰極反応は通常は
水電解による水素発生であるが、酸素が存在すると酸素
ガスの還元反応が優先的に進行して過酸化水素が生成す
る。
[0004] However, hydrogen peroxide is unstable,
Since long-term storage is not possible, the demand for on-site devices is increasing in terms of safety during transportation and measures against pollution. An electrolysis method has been proposed as a technique for producing hydrogen peroxide on-site. The electrolysis method uses clean electrical energy to control chemical reactions on the electrode surface, so that hydrogen, oxygen,
Ozone and the like can be produced. In the oxidation reaction at the anode, active species such as oxidizing agents (effective chlorine and ozone) and OH radicals effective for water treatment are generated, and activated water, functional water, ionic water,
It is commonly used under the name of sterile water. The cathodic reaction is usually hydrogen generation by water electrolysis, but when oxygen is present, the reduction reaction of the oxygen gas proceeds preferentially to generate hydrogen peroxide.

【0005】電解による過酸化水素の製造に関しては、
Journal of Applied Electrochemistry Vol.25, 613 〜
(1995)に各種電解生成方法が比較して記載され、これら
の方法ではいずれもアルカリ水溶液の雰囲気で過酸化水
素が効率良く得られるため、原料としてのアルカリ成分
を供給する必要があり、KOHやNaOHなどのアルカ
リ水溶液が必須となる。又過酸化水素による有機化合物
分解の例としてホルムアルデヒド分解がJournal of Ele
ctrochemical Society, Vol.140, 1632 〜(1993)に記載
されている。更にJournal of Electrochemical Societ
y, Vol.141, 1174 〜(1994)には、純水を原料としイオ
ン交換膜を用いる電解でオゾンと過酸化水素をそれぞれ
陽極及び陰極で合成する手段が開示されている。
With respect to the production of hydrogen peroxide by electrolysis,
Journal of Applied Electrochemistry Vol.25, 613 〜
(1995) describes various electrolytic production methods in comparison.In each of these methods, hydrogen peroxide can be efficiently obtained in an atmosphere of an aqueous alkaline solution, so that it is necessary to supply an alkaline component as a raw material, and KOH or An alkaline aqueous solution such as NaOH is essential. Formaldehyde decomposition is an example of decomposition of organic compounds by hydrogen peroxide.
ctrochemical Society, Vol. 140, 1632- (1993). Furthermore, Journal of Electrochemical Societ
Y, Vol. 141, 1174- (1994) discloses means for synthesizing ozone and hydrogen peroxide at the anode and cathode, respectively, by electrolysis using pure water as a raw material and using an ion exchange membrane.

【0006】[0006]

【発明が解決しようとする課題】海水を電解水として使
用し陰極側に酸素を存在させた状態で電解処理を行う
と、生成する過酸化水素が海水中に溶解して過酸化水素
水が生成し、該過酸化水素及び該過酸化水素とともに生
成するスーパーオキシドアニオン(O2 - ) が海水中の
微生物等を殺菌して純度の高い過酸化水素が得られる。
しかし海水を電解すると海水中のハロゲン化物イオン、
つまり塩化物イオン、、フッ化物イオン、臭化物イオン
及びヨウ化物イオンが陽極で酸化されて塩素ガス等のハ
ロゲンガスや次亜塩素酸等の次亜ハロゲン酸を発生させ
る。これらの塩素ガス等を発生させにくい電極を用いて
も、又陽イオン交換膜を使用して陰極側を塩素ガス発生
サイトである陽極と分離しても塩化物イオンの酸化は完
全には防げない。
When electrolysis is performed in a state where seawater is used as electrolyzed water and oxygen is present on the cathode side, the generated hydrogen peroxide dissolves in the seawater to form hydrogen peroxide water. Then, the hydrogen peroxide and the superoxide anion (O 2 ) generated together with the hydrogen peroxide sterilize microorganisms and the like in seawater to obtain high-purity hydrogen peroxide.
However, when electrolyzing seawater, halide ions in seawater,
That is, chloride ions, fluoride ions, bromide ions and iodide ions are oxidized at the anode to generate halogen gas such as chlorine gas and hypohalous acid such as hypochlorous acid. Oxidation of chloride ions cannot be completely prevented even if these electrodes that do not easily generate chlorine gas, etc. are used, or if the cathode side is separated from the anode, which is a chlorine gas generation site, using a cation exchange membrane. .

【0007】そしてこの塩素ガス等は海水中の有機化合
物と反応して有害なTHMを生成する可能性が高い。T
HMの生成を防止するには、水素ガス陽極を使用し水素
ガスを供給しながら水処理を行えば良く、これにより塩
化物イオンの酸化つまり塩素ガスや次亜塩素酸の生成が
抑制され、従ってTHM生成の原因が除去できる。しか
しこの方法では、水素ガス陽極の設置と水素ガス供給に
関するコストが嵩み、経済的な方法とは言いがたい。又
電解水中の有機化合物は、その一部が陽極で酸化分解す
ることが知られているが、有機化合物濃度が低く酸化分
解の効率が低いため完全には二酸化炭素までは分解され
ず、又塩素ガス発生が優先してTHM生成を促進するた
め、電解水中の有機化合物を陽極分解して除去すること
は実用的ではない。
[0007] The chlorine gas or the like is highly likely to react with organic compounds in seawater to produce harmful THM. T
In order to prevent the generation of HM, water treatment may be performed while supplying hydrogen gas using a hydrogen gas anode, thereby suppressing the oxidation of chloride ions, that is, the generation of chlorine gas and hypochlorous acid, and The cause of THM generation can be eliminated. However, in this method, the cost for installing the hydrogen gas anode and supplying the hydrogen gas increases, and it cannot be said to be an economical method. It is known that some of the organic compounds in the electrolyzed water are oxidatively decomposed at the anode. However, the organic compound concentration is low and the efficiency of oxidative decomposition is low, so that it is not completely decomposed to carbon dioxide and chlorine. Since gas generation preferentially promotes THM generation, it is not practical to anodize and remove organic compounds in the electrolytic water.

【0008】このように有機化合物とハロゲン化物イオ
ンを含有する電解水を電解して過酸化水素水を製造する
際には、従来はTHM等の有機ハロゲン化合物の生成が
不可避であり、環境衛生的に大きな問題となっている。
本発明は、有機化合物とハロゲン化物イオンを含む電解
水から、THM等の有機ハロゲン化合物を実質的に含有
しない過酸化水素水を製造する方法を提供することを目
的とする。
[0008] As described above, when electrolyzed electrolyzed water containing an organic compound and halide ions to produce a hydrogen peroxide solution, conventionally, the formation of an organic halogen compound such as THM is unavoidable, and environmentally-friendly. Has become a major problem.
An object of the present invention is to provide a method for producing hydrogen peroxide water substantially free of an organic halogen compound such as THM from electrolytic water containing an organic compound and halide ions.

【0009】[0009]

【問題点を解決するための手段】本発明は、有機化合物
とハロゲン化物イオンを含有する電解水を電解槽へ供給
し電解して過酸化水素水を製造する方法において、電解
槽への供給前に電解水中の有機化合物を除去することを
特徴とする過酸化水素水の製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing hydrogen peroxide by supplying electrolytic water containing an organic compound and halide ions to an electrolytic cell and electrolyzing the electrolytic water. And a method for producing a hydrogen peroxide solution, which comprises removing an organic compound from the electrolytic water.

