JP2002043633A - White light emitting diode - Google Patents

White light emitting diode

Info

Publication number
JP2002043633A
JP2002043633A JP2000223513A JP2000223513A JP2002043633A JP 2002043633 A JP2002043633 A JP 2002043633A JP 2000223513 A JP2000223513 A JP 2000223513A JP 2000223513 A JP2000223513 A JP 2000223513A JP 2002043633 A JP2002043633 A JP 2002043633A
Authority
JP
Japan
Prior art keywords
white light
emitting diode
light emitting
wavelength
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000223513A
Other languages
Japanese (ja)
Inventor
Munehiro Kato
宗弘 加藤
Michihiro Sano
道宏 佐野
Hiroyuki Sato
弘之 佐藤
Kenichi Morikawa
謙一 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2000223513A priority Critical patent/JP2002043633A/en
Priority to US09/898,500 priority patent/US6635903B2/en
Publication of JP2002043633A publication Critical patent/JP2002043633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a white light emitting diode having excellent color rendering properties required for liquid crystal backlight in which emission lifetime characteristics are enhanced by reducing deterioration of mold resin. SOLUTION: In the white light emitting diode where UV rays emitted from a pumping element having an n-type semiconductor layer 22 and a p-type semiconductor layer 23 is converted through a wavelength conversion element 32 into white light and irradiated through a mold resin 34, the wavelength conversion element 32 is arranged on one side of the pumping element and an insulation film 25 is arranged on the other side thereof through a p-type ohmic electrode 24. Furthermore, side face of the pumping element is covered with an n-type ohmic electrode 26 exhibiting high reflectivity in UV wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、照明器具、イン
ジケ−タ、ディスプレイ、表示器のバックライトなどと
して使用する白色発光ダイオ−ドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a white light emitting diode used as a lighting fixture, an indicator, a display, a backlight of a display, and the like.

【0002】[0002]

【従来の技術】図5は現在実用化されている白色発光ダ
イオ−ドを示す断面図である。この発光ダイオ−ドは、
サファィア基板上にn型半導体(n型GaN)とP型半
導体(P型GaN)とを成長させたGaN系の青色励起
素子11がメタルステム12にダイボンディングされて
いる。
2. Description of the Related Art FIG. 5 is a sectional view showing a white light emitting diode which is currently in practical use. This light emitting diode is
A GaN-based blue excitation element 11 in which an n-type semiconductor (n-type GaN) and a P-type semiconductor (P-type GaN) are grown on a sapphire substrate is die-bonded to a metal stem 12.

【0003】そして、青色励起素子11はそのn型層が
メタルステム12に、そのP型層がメタルステム13に
各々金線14、15によって電気接続され、また、青色
励起素子11には蛍光体16が所定の厚みで塗布形成さ
れている。
The blue excitation element 11 has its n-type layer electrically connected to the metal stem 12 and its p-type layer electrically connected to the metal stem 13 by gold wires 14 and 15, respectively. 16 is applied and formed with a predetermined thickness.

【0004】このように構成した青色励起素子11、金
線14、15、蛍光体16、メタルステム12、13の
一部が透明なエポキシ系樹脂材のモ−ルド樹脂17によ
って包囲され、白色発光ダイオ−ドとして構成されてい
る。
A part of the blue excitation element 11, the gold wires 14, 15, the phosphor 16, and the metal stems 12, 13 thus configured are surrounded by a transparent epoxy resin mold resin 17, and white light is emitted. It is configured as a diode.

【0005】上記の白色発光ダイオ−ドは、青色励起素
子11が青色光源として青色光を発光し、この青色光が
蛍光体16によって波長変換されて白色光を照射する。
In the above white light emitting diode, the blue excitation element 11 emits blue light as a blue light source, and the blue light is converted in wavelength by the phosphor 16 to emit white light.

【0006】[0006]

【発明が解決しようとする課題】図6は上記した白色発
光ダイオ−ドの発光スパクトルを示す。この発光スパク
トルから分かるように、上記の白色発光ダイオ−ドは、
青色励起素子11の発光(波長450nm近傍)と、蛍
光体16の発光(波長580nm近傍)とによって生成
される白色光となる。
FIG. 6 shows a light emitting spectrum of the above-mentioned white light emitting diode. As can be seen from the light emitting spectrum, the white light emitting diode is
The white light is generated by the emission of the blue excitation element 11 (around 450 nm) and the emission of the phosphor 16 (around 580 nm).

【0007】したがって、この白色発光ダイオ−ドは、
光の三原色である青色(波長450nm)、緑色(波長
525nm)、赤色(波長660nm)から白色光を形
成するものではないため、室内灯や液晶画面のバックラ
イトなどとして使われている蛍光灯の代替発光ダイオ−
ドとしては演色性などの点で問題となっている。
Accordingly, this white light emitting diode is
It does not form white light from the three primary colors of light, blue (wavelength 450 nm), green (wavelength 525 nm), and red (wavelength 660 nm). Alternative light emitting diode
In terms of color rendering properties, this poses a problem.

【0008】この問題を解決する1つの有効な手段とし
て、ZnO系或いはGaN系の紫外励起素子の紫外線光
を蛍光体を用いて波長変換し、白色光を照射させる構成
とした白色発光ダイオ−ドが提案されている。
One effective means for solving this problem is to convert the wavelength of ultraviolet light from a ZnO-based or GaN-based ultraviolet excitation element to a wavelength using a phosphor and to irradiate white light with a white light-emitting diode. Has been proposed.

【0009】しかし、紫外励起素子を光源とするこのよ
うな白色発光ダイオ−ドは、励起素子の紫外線光によっ
てモ−ルドされたエポキシ系樹脂が劣化し、モ−ルド樹
脂の透過率が経時的に低下するため、白色発光出力が低
下してしまうと言う問題がある。
However, in such a white light emitting diode using an ultraviolet excitation element as a light source, the epoxy resin molded by the ultraviolet light of the excitation element is deteriorated, and the transmittance of the mold resin is reduced with time. Therefore, there is a problem that the white light emission output is reduced.