【0010】以下本発明を詳細に説明する。本発明で
は、電解水中に溶解し、THM等の有機ハロゲン化合物
の生成要因である有機化合物とハロゲン化物イオンのう
ちの有機化合物を前記電解水を電解槽へ供給する前に電
解水から除去して、有機化合物を含有しない電解水とし
て電解槽に供給しかつ電解することにより有害な有機ハ
ロゲン化合物を副生することなく、過酸化水素水を得る
ことを特徴とする。本発明における電解水は、好ましく
は海水である。海水中に存在する全有機炭素量(TO
C)は場所にも依るが、10ppm 程度である。公共用水域
におけるトリハロメタン化合物についても人体、生物系
への影響を与えないための規制値が示されている。例え
ばトリクロロエチレン、テトラクロロエチレンの規制値
はそれぞれ0.03、0.01mg/l以下である。従って海水中の
有機物(TOC)成分と電解によって生ずる塩素ガス、
次亜塩素酸との反応により、あるいは直接の電解酸化反
応によりそのままでは有効塩素成分と有機炭素成分との
反応により生ずるTHMを基準値以内に維持することは
困難である。10ppm 程度のTOCを有する海水を電解す
ると、塩化物イオンの酸化により生成する塩素ガスや次
亜塩素酸が有機化合物を塩素化してTHMを生成するた
め、通常の海水電解ではTHMの生成は不可避である
が、本発明ではTHM生成の要因である有機化合物とハ
ロゲン化物イオンのうち有機化合物を電解水の電解槽へ
の供給前に除去することにより、THM生成を伴うこと
なく過酸化水素水を製造することを可能にしている。
Hereinafter, the present invention will be described in detail. In the present invention, the organic compound which is dissolved in the electrolyzed water and is an organic compound and a halide ion, which is a factor of generating an organic halogen compound such as THM, is removed from the electrolyzed water before supplying the electrolyzed water to the electrolysis tank. Hydrogen peroxide is obtained by supplying electrolytic water containing no organic compound to the electrolytic cell and electrolyzing it without by-producing harmful organic halogen compounds. The electrolyzed water in the present invention is preferably seawater. Total amount of organic carbon present in seawater (TO
C) is about 10 ppm, depending on the location. Regulation values are also set for trihalomethane compounds in public water bodies so as not to affect human bodies and biological systems. For example, the regulated values for trichlorethylene and tetrachloroethylene are 0.03 and 0.01 mg / l, respectively. Therefore, the organic matter (TOC) component in seawater and chlorine gas generated by electrolysis,
It is difficult to maintain the THM generated by the reaction between the available chlorine component and the organic carbon component within a reference value by reaction with hypochlorous acid or by direct electrolytic oxidation. When seawater having a TOC of about 10 ppm is electrolyzed, chlorine gas generated by oxidation of chloride ions and hypochlorous acid chlorinate organic compounds to generate THM. Therefore, in normal seawater electrolysis, THM generation is inevitable. However, in the present invention, by removing the organic compound of the organic compound and the halide ion, which are factors of the THM generation, before supplying the electrolyzed water to the electrolytic cell, the hydrogen peroxide solution can be produced without the THM generation. It is possible to do.

【0011】有機化合物を除去した本発明の電解水を使
用しても陽極酸化により塩素ガスや次亜塩素酸は生ずる
が、目的生成物である過酸化水素が塩素ガス等と迅速に
反応してほぼ完全に消失する。従って生成する過酸化水
素水は有機化合物だけでなく塩素ガスや次亜塩素酸イオ
ンも実質的に含有しないので、得られる過酸化水素水を
処理前の海水と混合しても実質的なTHM生成は起こら
ない。そのため、大量の過酸化水素含有海水を製造する
際には、原料海水の一部を分岐させて、該分岐海水中の
有機化合物を予め除去し、その後電解により過酸化水素
を発生させかつ該分岐海水中に溶解させて過酸化水素含
有分岐海水とし、この分岐海水を前記非分岐海水と混合
すると希釈されたかつTHM等を含まない過酸化水素含
有海水が得られる。
Even when the electrolytic water of the present invention from which organic compounds have been removed is used, chlorine gas and hypochlorous acid are generated by anodic oxidation, but hydrogen peroxide as a target product reacts quickly with chlorine gas and the like. Almost completely disappears. Therefore, the generated hydrogen peroxide solution does not substantially contain not only organic compounds but also chlorine gas and hypochlorite ions, so that even if the obtained hydrogen peroxide solution is mixed with seawater before treatment, substantial THM generation is caused. Does not happen. Therefore, when producing a large amount of seawater containing hydrogen peroxide, a part of the raw seawater is branched to remove organic compounds in the branched seawater in advance, and then hydrogen peroxide is generated by electrolysis and the branching is performed. Dissolved in seawater to form hydrogen peroxide-containing branched seawater, and when this branched seawater is mixed with the non-branched seawater, diluted hydrogen peroxide-containing seawater containing no THM or the like is obtained.

【0012】生物の繁殖を抑制できる海水中の過酸化水
素注入量は約1ppm であり、電解により得られる過酸化
水素水の濃度は約1000ppm である。従って電解で生成す
る過酸化水素水は1000倍に希釈しても生物繁殖を有効に
抑制でき、つまり海水の1000分の1を分岐させて電解し
た後、非分岐の1000分の999 の海水と混合すると必要濃
度の過酸化水素を溶解した海水が得られ、最小限の海水
電解で所望の過酸化水素水が得られる。又電解後の海水
を1000倍に希釈するとその中に含まれるTHM等も1000
倍に希釈されることを意味し、仮に電解後の海水にTH
Mが10ppb 含有されていると仮定すると、1000倍希釈後
のTHMは0.01ppb という極低レベルになる。更に電解
処理される海水は全体の0.1 %であり、海水の水質には
殆ど影響はない。又全海水量を1000m3/hr、有機化合物
含有量を10ppm と仮定すると、電解槽へ供給される海水
量は1m3/hr、有機化合物量は10gであり、この有機化
合物を除去するために必要とする薬剤量は高々その10倍
つまり100 g/hrであり処理コスト及び処理の手間とも
軽微である。
The amount of hydrogen peroxide injected into seawater that can suppress the growth of living organisms is about 1 ppm, and the concentration of hydrogen peroxide obtained by electrolysis is about 1000 ppm. Therefore, even if the hydrogen peroxide solution generated by electrolysis is diluted 1000 times, the propagation of organisms can be effectively suppressed. That is, after 1/1000 of the seawater is branched and electrolyzed, unbranched 999/1000 of seawater is removed. When mixed, seawater in which a required concentration of hydrogen peroxide is dissolved is obtained, and a desired hydrogen peroxide solution can be obtained with minimum seawater electrolysis. If the seawater after electrolysis is diluted 1000 times, THM etc. contained in it will also be 1000
It means that it is diluted twice, and if the seawater after electrolysis is
Assuming that M is contained at 10 ppb, the THM after 1000-fold dilution is as low as 0.01 ppb. Furthermore, the amount of seawater to be electrolyzed is 0.1% of the whole, and there is almost no effect on the quality of seawater. Assuming that the total amount of seawater is 1000 m 3 / hr and the content of organic compounds is 10 ppm, the amount of seawater supplied to the electrolytic cell is 1 m 3 / hr and the amount of organic compounds is 10 g. The amount of drug required is at most 10 times that amount, that is, 100 g / hr, and the processing cost and the processing time are very small.