【0010】本発明は上記した実情にかんがみ、液晶用
バックライトなどとして演色性に優れた構成とし、か
つ、モ−ルド樹脂の劣化を少なくして発光出力寿命を改
善した紫外励起素子を励起光源とする白色発光ダイオ−
ドを提供することを目的とする。
In view of the above-mentioned circumstances, the present invention provides an ultraviolet excitation element having a structure having excellent color rendering properties as a backlight for a liquid crystal and the like, and having an improved light emission output life by minimizing deterioration of mold resin. White light emitting diode
The purpose is to provide

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ため、本発明では、P型半導体とn型半導体とによって
紫外線光を発光する励起素子と、この励起素子の発光を
蛍光体によって白色波長光に変換する波長変換素子と、
これら励起素子及び波長変換素子を覆う透明なモ−ルド
樹脂とからなる白色発光ダイオ−ドにおいて、P型半導
体とn型半導体の接合部分に平行する励起素子の一面側
に波長変換素子を配設すると共に、紫外線波長とその近
傍の波長において透明な絶縁膜を上記接合部分が位置す
る励起素子側面に設け、さらに、紫外線波長とその近傍
の波長において高反射率のP型オ−ミック電極とn型オ
−ミック電極とで励起素子の一面以外の他面を覆うよう
にこれらオ−ミック電極を設けて構成したことを特徴と
する白色発光ダイオ−ドを提案する。
In order to achieve the above-mentioned object, the present invention provides an excitation element that emits ultraviolet light by using a P-type semiconductor and an n-type semiconductor, and a method that uses a phosphor to emit light of a white wavelength. A wavelength conversion element for converting to light,
In a white light emitting diode composed of a transparent mold resin covering the excitation element and the wavelength conversion element, a wavelength conversion element is disposed on one surface side of the excitation element parallel to a junction between the P-type semiconductor and the n-type semiconductor. At the same time, a transparent insulating film is provided on the side surface of the excitation element where the junction is located at the ultraviolet wavelength and the wavelength in the vicinity thereof, and a P-type ohmic electrode having a high reflectance at the ultraviolet wavelength and the wavelength in the vicinity thereof is connected to the n-type electrode. The present invention proposes a white light emitting diode characterized in that these ohmic electrodes are provided so as to cover other surfaces than one surface of the excitation element with a mold ohmic electrode.

【0012】このように構成した白色発光ダイオ−ド
は、励起素子が光源となって紫外線光を発光する。そし
て、励起素子の一面側に向かって射出する紫外線光が波
長変換素子によって白色光に波長変換され、白色光がモ
−ルド樹脂を通って外方に照射される。
The white light emitting diode thus configured emits ultraviolet light with the excitation element serving as a light source. Then, the wavelength of the ultraviolet light emitted toward one surface of the excitation element is converted into white light by the wavelength conversion element, and the white light is irradiated outward through the mold resin.

【0013】また、励起素子の一面側以外の他の側面に
向かって射出する紫外線光は、高反射率のP型オ−ミッ
ク電極とn型オ−ミック電極によって反射されるため、
モ−ルド樹脂には入射しない。
The ultraviolet light emitted toward the other side than the one side of the excitation element is reflected by the P-type ohmic electrode and the n-type ohmic electrode having high reflectivity.
It does not enter the mold resin.

【0014】この結果、紫外線光が波長変換素子の蛍光
体によって白色光に変換されるので、演色性に優れた白
色発光ダイオ−ドとなる。また、紫外線光がモ−ルド樹
脂に入射しないことから、モ−ルド樹脂の劣化が極めて
少なく、長期間使用によっても発光出力がほとんど低下
しない白色発光ダイオ−ドとなる。
As a result, since the ultraviolet light is converted into white light by the phosphor of the wavelength conversion element, a white light emitting diode having excellent color rendering properties is obtained. Further, since no ultraviolet light is incident on the mold resin, the deterioration of the mold resin is extremely small, and a white light emitting diode is obtained in which the light emission output hardly decreases even after long-term use.

【0015】また、上記した白色発光ダイオ−ドは、一
面側を広く、その対向面側を狭くするように励起素子側
面を傾斜形成することによって、発光出力を増大させる
ことができる。
In the above-mentioned white light emitting diode, the light emitting output can be increased by forming the side surface of the exciting element so as to be wide on one side and narrow on the opposite side.

【0016】すなわち、励起素子側面には紫外線波長に
おいて高反射率のオ−ミック電極が設けてあるから、励
起素子側面を傾斜形成することによって、オ−ミック電
極が波長変換素子に向かって紫外線光を反射させる。こ
の結果、波長変換素子によって白色光に波長変換される
紫外線光が増加することから、白色発光出力が増大す
る。
That is, since an ohmic electrode having a high reflectance at the ultraviolet wavelength is provided on the side surface of the excitation element, the ohmic electrode is inclined toward the wavelength conversion element by forming the side surface of the excitation element inclined. Is reflected. As a result, the amount of ultraviolet light whose wavelength is converted to white light by the wavelength conversion element increases, and the white light emission output increases.

【0017】[0017]

【発明の実施の形態】次に、本発明の実施形態について
図面に沿って説明する。図1は本発明の一実施形態を示
す白色発光ダイオ−ドの構成図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a white light emitting diode showing one embodiment of the present invention.

【0018】この図において、21は基板、22はn型
半導体層、23はP型半導体層、24はP型オ−ミック
電極、25は絶縁膜、26はn型オ−ミック電極、27
はマウント用ボンディングパッド、28は共晶電極、2
9は絶縁性基板、30はアノ−ド引き出し電極、31は
カソ−ド引き出し電極、32は波長変換素子、33は金
線、34はモ−ルド樹脂を示す。
In this figure, 21 is a substrate, 22 is an n-type semiconductor layer, 23 is a P-type semiconductor layer, 24 is a P-type ohmic electrode, 25 is an insulating film, 26 is an n-type ohmic electrode, 27
Is a bonding pad for mounting, 28 is a eutectic electrode, 2
Reference numeral 9 denotes an insulating substrate, 30 denotes an anode lead electrode, 31 denotes a cathode lead electrode, 32 denotes a wavelength conversion element, 33 denotes a gold wire, and 34 denotes a mold resin.