【0013】沿岸海域の海水には家庭、工場から排出さ
れる有機化合物が多く含まれており、生態系の処理能力
を上回る負荷つまり有機化合物が排出されると生物群の
安定性は破壊される。全有機態炭素のうち溶存態有機物
(DOM)は孔径およそ1μmのフィルターを通り、コ
ロイド(0.001 〜0.1 μm)、バクテリアなどが含まれ
る。溶存態有機物の大部分は腐植物質であり、動物、植
物プランクトンの***物、種々の有機物がバクテリアに
より溶存化したもの、炭水化物、アミノ酸ペプチド、有
機酸などである。代表的な物質としてフミン酸、フルボ
酸などがある。人為的影響を考慮しても、TOCは最大
で10ppm と考えれば良い。又粒状の有機物には動物、植
物プランクトン、バクテリア、菌類、酵母などの生体
と、それらの死骸、動物プランクトンの***物があり、
又溶存有機物と無機粒子、生物が複合化した有機凝集体
が含まれる。これらの有機化合物を除去するためには、
ストレーナーによる機械的に分離する方法、海水中のフ
ロック等を凝集剤を使用して凝集させた後に分離する方
法、海水を活性炭処理して有機化合物を活性炭に吸着さ
せて海水から除去する方法、及び紫外線照射、又は、オ
ゾン又は過酸化水素を添加して分解する方法を単独又は
組み合わせて使用する。例えばスクリーン及びストレー
ナ装置(格子寸法が10μm〜10mm程度)に海水を通過さ
せて比較的大きな浮遊性物質を除去する。次いで残留す
る懸濁物質を多価金属イオン(濃度は10〜10000 ppm 程
度)等の凝集剤による荷電中和により、一般に負に帯電
した有機化合物として凝集させる。
[0013] The seawater in the coastal sea area contains a large amount of organic compounds emitted from households and factories, and when the load exceeds the processing capacity of the ecosystem, that is, when the organic compounds are emitted, the stability of the organisms is destroyed. . Of the total organic carbon, dissolved organic matter (DOM) passes through a filter having a pore size of about 1 μm, and contains colloids (0.001 to 0.1 μm), bacteria and the like. Most of the dissolved organic matter is humic substances, such as animal and phytoplankton excretions, various organic matter dissolved by bacteria, carbohydrates, amino acid peptides, and organic acids. Representative substances include humic acid and fulvic acid. The TOC may be considered to be 10 ppm at the maximum even if the human influence is considered. In addition, granular organic matter includes living organisms such as animals, phytoplankton, bacteria, fungi, and yeast, their dead bodies, and excretion of zooplankton.
It also includes dissolved organic matter, inorganic particles, and organic aggregates in which organisms are complexed. To remove these organic compounds,
A method of mechanically separating by a strainer, a method of separating flocs and the like in seawater after coagulation using a coagulant, a method of treating seawater with activated carbon, adsorbing organic compounds to activated carbon and removing the same from seawater, and UV irradiation or a method of decomposing by adding ozone or hydrogen peroxide is used alone or in combination. For example, seawater is passed through a screen and a strainer device (with a grid size of about 10 μm to 10 mm) to remove relatively large floating substances. Next, the remaining suspended substance is generally aggregated as a negatively charged organic compound by charge neutralization with an aggregating agent such as a polyvalent metal ion (at a concentration of about 10 to 10,000 ppm).

【0014】次いでこの集合体をポリマー等の凝集剤に
よりフロック化させる。この際に使用できる凝集剤とし
て、明礬、硫酸バンド、パックなどのアルミや鉄の硫酸
塩や塩化物があり、ポリマーとしては、ポリエチレンイ
ミン、ポリアクリルアミド、ポリアクリル酸ナトリウ
ム、ゼラチン、デンプン、アルギン酸ナトリウムなどが
あり、いずれも100 〜1000ppm の濃度で添加することが
好ましい。この他にCODを特異吸着するポリマーも使
用でき、海水の種類によっては他の界面活性剤や凝集助
剤の使用も可能で、通常数時間の攪拌で凝集等の反応が
完結する。分離した凝集物は沈降分離や浮上分離で除去
するが、後処理を考慮すると脱水機で水と固形物に分離
することが望ましい。
Next, the aggregate is flocculated with a flocculant such as a polymer. As a coagulant that can be used at this time, there are aluminum and iron sulfates and chlorides such as alum, sulfate bands and packs, and as polymers, polyethyleneimine, polyacrylamide, sodium polyacrylate, gelatin, starch, sodium alginate It is preferable to add them at a concentration of 100 to 1000 ppm. In addition, a polymer that specifically adsorbs COD can be used, and depending on the type of seawater, other surfactants and coagulation aids can be used, and a reaction such as coagulation is usually completed by stirring for several hours. The separated aggregates are removed by sedimentation separation or flotation separation, but it is desirable to separate them into water and solids by a dehydrator in consideration of post-treatment.

【0015】この段階で海水中の残留有機化合物は0.1
〜1.0 ppm まで低減可能である。引き続き、更に海水中
に残留する低分子有機化合物は、活性炭塔に通水するこ
とで吸着除去し、有機化合物含有量を0.1 ppm オーダー
まで低減できる。活性炭の代わりにゼオライトや活性ア
ルミナを使用して吸着除去を行って良い。この段階では
より低分子量の有機化合物が残存しているが、該化合物
は、紫外線照射、オゾン又は過酸化水素の添加により除
去でき、これにより規制レベルである10ppb オーダーま
で低減できる。
At this stage, the residual organic compounds in the seawater are 0.1%.
It can be reduced to ~ 1.0 ppm. Subsequently, low-molecular-weight organic compounds remaining in the seawater are adsorbed and removed by passing the water through an activated carbon tower, and the organic compound content can be reduced to the order of 0.1 ppm. Adsorption removal may be performed using zeolite or activated alumina instead of activated carbon. At this stage, a lower molecular weight organic compound remains, but the compound can be removed by ultraviolet irradiation, addition of ozone or hydrogen peroxide, thereby reducing it to the regulated level of the order of 10 ppb.

【0016】本発明方法で使用する電解槽は過酸化水素
製造用であれば特に限定されず、例えば次のような電解
槽を使用できる。使用する電極は通常の酸素発生陽極及
び水素発生陰極でも良いが、特に陰極側は酸素ガス電極
とすることが望ましい。該酸素ガス電極は、触媒として
金等の金属あるいは金属酸化物、又は黒鉛や導電性ダイ
ヤモンド等のカーボンを使用することが好ましく、ポリ
アニリンやチオールなどの有機材料をその表面に塗布し
たものでも良い。これらの触媒はそのまま板状又は多孔
状として用いるか、ステンレス、ジルコニウム、銀、カ
ーボンなどの耐食性を有する板、金網、粉末焼結体、金
属繊維焼結体上に、熱分解法、樹脂による固着法、複合
メッキなどにより1〜1000g/m2 となるように担持す
る。
The electrolytic cell used in the method of the present invention is not particularly limited as long as it is for producing hydrogen peroxide. For example, the following electrolytic cell can be used. The electrodes used may be ordinary oxygen-generating anodes and hydrogen-generating cathodes, but it is particularly desirable that the cathode side be an oxygen gas electrode. The oxygen gas electrode preferably uses a metal such as gold or a metal oxide, or carbon such as graphite or conductive diamond as a catalyst, and may be an organic material such as polyaniline or thiol applied to the surface. These catalysts can be used as they are in a plate or porous form, or they can be fixed on plates, wire nets, powder sintered bodies, and metal fiber sintered bodies having corrosion resistance, such as stainless steel, zirconium, silver, and carbon, by pyrolysis or resin. It is carried so as to be 1 to 1000 g / m 2 by a method, composite plating or the like.

【0017】陰極給電体としては、カーボン、ニッケ
ル、チタンなどの金属、その合金や酸化物を好ましくは
多孔体又はシートとして使用し、反応生成ガス及び電解
水の供給及び取り出しを円滑に行うために、疎水性又は
親水性の材料を給電体表面に分散担持することが望まし
い。疎水性シートを陽極と反対側の陰極裏面に形成する
と反応面へのガス供給が制御でき効果的である。陰極液
の電導度が低いと槽電圧の増加となり又電極寿命を短く
するため、この場合にはガス電極の材料による汚染を防
止する目的も含めて、イオン交換膜に接合する構造を採
用することが望ましい。陰極への酸素供給量は理論量の
1〜2倍程度が良く、酸素源として空気や市販のボンベ
を使用しても、別に設置した電解槽での水電解で生成す
る酸素を使用しても、又PSA装置により空気から濃縮
した酸素を使用しても良い。一般に酸素濃度が大きいほ
ど、大きい電流密度で過酸化水素を製造できる。
As the cathode power supply, metals such as carbon, nickel and titanium, alloys and oxides thereof are preferably used as a porous body or a sheet, in order to smoothly supply and take out a reaction product gas and electrolytic water. It is desirable that a hydrophobic or hydrophilic material be dispersed and supported on the surface of the power supply. When a hydrophobic sheet is formed on the cathode back surface opposite to the anode, gas supply to the reaction surface can be controlled, which is effective. If the conductivity of the catholyte is low, the cell voltage will increase and the life of the electrode will be shortened. In this case, use a structure that is bonded to the ion exchange membrane, including to prevent contamination of the gas electrode material. Is desirable. The amount of oxygen supplied to the cathode is preferably about 1 to 2 times the theoretical amount, whether air or a commercially available cylinder is used as the oxygen source, or oxygen generated by water electrolysis in a separately installed electrolytic cell. Alternatively, oxygen concentrated from air by a PSA device may be used. Generally, the higher the oxygen concentration, the more hydrogen peroxide can be produced at a higher current density.

【0018】陽極室と陰極室を区画する隔膜を使用する
と電極反応で生成する活性物質を対極に接触させること
なく安定に保持でき更に電解水の電導度が低い場合でも
電解を速やかに進行させる機能を有する。隔膜としては
中性隔膜やイオン交換膜の使用が可能で、特に塩化物イ
オンの陽極における酸化を防止するために陽イオン交換
膜の使用が好ましい。隔膜の材質としてはフッ素樹脂系
及び炭化水素系があり、耐食性の面から前者の使用が望
ましい。陽極触媒としては、イリジウム、白金、ルテニ
ウムなどの貴金属又はそれらの酸化物と、チタン、タン
タルなどの弁金属の酸化物を含む複合酸化物が安定に使
用できる。その他に黒鉛や導電性ダイヤモンドなどのカ
ーボンも使用できる。使用する触媒は、水の酸化反応で
ある酸素発生反応が、塩化物イオンの酸化による塩素ガ
スや次亜塩素酸の生成より優先するように選択すること
が望ましい。二酸化マンガンあるいはマンガン−バナジ
ウム、マンガン−モリブデン、マンガン−タングステン
等の複合酸化物では、塩化物イオンの放電(塩素ガス発
生)が抑制されることが知られており、これらのイオン
を溶解した水溶液中にチタン等の電極基体を浸漬し、該
基体表面に前記陽極触媒を1〜1000g/m2 となるよう
に形成できる。
The use of a diaphragm that separates the anode compartment and the cathode compartment makes it possible to stably hold the active substance produced by the electrode reaction without coming into contact with the counter electrode, and to promote electrolysis quickly even when the conductivity of the electrolyzed water is low. Having. As the membrane, a neutral membrane or an ion exchange membrane can be used. In particular, a cation exchange membrane is preferably used to prevent oxidation of chloride ions at the anode. As the material of the diaphragm, there are a fluororesin type and a hydrocarbon type, and the former is preferable from the viewpoint of corrosion resistance. As the anode catalyst, a composite oxide containing a noble metal such as iridium, platinum, ruthenium or an oxide thereof and a valve metal oxide such as titanium or tantalum can be used stably. In addition, carbon such as graphite and conductive diamond can be used. The catalyst used is desirably selected so that the oxygen generation reaction, which is the oxidation reaction of water, has priority over the generation of chlorine gas or hypochlorous acid by oxidation of chloride ions. It is known that discharge of chloride ions (generation of chlorine gas) is suppressed in manganese dioxide or composite oxides such as manganese-vanadium, manganese-molybdenum, and manganese-tungsten. An electrode substrate such as titanium is immersed in the substrate, and the anode catalyst can be formed on the surface of the substrate so as to have a concentration of 1 to 1000 g / m 2 .

【0019】電解槽材料は、耐久性、及び過酸化水素の
安定性の観点から、ガラスライニング材料、カーボン、
耐食性が優れたチタンやステンレス、PTFE樹脂等を
使用することが好ましい。陽極室には海水や市水を供給
しても良いが、前者では塩素ガスが発生しやすく、後者
では槽電圧が大きくなり不経済となる。この欠点を解消
するためには、市水を使用して陽極とイオン交換膜を密
着させるゼロギャップ型電解を行うことが望ましい。
From the viewpoints of durability and stability of hydrogen peroxide, the electrolytic cell material is made of glass lining material, carbon,
It is preferable to use titanium, stainless steel, PTFE resin or the like having excellent corrosion resistance. Sea water or city water may be supplied to the anode chamber. However, in the former case, chlorine gas is easily generated, and in the latter case, the cell voltage becomes large, which is uneconomical. In order to eliminate this drawback, it is desirable to perform zero gap electrolysis in which the anode and the ion exchange membrane are brought into close contact with each other using city water.

【0020】電解条件は、液温5〜60℃、電流密度0.1
〜100 A/dm2 が好ましく、電極間距離は抵抗損失を低下
させるために小さくすべきであるが、電解水供給のため
のポンプの圧力損失を小さくし圧力分布を均一に保つた
めに1〜50mmとすることが好ましい。生成する過酸化水
素の濃度は水量と電流密度を調節することにより、10〜
10000 ppm までの制御が可能である。海水を使用して電
解を続けると、陰極表面に次第にカルシウムやマグネシ
ウムの水酸化物又は炭酸塩が析出する。これらの除去の
ために、定期的に塩酸洗浄やキレート剤注入を行うこと
が好ましい。
The electrolysis conditions are a liquid temperature of 5 to 60 ° C. and a current density of 0.1.
-100 A / dm 2 is preferable, and the distance between the electrodes should be small to reduce the resistance loss.However, in order to reduce the pressure loss of the pump for supplying the electrolyzed water and keep the pressure distribution uniform, Preferably it is 50 mm. The concentration of generated hydrogen peroxide can be controlled by adjusting the amount of water and the current density.
Control up to 10,000 ppm is possible. When electrolysis is continued using seawater, hydroxides or carbonates of calcium and magnesium are gradually deposited on the surface of the cathode. To remove these, it is preferable to periodically perform washing with hydrochloric acid and injection of a chelating agent.