【0019】この白色発光ダイオ−ドは、紫外線光を透
過するサファィアなどの基板21の面上にn型半導体層
22(n型GaNまたはn型ZnO)を形成した後、そ
の上にP型半導体層23(P型GaNまたはP型Zn
O)を形成してデバイスウエハを構成する。
This white light emitting diode is formed by forming an n-type semiconductor layer 22 (n-type GaN or n-type ZnO) on the surface of a substrate 21 such as sapphire which transmits ultraviolet light, and then forming a p-type semiconductor Layer 23 (P-type GaN or P-type Zn
O) to form a device wafer.

【0020】なお、GaN半導体層は一般的なMOCV
D(有機金属化学気相成長)法によって代表される成膜
法によって形成し、また、ZnO半導体層はレ−ザ−ア
ブレ−ション法やMBE(分子線エピタキシ−)法など
の成膜法によって形成することができる。
The GaN semiconductor layer is a general MOCV
A ZnO semiconductor layer is formed by a film forming method such as a laser ablation method or an MBE (molecular beam epitaxy) method. Can be formed.

【0021】また、n型半導体層22とP型半導体層2
3については、P型半導体層23を基板21側に膜形成
し、その上にn型半導体層22を形成するようにしても
よい。
The n-type semiconductor layer 22 and the p-type semiconductor layer 2
Regarding 3, the P-type semiconductor layer 23 may be formed on the substrate 21 side, and the n-type semiconductor layer 22 may be formed thereon.

【0022】このように構成したデバイスウエハは液晶
エッチングまたは気相エッチングによってn型半導体層
22を露出させ、その後、P型半導体層23上にNi、
Au、Pt、Phなどの金属で形成したP型オ−ミック
電極24を設ける。
The device wafer thus configured exposes the n-type semiconductor layer 22 by liquid crystal etching or vapor phase etching.
A P-type ohmic electrode 24 made of a metal such as Au, Pt, or Ph is provided.

【0023】このP型オ−ミック電極24は紫外線光の
波長領域における反射率が高い材料を使うことが好まし
く、このP型オ−ミック電極24とマウント用ボンディ
ングパッド27とで励起素子外部に紫外線光を放出させ
ない電極構造とする。
It is preferable that the P-type ohmic electrode 24 be made of a material having a high reflectance in the wavelength region of ultraviolet light. The electrode structure does not emit light.

【0024】P型オ−ミック電極24を形成した後に、
SixNy、SiO2、AI203などの紫外線領域で
透明な絶縁膜25を形成する。
After forming the P-type ohmic electrode 24,
A transparent insulating film 25 is formed in an ultraviolet region such as SixNy, SiO2, AI203 or the like.

【0025】この絶縁膜25は、デバイスウエハとP型
オ−ミック電極24との全体を電子線加熱蒸着法やスパ
ッタ法、化学気相成膜法などを用いて形成することがで
きる。そして、励起素子の電気的接触を得るために、P
型オ−ミック電極24の一部とn型半導体層22の一部
については絶縁膜を形成しないか、または、絶縁膜を形
成した後に電気的接触部分を除去する構造とする。
The insulating film 25 can be formed on the entire device wafer and the P-type ohmic electrode 24 by electron beam evaporation, sputtering, chemical vapor deposition, or the like. Then, in order to obtain electrical contact of the excitation element, P
An insulating film is not formed on a part of the ohmic electrode 24 and a part of the n-type semiconductor layer 22, or an electrical contact portion is removed after forming the insulating film.

【0026】本実施形態における絶縁膜25は、P型半
導体層23の側面と、n型半導体層22とP型半導体層
23の接合部分が位置する側面とを覆うように形成して
電気的短絡を防止するように設けてある。
The insulating film 25 in this embodiment is formed so as to cover the side surface of the P-type semiconductor layer 23 and the side surface where the junction between the n-type semiconductor layer 22 and the P-type semiconductor layer 23 is located, so that an electrical short circuit is formed. It is provided so as to prevent.

【0027】絶縁膜25を形成した後に、紫外線波長に
おいて高い反射率のTi、Ag、Alなどで形成したn
型オ−ミック電極26をデバイスウエハ側面の全体を覆
うように形成する。
After the formation of the insulating film 25, the n is formed of Ti, Ag, Al or the like having a high reflectance at the ultraviolet wavelength.
The mold ohmic electrode 26 is formed so as to cover the entire side surface of the device wafer.

【0028】P型オ−ミック電極24とn型オ−ミック
電極26を形成した後に、マウント用ボンディングパッ
ド27をTi、Ni、Auなどの金属材で形成し、次
に、Au−Suなどで共晶電極28を順次形成する。
After the formation of the P-type ohmic electrode 24 and the n-type ohmic electrode 26, the mounting bonding pad 27 is formed of a metal material such as Ti, Ni or Au, and then formed of Au-Su or the like. The eutectic electrodes 28 are sequentially formed.

【0029】これらマウント用ボンディングパッド27
と共晶電極28は別々に形成しても、一括に形成しても
よく、また、P型オ−ミック電極24とn型オ−ミック
電極26と一括形成してもよい。
These mounting bonding pads 27
And the eutectic electrode 28 may be formed separately or collectively, or the P-type ohmic electrode 24 and the n-type ohmic electrode 26 may be formed collectively.

【0030】なお、一般的には、P型オ−ミック電極2
4又はn型オ−ミック電極26を形成した後、または、
すべての電極を形成した後に、各半導体層と電極との電
気的、機械的接触特性を改善するために加熱処理する。
Generally, the P-type ohmic electrode 2
After forming the 4 or n-type ohmic electrode 26, or
After all the electrodes are formed, heat treatment is performed to improve the electrical and mechanical contact characteristics between each semiconductor layer and the electrodes.

【0031】全ての電極を形成した後に、ダイシング法
またはスクライブ法によって個々のLEDチップ(起動
素子)に分離し、このLEDチップをサブマウント基板
にダイボンディングする。
After all the electrodes have been formed, each LED chip (starting element) is separated by a dicing method or a scribe method, and this LED chip is die-bonded to a submount substrate.

【0032】つまり、絶縁性基板29上にアノ−ド引き
出し電極30とカソ−ド引き出し電極31を形成したサ
ブマウント基板を設け、P型半導体層23をサブマウン
ト側になるようにしてLEDチップをこのサブマウント
基板にダイボンディングする。そして、LEDチップを
ダイボンディングしたサブマウント基板はLEDフレ−
ムなどにマウントし、電極30、31を金線33によっ
て電気接続する。
That is, a submount substrate having an anode lead electrode 30 and a cathode lead electrode 31 formed on an insulating substrate 29 is provided, and the LED chip is mounted with the P-type semiconductor layer 23 on the submount side. Die bonding is performed on this submount substrate. The submount substrate on which the LED chip is die-bonded is an LED frame.
The electrodes 30 and 31 are electrically connected by gold wires 33.

【0033】さらに、基板21の面上に蛍光体と多層光
学薄膜と前記2点を保持する基板(ガラス、サファイア
等:図示せず)からなる波長変換素子32をマウントす
る。この波長変換素子32に含まれる多層光学薄膜によ
り、励起光である紫外線光は蛍光体側に反射し、モ−ル
ド樹脂34に入射しない。
Further, on the surface of the substrate 21, a wavelength conversion element 32 composed of a phosphor (multilayer optical thin film) and a substrate (glass, sapphire, etc., not shown) holding the above two points is mounted. Due to the multilayer optical thin film included in the wavelength conversion element 32, the ultraviolet light as the excitation light is reflected toward the phosphor and does not enter the mold resin 34.

【0034】モ−ルド樹脂34は、LEDチップとサブ
マウント基板を覆うように設けた透明なエポキシ系樹脂
材によって形成する。
The mold resin 34 is formed of a transparent epoxy resin material provided so as to cover the LED chip and the submount substrate.

【0035】上記のように構成した白色発光ダイオ−ド
は、励起素子が紫外線光を発光し、この紫外線光が波長
変換素子32によって白色光に波長変換され、白色光が
モ−ルド樹脂34を透過して照射される。
In the white light emitting diode constructed as described above, the excitation element emits ultraviolet light, the ultraviolet light is wavelength-converted to white light by the wavelength conversion element 32, and the white light passes through the mold resin 34. Irradiated through.

【0036】また、本実施形態では、図示するように、
波長変換素子32側を広く、P型オ−ミック電極24側
を狭くするように励起素子側面を傾斜形成し、この傾斜
面にn型オ−ミック電極26を設けたので、紫外線光が
このオ−ミック電極26によって反射され、モ−ルド樹
脂34には入射しない。
In this embodiment, as shown in FIG.
The side surface of the excitation element is inclined so as to widen the wavelength conversion element 32 side and narrow the P-type ohmic electrode 24 side, and the n-type ohmic electrode 26 is provided on the inclined surface. -Is reflected by the mic electrode 26 and does not enter the mold resin 34.

【0037】その上、n型オ−ミック電極26が紫外線
領域において高い反射率のものとなっているので、この
電極26によって反射された紫外線光が波長変換素子3
2に導光される。この結果、波長変換素子32によって
波長変換される紫外線光が増加し、出力される白色光が
増大する。
In addition, since the n-type ohmic electrode 26 has a high reflectance in the ultraviolet region, the ultraviolet light reflected by this electrode 26 is
2 is guided. As a result, the ultraviolet light whose wavelength is converted by the wavelength conversion element 32 increases, and the output white light increases.

【0038】一方、励起素子の側面を上記のように傾斜
させることにより、絶縁膜25の形成が容易となり、n
型半導体層22とP型半導体層23との間の電気絶縁の
信頼性が向上し、結果として励起素子の歩留りを改善す
ることができる。
On the other hand, by inclining the side surface of the excitation element as described above, the formation of the insulating film 25 becomes easy,
The reliability of electrical insulation between the type semiconductor layer 22 and the P-type semiconductor layer 23 is improved, and as a result, the yield of the excitation element can be improved.

【0039】したがつて、励起素子側面の傾斜は、励起
素子の歩留りを改善するなら基板21に対して90°以
下とすればよいが、n型オ−ミック電極26で反射した
紫外線光を波長変換素子32に供給する構成とする場合
は励起素子側面は基板21に対して45°程度に傾斜さ
せることが好ましい。
Accordingly, the inclination of the side surface of the excitation element may be set to 90 ° or less with respect to the substrate 21 in order to improve the yield of the excitation element. When supplying to the conversion element 32, it is preferable that the side surface of the excitation element is inclined at about 45 ° with respect to the substrate 21.

【0040】他方、本実施形態の改善案としては、n型
オ−ミック電極26をP型半導体層23の側面に直接に
形成してもよい。ただし、この場合には、n型オ−ミッ
ク電極26とP型オ−ミック電極24とを電気的に絶縁
する必要がある。
On the other hand, as an improvement of this embodiment, the n-type ohmic electrode 26 may be formed directly on the side surface of the P-type semiconductor layer 23. However, in this case, it is necessary to electrically insulate the n-type ohmic electrode 26 and the p-type ohmic electrode 24.

【0041】また、P型オ−ミック電極24によって励
起素子側面を覆う構成とすることができる。この場合、
n型オ−ミック電極26はマウント用ボンディングパッ
ド27と合せて紫外線光を外部に放射させない電極構造
とし、また、n型半導体層22の側面と、n型半導体層
22とP型半導体層23との接合部分が位置する側面に
は絶縁膜25を設ける必要がある。
Further, it is possible to adopt a structure in which the side surface of the excitation element is covered by the P-type ohmic electrode 24. in this case,
The n-type ohmic electrode 26 has an electrode structure that does not emit ultraviolet light to the outside together with the bonding pad 27 for mounting. The n-type ohmic electrode 26 has side surfaces of the n-type semiconductor layer 22, and the n-type semiconductor layer 22 and the P-type semiconductor layer 23 It is necessary to provide the insulating film 25 on the side surface where the bonding portion is located.