【0021】[0021]

【発明の実施の形態】本発明による過酸化水素水の製造
方法の好ましい実施形態例を図1に示すフローチャート
に基づいて詳細に説明する。図1は、本発明方法による
過酸化水素含有海水の製造の一例を示すフローチャート
である。海水本流を分岐海水と非分岐海水とに約1:10
00の割合で分け、分岐海水をストレーナー及びスクリー
ンを通して比較的粒径の大きい不純物を濾過により除去
する。次いで分岐海水を凝集タンクに導き、凝集剤を添
加して次いで粒径の大きい不純物を凝集させ、引き続く
脱水機で凝集した固形分を除去する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the method for producing hydrogen peroxide according to the present invention will be described in detail with reference to the flowchart shown in FIG. FIG. 1 is a flowchart showing an example of the production of seawater containing hydrogen peroxide according to the method of the present invention. Approximately 1:10 of main seawater into branched seawater and unbranched seawater
The branched seawater is filtered through a strainer and a screen to remove impurities having a relatively large particle size by filtration. Next, the branched seawater is introduced into a flocculation tank, a flocculant is added, and then impurities having a large particle size are flocculated, and the flocculated solids are removed by a subsequent dehydrator.

【0022】この段階で分岐海水中の有機化合物含有量
は0.1 〜1ppm であり、通常の機械的な分離ではより以
上の有機化合物除去は困難なため、次いで活性炭塔(又
は他の吸着剤を充填した塔)に通して有機化合物を吸着
除去し、更に該活性炭塔でも除去できない有機化合物を
含む分岐海水に紫外線照射して有機化合物を分解除去す
る。この分岐海水を電解槽に供給する直前では有機化合
物含有量は1〜10ppb程度となっている。より以上の濃
度低減が必要な場合は紫外線照射に加えて、オゾン添加
等の他の手法を併用しても良い。このようにして有機化
合物含有量を低減した分岐海水を電解水として電解槽へ
供給する。図2は、本実施形態例で使用できる2室型電
解槽を例示する縦断面図である。電解槽1は陽イオン交
換膜2により多孔板状の陽極3を有する陽極室4と陰極
室に区画された2室型電解槽であり、酸素ガス電極5を
陰極として使用し、この酸素ガス電極5により陰極室を
陽イオン交換膜側の溶液室6と反対側のガス室7とに区
画している。
At this stage, the content of the organic compound in the branched seawater is 0.1 to 1 ppm, and it is difficult to remove the organic compound by ordinary mechanical separation. Through which the organic compound is adsorbed and removed, and then the organic compound is decomposed and removed by irradiating the branched seawater containing the organic compound which cannot be removed by the activated carbon tower with ultraviolet rays. Immediately before supplying the branched seawater to the electrolytic cell, the organic compound content is about 1 to 10 ppb. When a further reduction in concentration is required, other methods such as ozone addition may be used in addition to ultraviolet irradiation. The branched seawater having a reduced organic compound content is supplied to the electrolytic cell as electrolytic water. FIG. 2 is a longitudinal sectional view illustrating a two-chamber electrolytic cell that can be used in the present embodiment. The electrolytic cell 1 is a two-chamber electrolytic cell partitioned by a cation exchange membrane 2 into an anode chamber 4 having a perforated plate-shaped anode 3 and a cathode chamber, and uses an oxygen gas electrode 5 as a cathode. 5 partitions the cathode chamber into a solution chamber 6 on the cation exchange membrane side and a gas chamber 7 on the opposite side.

【0023】酸素ガス電極5にはその背面に密着した多
孔性給電体8により給電され、かつ背面側に設置された
酸素ガス供給管9から酸素ガスが供給される。供給され
た酸素ガスは該電極を透過しその間に一部が電極触媒に
より還元されて過酸化水素に変換され、前記溶液室6に
達する。一方溶液室6には(及び場合によっては陽極室
4にも)前述したストレーナー、凝集タンク及び活性炭
塔などの有機化合物除去手段10により処理された分岐海
水が電解水供給管11を通して供給される。酸素ガス電極
により生成した過酸化水素は溶液室6内の分岐海水中に
溶解して過酸化水素水として過酸化水素取出管12を通し
て電解槽1外に取り出される。分岐海水には塩化物イオ
ンが含まれているため、分岐海水の一部が陽イオン交換
膜を通して陽極室に移行して(及び陽極室に供給された
分岐海水が)陽極酸化を受けて塩素ガスや次亜塩素酸が
生成する。この塩素ガス等は分岐海水中に有機化合物が
実質的に存在しないためTHM等の生成には使用され
ず、陰極室で生成する過酸化水素との反応により消失
し、実質的に電解槽外に取り出される過酸化水素水には
含有されない。
The oxygen gas electrode 5 is supplied with power by a porous power supply 8 closely attached to the back surface thereof, and is supplied with oxygen gas from an oxygen gas supply pipe 9 provided on the back side. The supplied oxygen gas permeates the electrode, and a part of the oxygen gas is reduced by the electrode catalyst during the permeation, is converted into hydrogen peroxide, and reaches the solution chamber 6. On the other hand, the branched seawater treated by the organic compound removing means 10 such as the above-described strainer, coagulation tank and activated carbon tower is supplied to the solution chamber 6 (and also the anode chamber 4 in some cases) through the electrolytic water supply pipe 11. Hydrogen peroxide generated by the oxygen gas electrode is dissolved in the branched seawater in the solution chamber 6 and taken out of the electrolytic cell 1 through the hydrogen peroxide take-out pipe 12 as hydrogen peroxide solution. Since the branched seawater contains chloride ions, a part of the branched seawater moves to the anode compartment through the cation exchange membrane (and the branched seawater supplied to the anode compartment) undergoes anodic oxidation and receives chlorine gas. And hypochlorous acid are produced. This chlorine gas and the like are not used for the production of THM and the like because there is substantially no organic compound in the branched seawater, and are lost by the reaction with hydrogen peroxide generated in the cathode chamber, and are substantially left outside the electrolytic cell. It is not contained in the extracted hydrogen peroxide solution.

【0024】このように実質的に有機化合物と塩素ガス
及び次亜塩素酸を含まない過酸化水素水は非分岐海水と
混合され過酸化水素を含む混合海水となる。仮に混合前
の分岐海水にTHMが残存していても、分岐海水と非分
岐海水の混合により1000倍に希釈されるため、実用上無
視できる濃度になり、実質的に有害な有機ハロゲン化合
物を含まない過酸化水素水がオンサイトで得られ、発電
所や工場等の冷却水等として使用できる。
[0024] As described above, the hydrogen peroxide solution substantially free of organic compounds, chlorine gas and hypochlorous acid is mixed with unbranched seawater to form a mixed seawater containing hydrogen peroxide. Even if THM remains in the branched seawater before mixing, it is diluted 1000 times by mixing the branched seawater and the non-branched seawater, so that the concentration becomes practically negligible and contains substantially harmful organic halogen compounds. Hydrogen peroxide solution can be obtained on-site and used as cooling water for power plants and factories.

【0025】実施例 次に本発明による過酸化水素水の製造の実施例を記載す
るが、該実施例は本発明を限定するものではない。実施例1 スクリーン(格子寸法1mm間隔)及びストレーナー装置
(格子寸法10μm間隔の樹脂フィルター)を配置し、海
水中の有機化合物のうち比較的大きな浮遊物質を除去し
た。次いで硫酸第二鉄塩を20ppm の濃度になるように前
記海水に添加した後、ポリエチレンイミンを100 ppm と
なるように添加し、2時間攪拌した。沈降分離を行い、
脱水機で海水と固形物に分離した。得られた海水中の有
機化合物濃度は約1ppm であった。この海水を活性炭塔
を通したところ有機化合物濃度は100 ppb に低減した。
更にこの海水に紫外線ランプにより紫外線を照射したと
ころ有機化合物濃度は10ppb まで低減した。
Examples Next, examples of the production of aqueous hydrogen peroxide according to the present invention will be described, but the examples do not limit the present invention. Example 1 A screen (with a grid size of 1 mm) and a strainer device (a resin filter with a grid size of 10 μm) were arranged to remove relatively large suspended substances among organic compounds in seawater. Next, ferric sulfate was added to the seawater to a concentration of 20 ppm, and then polyethyleneimine was added to a concentration of 100 ppm, followed by stirring for 2 hours. Perform sedimentation separation,
It was separated into seawater and solid matter by a dehydrator. The concentration of organic compounds in the obtained seawater was about 1 ppm. When this seawater was passed through an activated carbon tower, the concentration of organic compounds was reduced to 100 ppb.
When this seawater was irradiated with ultraviolet light by an ultraviolet lamp, the concentration of organic compounds was reduced to 10 ppb.

【0026】チタン多孔板に酸化イリジウム触媒を熱分
解法により10g/m2 となるように担持させ陽極とし
た。カーボン粉末(ファーネスブラック、Vulcan XC-7
2) を触媒とし、これをPTFE樹脂と混練してカーボ
ンクロス(日本カーボン株式会社製)に塗工し、330℃
で焼成した厚さ0.4 mmのシートを酸素ガス電極とした。
イオン交換膜(デュポン社製ナフィオン117 )に前記陽
極を密着させ、かつ電極間距離を5mmとなるように前記
酸素ガス電極を配置し、電解有効面積が20cm2である図
2に示すような電解槽を組み立てた。PSA装置で得ら
れた酸素ガスをガス室に20ml/分で供給し、前述の有機
化合物濃度が10ppb である海水を溶液室に20ml/分で供
給し、両極間に2Aの電流を流したところ、槽電圧は8
Vで、過酸化水素取出管から1000ppm の過酸化水素を含
む海水が約95%の電流効率で得られ、該海水中の有効塩
素濃度は約0.1 ppm であり、過酸化水素取出管出口のT
HM濃度は1ppb であった。前述の条件で電解槽の運転
を200 時間継続したところ、電流効率は85%に減少し、
槽電圧も9Vに増加したが過酸化水素の電解製造は継続
できた。過酸化水素取出管出口のTHM濃度は2ppb で
あった。
An iridium oxide catalyst was supported on a titanium porous plate by a pyrolysis method so as to have a concentration of 10 g / m 2, and used as an anode. Carbon powder (furnace black, Vulcan XC-7
2) Using as a catalyst, kneading this with a PTFE resin, applying it to a carbon cloth (manufactured by Nippon Carbon Co., Ltd.),
The sheet having a thickness of 0.4 mm fired in the above was used as an oxygen gas electrode.
The anode was brought into close contact with an ion-exchange membrane (Nafion 117 manufactured by DuPont), and the oxygen gas electrode was arranged so that the distance between the electrodes was 5 mm. As shown in FIG. 2, the electrolytic effective area was 20 cm 2 . The tank was assembled. Oxygen gas obtained by the PSA apparatus was supplied to the gas chamber at 20 ml / min, seawater having an organic compound concentration of 10 ppb was supplied to the solution chamber at 20 ml / min, and a current of 2 A was passed between the two electrodes. , Cell voltage is 8
V, seawater containing 1000 ppm of hydrogen peroxide was obtained from the hydrogen peroxide extraction pipe at a current efficiency of about 95%, the effective chlorine concentration in the seawater was about 0.1 ppm, and T at the outlet of the hydrogen peroxide extraction pipe.
The HM concentration was 1 ppb. When the operation of the electrolytic cell was continued for 200 hours under the above conditions, the current efficiency decreased to 85%,
The cell voltage also increased to 9 V, but the electrolytic production of hydrogen peroxide could be continued. The THM concentration at the outlet of the hydrogen peroxide extraction pipe was 2 ppb.

【0027】実施例2 チタン多孔板に、酸性硫酸マンガン水溶液中の電着によ
り二酸化マンガン触媒を50g/m2 となるように担持し
た陽極を使用したこと以外は実施例1と同様にして電解
槽を組み立てかつ電解を行った。過酸化水素取出管から
1000ppm の過酸化水素を含む海水が約90%の電流効率が
得られ、該海水中の有効塩素濃度は検出限界未満であ
り、過酸化水素取出管出口のTHM濃度は0.2 ppb であ
った。
Example 2 An electrolytic cell was prepared in the same manner as in Example 1 except that an anode carrying a manganese dioxide catalyst at 50 g / m 2 by electrodeposition in an aqueous solution of acidic manganese sulfate was used on a titanium porous plate. Was assembled and electrolysis was performed. From hydrogen peroxide outlet tube
Seawater containing 1000 ppm of hydrogen peroxide had a current efficiency of about 90%, the effective chlorine concentration in the seawater was below the detection limit, and the THM concentration at the outlet of the hydrogen peroxide extraction pipe was 0.2 ppb.

【0028】実施例3 電解槽へ供給する前の海水へ紫外線照射を行わなかった
こと以外は実施例2と同様にして電解を行った。電解槽
に供給した海水の有機化合物濃度は100 ppb であった。
過酸化水素取出管から1000ppm の過酸化水素を含む海水
が約90%の電流効率が得られ、該海水中の有効塩素濃度
は検出限界未満であり、過酸化水素取出管出口のTHM
濃度は1ppb であった。
Example 3 Electrolysis was carried out in the same manner as in Example 2, except that ultraviolet irradiation was not performed on seawater before being supplied to the electrolytic cell. The concentration of organic compounds in seawater supplied to the electrolyzer was 100 ppb.
Seawater containing 1000 ppm of hydrogen peroxide has a current efficiency of about 90% from the hydrogen peroxide discharge pipe, the effective chlorine concentration in the seawater is below the detection limit, and the THM at the outlet of the hydrogen peroxide discharge pipe is low.
The concentration was 1 ppb.

【0029】比較例 前処理を行っていない有機化合物濃度が5ppm の海水を
使用して実施例1と同一条件で海水処理を行った。槽電
圧は8Vで、過酸化水素取出管から800 ppm の過酸化水
素を含む海水が約80%の電流効率が得られ、該海水中の
有効塩素濃度は約0.1 ppm であり、過酸化水素取出管出
口のTHM濃度は50ppb であった。前述の条件で電解槽
の運転を200 時間継続したところ、電流効率は60%に減
少し、槽電圧も10Vに増加した。更に過酸化水素取出管
出口のTHM濃度は100 ppb であった。
[0029] The seawater treatment was carried out under the same conditions as in Example 1 using seawater organic compound concentration not subjected to comparative examples pretreatment 5 ppm. The tank voltage was 8 V, and the seawater containing 800 ppm of hydrogen peroxide had a current efficiency of about 80% from the hydrogen peroxide extraction pipe. The effective chlorine concentration in the seawater was about 0.1 ppm. The THM concentration at the outlet of the tube was 50 ppb. When the operation of the electrolytic cell was continued for 200 hours under the above conditions, the current efficiency was reduced to 60%, and the cell voltage was increased to 10V. Further, the THM concentration at the outlet of the hydrogen peroxide extraction pipe was 100 ppb.