【0042】図2は実際に実施した白色発光ダイオ−ド
の実施例を示す断面図である。この実施例の白色発光ダ
イオ−ドは図1に示す白色発光ダイオ−ドと同じ工程で
構成してあるから、同じ部材と部所については同じ参照
符号が付してある。
FIG. 2 is a sectional view showing an embodiment of a white light emitting diode actually implemented. Since the white light emitting diode of this embodiment has the same steps as those of the white light emitting diode shown in FIG. 1, the same members and parts are denoted by the same reference numerals.

【0043】この実施例の励起素子としては、サファィ
ア基板21上に紫外線光を発光させるGaN系半導体層
をMOCVD法により形成し、デバイスウエハを構成し
た。
As the excitation element of this embodiment, a device wafer was formed by forming a GaN-based semiconductor layer for emitting ultraviolet light on the sapphire substrate 21 by MOCVD.

【0044】そして、このデバイスウエハは、塩素系ガ
スを用いた反応性イオンエッチング(RIE)法により、
P型GaN層と活性層部分をエッチング(表面から約4
000A程度)し、n型GaN層を露出させた。
The device wafer is formed by a reactive ion etching (RIE) method using a chlorine-based gas.
Etch P-type GaN layer and active layer (approx.
000 A) to expose the n-type GaN layer.

【0045】P型オ−ミック電極24、絶縁膜25、n
型オ−ミック電極26の各々には、Ni(10A)/P
h(3000A)、SiO2(4000A)、Ti(2
50A)/A1(15000A)を使用した。
P-type ohmic electrode 24, insulating film 25, n
Each of the ohmic electrodes 26 has Ni (10A) / P
h (3000A), SiO2 (4000A), Ti (2
50A) / A1 (15000A) was used.

【0046】その後ランプ加熱を利用したラピッドサ−
マルアニ−リング法を用いてデバイスウエハを加熱処理
した。そのときの加熱条件は、500℃、20Secで
あり、雰囲気は窒素雰囲気によって行なった。
After that, a rapid sensor using lamp heating is used.
The device wafer was heat-treated by using a mar-annealing method. The heating conditions at that time were 500 ° C. and 20 sec, and the atmosphere was a nitrogen atmosphere.

【0047】この加熱処理後に、マウント用ボンディン
グパッド27(Ti(400A)/Au(10000
A))と共晶電極28(Au−Su)を順次形成した。
なお、全ての電極と絶縁膜は電子線加熱蒸着法によって
成膜し、パタ−ニングはリフトオフ法によって行なっ
た。
After this heat treatment, the mounting bonding pad 27 (Ti (400A) / Au (10000)
A)) and a eutectic electrode 28 (Au-Su) were sequentially formed.
All electrodes and insulating films were formed by electron beam evaporation, and patterning was performed by lift-off.

【0048】全ての電極を形成したデバイスウエハはス
クライブ法によってLEDチップ分離し、このLEDチ
ップをサブマウントにダイボンディングした。そして、
サファィア基板21上に波長変換素子32を設置し、ま
た、モ−ルド樹脂を設けて白色発光ダイオ−ドを構成し
た。
The device wafer on which all the electrodes were formed was separated into LED chips by a scribe method, and the LED chips were die-bonded to a submount. And
A wavelength conversion element 32 was provided on a sapphire substrate 21 and a mold resin was provided to form a white light emitting diode.

【0049】なお、特性比較のために、活性層側面部分
(n型半導体層22とP型半導体層23の接合部分が位
置するデバイスウエハの側面部分)に反射作用のn型オ
−ミック電極26を設けない紫外LEDチップを用いた
白色発光ダイオ−ド(便宜上、従来タイプの白色発光ダ
イオ−ドという)を上記同様にして構成した。図3はこ
のように構成した従来タイプの白色発光ダイオ−ドのL
EDチップを示す断面図である。
For comparison of the characteristics, the reflective n-type ohmic electrode 26 is formed on the side of the active layer (the side of the device wafer where the junction between the n-type semiconductor layer 22 and the P-type semiconductor layer 23 is located). A white light-emitting diode using an ultraviolet LED chip not provided with (a conventional white light-emitting diode for convenience) was constructed in the same manner as described above. FIG. 3 shows a conventional white light emitting diode L constructed as described above.
It is sectional drawing which shows an ED chip.

【0050】図4は図2に示したLEDチップを使用し
た本発明の白色発光ダイオ−ドと、図3に示したLED
チップを使用した従来タイプの白色発光ダイオ−ドとの
発光出力比の寿命特性を示す。
FIG. 4 shows a white light emitting diode of the present invention using the LED chip shown in FIG. 2 and the LED shown in FIG.
It shows the life characteristics of the light emission output ratio of a conventional type white light emitting diode using a chip.

【0051】なお、この図において、曲線Aは本発明の
白色発光ダイオ−ドの寿命特性を、曲線Bは従来タイプ
の白色発光ダイオ−ドの寿命特性を各々示す。
In this figure, curve A shows the life characteristics of the white light emitting diode of the present invention, and curve B shows the life characteristics of the conventional white light emitting diode.

【0052】曲線Aより分かるように、本発明の白色発
光ダイオ−ドは、1150時間後に測定した発光出力が
寿命試験開始直後に測定した発光出力に比べて約98%
となることが確認された。
As can be seen from the curve A, the white light emitting diode of the present invention has a luminous output measured after 1150 hours which is about 98% of the luminous output measured immediately after the start of the life test.
It was confirmed that

【0053】また、曲線Bの通り、従来タイプの白色発
光ダイオ−ドは、1150時間後の発光出力が寿命試験
開始直後に測定した発光出力に比べて約88%となるこ
とが確認された。
Further, as shown by the curve B, it was confirmed that the light emission output of the conventional type white light emitting diode after 1150 hours was about 88% as compared with the light emission output measured immediately after the start of the life test.

【0054】この結果、本発明の白色発光ダイオ−ドに
よれば、発光寿命特性が1150時間の連続点灯で約1
0%改善されることが判明した。
As a result, according to the white light emitting diode of the present invention, the light emitting life characteristic is about 1 in continuous lighting for 1150 hours.
It was found to be 0% improved.

【0055】[0055]

【発明の効果】上記した通り、本発明の白色発光ダイオ
−ドは、波長変換素子を配設する励起素子の一面側以外
の他面を高反射率のオ−ミック電極で覆う構成としたこ
とから、励起素子が発光する紫外線光がモ−ルド樹脂に
入射しない。
As described above, the white light emitting diode of the present invention has a structure in which the surface other than the one surface of the excitation element provided with the wavelength conversion element is covered with the ohmic electrode having a high reflectance. Therefore, the ultraviolet light emitted from the excitation element does not enter the mold resin.

【0056】したがって、モ−ルド樹脂が経時的にも劣
化しないから、波長変換素子で波長変換された白色光が
モ−ルド樹脂を透過して効果的に出力され、発光寿命特
性の優れた白色発光ダイオ−ドとなる。
Therefore, since the mold resin does not deteriorate with time, the white light whose wavelength has been converted by the wavelength conversion element passes through the mold resin and is effectively output, and the white light having excellent emission life characteristics is obtained. It becomes a light emitting diode.

【0057】また、本発明の白色発光ダイオ−ドは、励
起素子側面を傾斜させオ−ミック電極によって反射され
る紫外線光を波長変換素子に導光するようにすれば、励
起素子が発光する紫外線光が効率よく白色光に変換され
るから、発光出力を増大させることができる。
In the white light emitting diode of the present invention, if the ultraviolet light reflected by the ohmic electrode is guided to the wavelength conversion element by inclining the side surface of the excitation element, the ultraviolet light emitted by the excitation element can be obtained. Since light is efficiently converted to white light, the light emission output can be increased.

【0058】さらに、家庭用蛍光灯などに使われている
蛍光体と同様に、紫外線光によって励起される蛍光体を
使用して白色発光ダイオ−ドを構成することができるの
で、青、緑、赤の三原色の発光成分となる蛍光体を個々
に調整することができ、幅広い領域の色調を得ることが
できる白色発光ダイオ−ドとなる。
Further, as in the case of a fluorescent material used in a home fluorescent lamp or the like, a white light emitting diode can be formed by using a fluorescent material excited by ultraviolet light. Phosphors serving as red primary color light-emitting components can be individually adjusted, and a white light-emitting diode can be obtained in a wide range of colors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態として示した白色発光ダイ
オ−ドの断面図である。
FIG. 1 is a sectional view of a white light emitting diode shown as one embodiment of the present invention.

【図2】本発明の白色発光ダイオ−ドに使用するLED
チップを示す断面図である。
FIG. 2 is an LED used in the white light emitting diode of the present invention.
It is sectional drawing which shows a chip.

【図3】従来タイプの白色発光ダイオ−ドのLEDチッ
プを示す断面図である。
FIG. 3 is a cross-sectional view showing a conventional white light emitting diode LED chip.

【図4】本発明の白色発光ダイオ−ドと従来タイプの白
色発光ダイオ−ドの発光寿命特性を示す図である。
FIG. 4 is a diagram showing emission lifetime characteristics of a white light emitting diode of the present invention and a conventional white light emitting diode.

【図5】従来例とした示した白色発光ダイオ−ドの断面
図である。
FIG. 5 is a sectional view of a white light emitting diode shown as a conventional example.

【図6】従来例として示した白色発光ダイオ−ドの発光
スペクトルを示す図である。
FIG. 6 is a diagram showing an emission spectrum of a white light emitting diode shown as a conventional example.

【符号の説明】[Explanation of symbols]

21 基板 22 n型半導体層 23 P型半導体層 24 P型オ−ミック電極 25 絶縁膜 26 n型オ−ミック電極 27 マウント用ボンディングパッド 28 共晶電極 32 波長変換素子 34 モ−ルド樹脂 DESCRIPTION OF SYMBOLS 21 Substrate 22 n-type semiconductor layer 23 P-type semiconductor layer 24 P-type ohmic electrode 25 Insulating film 26 n-type ohmic electrode 27 Mounting bonding pad 28 Eutectic electrode 32 Wavelength conversion element 34 Mold resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 弘之 東京都目黒区中目黒2−9−13 スタンレ −電気株式会社内 (72)発明者 森川 謙一 東京都目黒区中目黒2−9−13 スタンレ −電気株式会社内 Fターム(参考) 5F041 AA04 AA14 AA41 AA44 CA02 CA40 CA41 CA46 CA65 CA74 CA76 CA82 CA83 CA88 CB15 DA07 DA20 DA44 EE25 FF01 FF11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Sato 2-9-13 Stanley, Nakameguro-ku, Meguro-ku, Tokyo Inside Electric Co., Ltd. (72) Kenichi Morikawa 2-9-13 Stanley, Nakameguro, Meguro-ku, Tokyo, Japan −F term (reference) in Electric Co., Ltd. 5F041 AA04 AA14 AA41 AA44 CA02 CA40 CA41 CA46 CA65 CA74 CA76 CA82 CA83 CA88 CB15 DA07 DA20 DA44 EE25 FF01 FF11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 P型半導体とn型半導体とによって紫外
線光を発光する励起素子と、この励起素子の発光を蛍光
体によって白色波長光に変換する波長変換素子と、これ
ら励起素子及び波長変換素子を覆う透明なモ−ルド樹脂
とからなる白色発光ダイオ−ドにおいて、 P型半導体とn型半導体の接合部分に平行する励起素子
の一面側に波長変換素子を配設すると共に、紫外線波長
とその近傍の波長において透明な絶縁膜を上記接合部分
が位置する励起素子側面に設け、 さらに、紫外線波長とその近傍の波長において高反射率
のP型オ−ミック電極とn型オ−ミック電極とで励起素
子の一面以外の他面を覆うようにこれらオ−ミック電極
を設けて構成したことを特徴とする白色発光ダイオ−
ド。
1. An excitation element that emits ultraviolet light by a P-type semiconductor and an n-type semiconductor, a wavelength conversion element that converts light emitted from the excitation element to white wavelength light by a phosphor, and the excitation element and the wavelength conversion element. In a white light emitting diode made of a transparent mold resin, a wavelength conversion element is provided on one surface of an excitation element parallel to a junction between a P-type semiconductor and an n-type semiconductor, and an ultraviolet wavelength and its wavelength are arranged. A transparent insulating film is provided on the side surface of the excitation element where the junction is located at a wavelength in the vicinity, and a P-type ohmic electrode and an n-type ohmic electrode having high reflectivity at the ultraviolet wavelength and at wavelengths in the vicinity thereof. A white light emitting diode characterized in that these ohmic electrodes are provided so as to cover other surfaces than one surface of the excitation element.
De.
【請求項2】 請求項1に記載した白色発光ダイオ−ド
において、 一面側を広く、その対向側を狭くするように励起素子側
面を90°以下の角度で傾斜形成させたことを特徴とす
る白色発光ダイオ−ド。
2. A white light emitting diode according to claim 1, wherein the side surface of the excitation element is inclined at an angle of 90 ° or less so that one side is wide and the opposite side is narrow. White light emitting diode.
JP2000223513A 2000-07-25 2000-07-25 White light emitting diode Pending JP2002043633A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000223513A JP2002043633A (en) 2000-07-25 2000-07-25 White light emitting diode
US09/898,500 US6635903B2 (en) 2000-07-25 2001-07-02 White light emission diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223513A JP2002043633A (en) 2000-07-25 2000-07-25 White light emitting diode