【0030】[0030]

【発明の効果】本発明方法は、有機化合物とハロゲン化
物イオンを含有する電解水を電解槽へ供給して電解して
過酸化水素水を製造する方法において、電解槽へ供給す
る前に電解水中の有機化合物を除去することを特徴とす
る過酸化水素水の製造方法である。通常有機化合物とハ
ロゲン化物イオンを含有する水を電解すると、ハロゲン
化物イオンの酸化により生成する塩素ガスや次亜塩素酸
イオンにより有機化合物がハロゲン化されてTHM等の
有機ハロゲン化合物が生成する。前記本発明方法では、
電解前の有機化合物とハロゲン化物イオンを含有する電
解水から有機化合物を除去することにより、該電解水の
電解により過酸化水素とともに塩素ガス等が生成しても
有機ハロゲン化合物の原料となる有機化合物が存在しな
いため、有害な該有機ハロゲン化合物は生じない。更に
副生する有害な塩素ガスや次亜塩素酸の多くが過酸化水
素により分解除去され、毒性の殆どない過酸化水素水が
得られる。従って従来の海水電解により生ずる過酸化水
素水に不可避的に含有されていたTHM等の有機ハロゲ
ン化合物の生成が回避でき、過酸化水素が殺菌後に無害
な成分に変換できることと合わせて、環境に悪影響を与
えない殺菌用水等が得られる。
According to the method of the present invention, in a method for producing an aqueous hydrogen peroxide solution by supplying electrolytic water containing an organic compound and halide ions to an electrolytic cell and electrolyzing the electrolytic water before supplying the electrolytic water to the electrolytic cell, A method for producing aqueous hydrogen peroxide, comprising removing an organic compound of Normally, when water containing an organic compound and halide ions is electrolyzed, the organic compound is halogenated by chlorine gas or hypochlorite ion generated by oxidation of the halide ions, and an organic halogen compound such as THM is generated. In the method of the present invention,
By removing the organic compound from the electrolyzed water containing the organic compound and halide ions before electrolysis, the organic compound serving as a raw material of the organic halogen compound even when chlorine gas or the like is generated together with hydrogen peroxide by electrolysis of the electrolyzed water. Harmful organic halogen compounds do not occur because of the absence of Further, most of the harmful chlorine gas and hypochlorous acid produced as by-products are decomposed and removed by hydrogen peroxide, so that hydrogen peroxide having almost no toxicity is obtained. Therefore, the generation of organic halogen compounds such as THM inevitably contained in the hydrogen peroxide solution generated by conventional seawater electrolysis can be avoided, and the hydrogen peroxide can be converted into harmless components after sterilization, and the environment is adversely affected. Germicidal water which does not give water.

【0031】有機化合物とハロゲン化物イオンを含有す
る代表的な水は海水であり、海水を本発明方法により電
解処理すると、オンサイトで過酸化水素含有海水が得ら
れ、これにより例えば海岸付近に位置する工場や発電所
の各種機器用の冷却水等として使用できる。前記電解水
中の有機化合物の除去は、ストレーナー等による機械的
分離、凝集剤を使用する有機化合物の凝集後の機械的分
離、活性炭やゼオライト等へ吸着させて除去する化学的
分離、紫外線照射、オゾン、過酸化水素及び電解等によ
り分解して除去する手法等により行うことができ、これ
らを組み合わせるとより効果的に有機化合物の除去が達
成できる。
A typical water containing an organic compound and halide ions is seawater, and when the seawater is subjected to electrolytic treatment by the method of the present invention, seawater containing hydrogen peroxide is obtained on-site. It can be used as cooling water for various devices in factories and power plants. The removal of organic compounds in the electrolytic water is performed by mechanical separation using a strainer or the like, mechanical separation after coagulation of an organic compound using a flocculant, chemical separation to be removed by adsorption to activated carbon or zeolite, ultraviolet irradiation, ozone. , A method of decomposing and removing by hydrogen peroxide, electrolysis and the like, and the combination thereof can more effectively remove the organic compound.

【0032】過酸化水素は酸素ガスの陰極還元により生
成するが、電解槽の陰極として酸素ガス電極を使用する
と、通常は水素ガス発生に使用されてしまうエネルギー
を過酸化水素発生に有効に利用できる。電解槽の陽極室
と陰極室をイオン交換膜で区画すると、対極での生成物
の影響を最小限にすることができる。又海水を使用して
過酸化水素含有海水を製造する際には、海水の一部を分
岐させ、分岐させた海水中の有機化合物を除去後に電解
して過酸化水素水とし、これを非分岐海水と混合して過
酸化水素含有海水とすることができる。電解で得られる
過酸化水素水は通常必要とする濃度の数百〜数千倍の濃
度を有している。従って海水を分岐させることにより、
有機化合物除去及び電解処理を行う海水量を大幅に減少
させることができるとともに、所望濃度の過酸化水素を
含有する海水を大量に製造できる。
Hydrogen peroxide is generated by the cathodic reduction of oxygen gas. When an oxygen gas electrode is used as a cathode of an electrolytic cell, energy normally used for generating hydrogen gas can be effectively used for generating hydrogen peroxide. . When the anode chamber and the cathode chamber of the electrolytic cell are separated by an ion exchange membrane, the influence of products at the counter electrode can be minimized. Also, when producing seawater containing hydrogen peroxide using seawater, part of the seawater is branched, and after removing the organic compounds in the branched seawater, electrolysis is performed to obtain hydrogen peroxide, which is not branched. Hydrogen peroxide-containing seawater can be mixed with seawater. The hydrogen peroxide solution obtained by electrolysis has a concentration several hundred to several thousand times the concentration normally required. Therefore, by branching seawater,
The amount of seawater used for organic compound removal and electrolytic treatment can be significantly reduced, and a large amount of seawater containing a desired concentration of hydrogen peroxide can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法による過酸化水素含有海水の製造の
一例を示すフローチャート。
FIG. 1 is a flowchart showing an example of production of seawater containing hydrogen peroxide according to the method of the present invention.