Publications (1)

Publication Number Publication Date
JP2002043633A true JP2002043633A (en) 2002-02-08

Family

ID=18717592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223513A Pending JP2002043633A (en) 2000-07-25 2000-07-25 White light emitting diode

Country Status (2)

Country Link
US (1) US6635903B2 (en)
JP (1) JP2002043633A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031858A (en) * 2001-05-15 2003-01-31 Lumileds Lighting Us Llc Semiconductor led flip chip with filler having low refractive index
JP2004071644A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2004193393A (en) * 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd Compound light emitting element
JP2004228134A (en) * 2003-01-20 2004-08-12 Sharp Corp Oxide semiconductor light emitting element and its manufacturing method
JP2005039197A (en) * 2003-05-27 2005-02-10 Matsushita Electric Works Ltd Semiconductor light emitting element and its manufacturing method
JP2005159035A (en) * 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd Light emitting diode and light emitting device
JP2006191068A (en) * 2004-12-31 2006-07-20 Lg Electron Inc High output light emitting diode and its manufacturing method
JP2006303429A (en) * 2005-04-15 2006-11-02 Samsung Electro Mech Co Ltd Manufacturing method for nitride semiconductor light-emitting element of vertical structure
JP2007227980A (en) * 2007-06-08 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and method of manufacturing light emitting element
JP2008544540A (en) * 2005-06-22 2008-12-04 ソウル オプト デバイス カンパニー リミテッド Light emitting device and manufacturing method thereof
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
JP2011129861A (en) * 2009-11-19 2011-06-30 Toshiba Corp Semiconductor light emitting device and method of manufacturing the same
JP2015188109A (en) * 2015-06-22 2015-10-29 シチズンホールディングス株式会社 Semiconductor light emitting element
JP2017513234A (en) * 2014-04-18 2017-05-25 ポステク アカデミー−インダストリー ファウンデーション Nitrogen nitride semiconductor light emitting device and manufacturing method thereof
US11329204B2 (en) 2018-12-24 2022-05-10 Samsung Electronics Co., Ltd. Micro light emitting diode and manufacturing method of micro light emitting diode

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481937B1 (en) * 2002-07-27 2005-04-13 동국내화 주식회사 UV-detecting element
EP1553640A4 (en) 2002-08-01 2006-09-06 Nichia Corp Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same
US7663300B2 (en) * 2002-08-16 2010-02-16 Universal Display Corporation Organic light emitting devices for illumination
US7210977B2 (en) 2003-01-27 2007-05-01 3M Innovative Properties Comapny Phosphor based light source component and method of making
US20040145312A1 (en) * 2003-01-27 2004-07-29 3M Innovative Properties Company Phosphor based light source having a flexible short pass reflector
US7245072B2 (en) * 2003-01-27 2007-07-17 3M Innovative Properties Company Phosphor based light sources having a polymeric long pass reflector
KR20050103200A (en) * 2003-01-27 2005-10-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Phosphor based light source component and method of making
US7312560B2 (en) 2003-01-27 2007-12-25 3M Innovative Properties Phosphor based light sources having a non-planar long pass reflector and method of making
US20040159900A1 (en) * 2003-01-27 2004-08-19 3M Innovative Properties Company Phosphor based light sources having front illumination
US7091653B2 (en) 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a non-planar long pass reflector
US7118438B2 (en) * 2003-01-27 2006-10-10 3M Innovative Properties Company Methods of making phosphor based light sources having an interference reflector
US7091661B2 (en) * 2003-01-27 2006-08-15 3M Innovative Properties Company Phosphor based light sources having a reflective polarizer
US7256057B2 (en) * 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
US7081667B2 (en) * 2004-09-24 2006-07-25 Gelcore, Llc Power LED package
US7195944B2 (en) * 2005-01-11 2007-03-27 Semileds Corporation Systems and methods for producing white-light emitting diodes
WO2007091611A1 (en) * 2006-02-09 2007-08-16 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
JP4638837B2 (en) * 2006-05-30 2011-02-23 日本電気硝子株式会社 Optical component and light emitting device
US8529790B2 (en) * 2007-12-28 2013-09-10 Council Of Scientific & Industrial Research White light emitting organogel and process thereof
DE102008017356A1 (en) * 2008-04-04 2009-10-15 Airbus Deutschland Gmbh Luminescent coating for inside cabins
JP5502360B2 (en) * 2009-04-10 2014-05-28 スタンレー電気株式会社 Zinc oxide based semiconductor device and method for manufacturing the same
JP5498723B2 (en) * 2009-04-10 2014-05-21 スタンレー電気株式会社 Zinc oxide based semiconductor device and method for manufacturing the same
JP5356312B2 (en) * 2010-05-24 2013-12-04 株式会社東芝 Semiconductor light emitting device
JP6118825B2 (en) * 2012-02-03 2017-04-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Novel material and method for dispersing nanoparticles with high quantum yield and stability in matrix

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150298A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting element and light-receiving element
JPH11330559A (en) * 1998-05-15 1999-11-30 Sanyo Electric Co Ltd Light emitting element
JP2000022222A (en) * 1998-07-07 2000-01-21 Stanley Electric Co Ltd Light emitting diode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903017A (en) * 1996-02-26 1999-05-11 Kabushiki Kaisha Toshiba Compound semiconductor device formed of nitrogen-containing gallium compound such as GaN, AlGaN or InGaN
US6229160B1 (en) * 1997-06-03 2001-05-08 Lumileds Lighting, U.S., Llc Light extraction from a semiconductor light-emitting device via chip shaping
US6340824B1 (en) * 1997-09-01 2002-01-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a fluorescent material
JP3785820B2 (en) * 1998-08-03 2006-06-14 豊田合成株式会社 Light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150298A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting element and light-receiving element
JPH11330559A (en) * 1998-05-15 1999-11-30 Sanyo Electric Co Ltd Light emitting element
JP2000022222A (en) * 1998-07-07 2000-01-21 Stanley Electric Co Ltd Light emitting diode

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031858A (en) * 2001-05-15 2003-01-31 Lumileds Lighting Us Llc Semiconductor led flip chip with filler having low refractive index
JP2004071644A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
JP2004193393A (en) * 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd Compound light emitting element
JP2004228134A (en) * 2003-01-20 2004-08-12 Sharp Corp Oxide semiconductor light emitting element and its manufacturing method
JP2005039197A (en) * 2003-05-27 2005-02-10 Matsushita Electric Works Ltd Semiconductor light emitting element and its manufacturing method
JP2005159035A (en) * 2003-11-26 2005-06-16 Sumitomo Electric Ind Ltd Light emitting diode and light emitting device
US7939841B2 (en) 2004-12-31 2011-05-10 Lg Electronics Inc. High output light emitting diode and method for fabricating the same
JP2006191068A (en) * 2004-12-31 2006-07-20 Lg Electron Inc High output light emitting diode and its manufacturing method
JP4721166B2 (en) * 2004-12-31 2011-07-13 エルジー エレクトロニクス インコーポレイティド High power light emitting diode and method of manufacturing the same
JP2006303429A (en) * 2005-04-15 2006-11-02 Samsung Electro Mech Co Ltd Manufacturing method for nitride semiconductor light-emitting element of vertical structure
JP4698411B2 (en) * 2005-04-15 2011-06-08 サムソン エルイーディー カンパニーリミテッド. Method of manufacturing vertical structure nitride semiconductor light emitting device
US8021901B2 (en) 2005-04-15 2011-09-20 Samsung Led Co., Ltd. Method of fabricating vertical structure nitride semiconductor light emitting device
US9209223B2 (en) 2005-06-22 2015-12-08 Seoul Viosys Co., Ltd. Light emitting device and method of manufacturing the same
US9627435B2 (en) 2005-06-22 2017-04-18 Seoul Viosys Co., Ltd. Light emitting device
JP2008544540A (en) * 2005-06-22 2008-12-04 ソウル オプト デバイス カンパニー リミテッド Light emitting device and manufacturing method thereof
US8476648B2 (en) 2005-06-22 2013-07-02 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
US8704246B2 (en) 2005-06-22 2014-04-22 Seoul Opto Device Co., Ltd. Light emitting device and method of manufacturing the same
JP2014112713A (en) * 2005-06-22 2014-06-19 Seoul Viosys Co Ltd Light-emitting device and manufacturing method therefor
US10340309B2 (en) 2005-06-22 2019-07-02 Seoul Viosys Co., Ltd. Light emitting device
US8895957B2 (en) 2005-06-22 2014-11-25 Seoul Viosys Co., Ltd Light emitting device and method of manufacturing the same
US9929208B2 (en) 2005-06-22 2018-03-27 Seoul Vlosys Co., Ltd. Light emitting device
JP2007227980A (en) * 2007-06-08 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor light emitting element and method of manufacturing light emitting element
KR101457204B1 (en) * 2008-02-01 2014-11-03 서울바이오시스 주식회사 Light emitting device and method for manufacturing thereof
JP2009188370A (en) * 2008-02-01 2009-08-20 Seoul Opto Devices Co Ltd Light emitting diode and method for manufacturing the same
JP2011129861A (en) * 2009-11-19 2011-06-30 Toshiba Corp Semiconductor light emitting device and method of manufacturing the same
JP2017513234A (en) * 2014-04-18 2017-05-25 ポステク アカデミー−インダストリー ファウンデーション Nitrogen nitride semiconductor light emitting device and manufacturing method thereof
JP2015188109A (en) * 2015-06-22 2015-10-29 シチズンホールディングス株式会社 Semiconductor light emitting element
US11329204B2 (en) 2018-12-24 2022-05-10 Samsung Electronics Co., Ltd. Micro light emitting diode and manufacturing method of micro light emitting diode

Also Published As

Publication number Publication date
US20020017651A1 (en) 2002-02-14
US6635903B2 (en) 2003-10-21

Similar Documents

Publication Publication Date Title
JP2002043633A (en) White light emitting diode
US10825962B2 (en) Thin film light emitting diode
US6744196B1 (en) Thin film LED
US5557115A (en) Light emitting semiconductor device with sub-mount
JP2009049266A (en) Semiconductor light-emitting device and semiconductor light-emitting apparatus
JPH1093146A (en) Light-emitting diode
KR102145208B1 (en) Manufacturing method of light emitting device package
JP2009224538A (en) Semiconductor light emitting device
JP4849866B2 (en) Lighting device
KR20230118056A (en) Led lighting apparatus having improved color lendering and led filament
JP2002246648A (en) Wavelength conversion type semiconductor device
JP2002158378A (en) Light emitting diode
JP2002198561A (en) Semiconductor light emitting device
KR20040020240A (en) Light Emitting Diode Lamp and method for fabricating thereof
JP5886899B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JP5563031B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JPH10107384A (en) Nitride semiconductor light-emitting element
JP2012049385A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display device and method of manufacturing semiconductor light-emitting element