【図2】本発明方法で使用できる2室型電解槽を例示す
る縦断面図。
FIG. 2 is a longitudinal sectional view illustrating a two-chamber electrolytic cell that can be used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 陽イオン交換膜 3 陽極 4 陽極室 5 酸素ガス電極 6 溶液室 7 ガス室 10 有機化合物除去手段 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Cation exchange membrane 3 Anode 4 Anode chamber 5 Oxygen gas electrode 6 Solution chamber 7 Gas chamber 10 Organic compound removal means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 保夫 東京都杉並区南荻窪4−26−1オーク荻窪 401号 (72)発明者 勝本 暁 大阪府大阪市東淀川区東淡路2丁目10番15 号 株式会社片山化学工業研究所内 (72)発明者 西村 国男 大阪府大阪市東淀川区東淡路2丁目10番15 号 株式会社片山化学工業研究所内 Fターム(参考) 4D050 AA06 AB11 BB02 BB09 CA06 CA07 CA10 CA16 4D061 DA04 DB09 DB19 DC08 EA02 EB13 EB19 EB33 EB35 ED01 FA06 FA07 FA13 FA14 FA16 4K021 AB15 BA01 BC01 BC09 DB16 DB31  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Nakajima 4-26-1, Minamiogikubo, Suginami-ku, Tokyo 401 Oak Ogikubo 401 (72) Inventor Akira Katsumoto 2-10-15 Higashiawaji, Higashiyodogawa-ku, Osaka-shi, Osaka No. Katayama Chemical Industry Laboratory Co., Ltd. (72) Inventor Kunio Nishimura 2-10-15 Higashiawaji, Higashi-Yodogawa-ku, Osaka City, Osaka F-term (reference) 4D050 AA06 AB11 BB02 BB09 CA06 CA07 CA10 CA16 4D061 DA04 DB09 DB19 DC08 EA02 EB13 EB19 EB33 EB35 ED01 FA06 FA07 FA13 FA14 FA16 4K021 AB15 BA01 BC01 BC09 DB16 DB31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機化合物とハロゲン化物イオンを含有
する電解水を電解槽へ供給し電解して過酸化水素水を製
造する方法において、電解槽への供給前に電解水中の有
機化合物を除去することを特徴とする過酸化水素水の製
造方法。
1. A method for producing an aqueous solution of hydrogen peroxide by supplying electrolytic water containing an organic compound and halide ions to an electrolytic cell and electrolyzing the electrolytic water to remove the organic compound in the electrolytic water before supplying the electrolytic water to the electrolytic cell. A method for producing a hydrogen peroxide solution.
【請求項2】 電解水が海水である請求項1に記載の過
酸化水素水の製造方法。
2. The method according to claim 1, wherein the electrolyzed water is seawater.
【請求項3】 有機化合物の除去を、ストレーナー、凝
集分離及び活性炭吸着の少なくとも1種類による分離、
及び/又は紫外線、オゾン、過酸化水素及び電解の少な
くとも1種類による分解により行うようにした請求項1
又は2に記載の過酸化水素水の製造方法。
3. The method according to claim 1, wherein the organic compound is removed by at least one of strainer, coagulation separation and activated carbon adsorption.
And / or decomposition by at least one of ultraviolet light, ozone, hydrogen peroxide and electrolysis.
Or the method for producing a hydrogen peroxide solution according to 2.
【請求項4】 電解槽の陰極が酸素ガス拡散電極であ
り、電解槽の陰極側に酸素ガスを供給しこれを還元する
ことにより過酸化水素を生成するようにした請求項1か
ら3のいずれかに記載の過酸化水素水の製造方法。
4. The electrolytic cell according to claim 1, wherein the cathode of the electrolytic cell is an oxygen gas diffusion electrode, and hydrogen peroxide is generated by supplying oxygen gas to the cathode side of the electrolytic cell and reducing it. A method for producing a hydrogen peroxide solution according to any one of the above.
【請求項5】 電解槽をイオン交換膜により陽極室と陰
極室に区画した請求項1から4のいずれかに記載の過酸
化水素水の製造方法。
5. The method for producing hydrogen peroxide solution according to claim 1, wherein the electrolytic cell is divided into an anode chamber and a cathode chamber by an ion exchange membrane.
【請求項6】 有機化合物とハロゲン化物イオンを含有
する海水を分岐海水と非分岐海水とし、該分岐海水中の
有機化合物を除去した後に、該分岐海水を電解槽へ供給
して電解して過酸化水素含有分岐海水を製造し、該過酸
化水素含有分岐海水を前記非分岐海水と混合して過酸化
水素含有海水を製造することを特徴とする方法。
6. The seawater containing an organic compound and halide ions is made into branched seawater and unbranched seawater, and after removing the organic compound in the branched seawater, the branched seawater is supplied to an electrolytic cell to be electrolyzed. A method comprising producing branched seawater containing hydrogen oxide, and mixing the branched seawater containing hydrogen peroxide with the unbranched seawater to produce seawater containing hydrogen peroxide.
JP2000233896A 2000-08-02 2000-08-02 Method of manufacturing hydrogen peroxide water Pending JP2002053990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233896A JP2002053990A (en) 2000-08-02 2000-08-02 Method of manufacturing hydrogen peroxide water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233896A JP2002053990A (en) 2000-08-02 2000-08-02 Method of manufacturing hydrogen peroxide water

Publications (1)

Publication Number Publication Date
JP2002053990A true JP2002053990A (en) 2002-02-19

Family

ID=18726348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233896A Pending JP2002053990A (en) 2000-08-02 2000-08-02 Method of manufacturing hydrogen peroxide water

Country Status (1)

Country Link
JP (1) JP2002053990A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097535A1 (en) * 2002-05-17 2003-11-27 Nippon Oil Corporation Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
JP2009108395A (en) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp Electrolytic cell for producing hydrogen peroxide
JP2012519075A (en) * 2009-03-02 2012-08-23 チェスター ソーン, Ballast water treatment electrolyzer and treatment system for the same
KR101282763B1 (en) 2011-08-17 2013-07-05 광주과학기술원 A process of desalination and preparing hydrogen peroxide by using microbial electrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097535A1 (en) * 2002-05-17 2003-11-27 Nippon Oil Corporation Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
JP2009108395A (en) * 2007-11-01 2009-05-21 Mitsubishi Electric Corp Electrolytic cell for producing hydrogen peroxide
JP2012519075A (en) * 2009-03-02 2012-08-23 チェスター ソーン, Ballast water treatment electrolyzer and treatment system for the same
KR101282763B1 (en) 2011-08-17 2013-07-05 광주과학기술원 A process of desalination and preparing hydrogen peroxide by using microbial electrochemical cell

Similar Documents

Publication Publication Date Title
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
JP3913923B2 (en) Water treatment method and water treatment apparatus
Ghernaout et al. From chemical disinfection to electrodisinfection: The obligatory itinerary?
DE10216860B4 (en) Electrolysis apparatus for the production of hydrogen peroxide and process for the production of hydrogen peroxide
Ghernaout et al. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment
KR100379123B1 (en) Electrolytic apparatus and methods for purification of aqueous solutions
RU2064440C1 (en) Method of treating water
JP2002531704A (en) Electrolytic apparatus, method for purifying aqueous solution, and method for synthesizing chemical substance
US20160167985A1 (en) Method for treating wastewater and device for carrying out said method
WO2007008591A2 (en) Methods and apparatus for generating oxidizing agents
KR101598493B1 (en) A treating method for waste water using electrolysis and waste water treating system
EP2277833A2 (en) High efficiency electrolysis cell for generating oxidants in solutions
GB2515324A (en) Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
KR20170107642A (en) A porous 3-dimensional mono-polar electrodes, an electrolyzer having the porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
US6761815B2 (en) Process for the production of hydrogen peroxide solution
JP2002053990A (en) Method of manufacturing hydrogen peroxide water
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
EP2089326B1 (en) Treatment system of ships ballast water, offshore petroleum platforms and vessels, in general, through a process in an electrochemical reactor
JPH07256297A (en) Purification treatment of livestock excretion
KR101644275B1 (en) Electrolysis device and water treatment method using the device
JP2000263049A (en) Method and apparatus for cleaning barn effluent
US20220242757A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
JP5036746B2 (en) Chloride ion removing apparatus and chloride ion removing method
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
JP2023554349A (en) Methods and systems for wastewater treatment by membrane filtration and electrochemical oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060626