JP2002042885A - Mounting type lithium battery - Google Patents

Mounting type lithium battery

Info

Publication number
JP2002042885A
JP2002042885A JP2000219592A JP2000219592A JP2002042885A JP 2002042885 A JP2002042885 A JP 2002042885A JP 2000219592 A JP2000219592 A JP 2000219592A JP 2000219592 A JP2000219592 A JP 2000219592A JP 2002042885 A JP2002042885 A JP 2002042885A
Authority
JP
Japan
Prior art keywords
lithium battery
current collector
negative electrode
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000219592A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000219592A priority Critical patent/JP2002042885A/en
Publication of JP2002042885A publication Critical patent/JP2002042885A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide battery structure allowing the direct jointing of a battery and an IC chip while making the battery serve as a reinforcing plate without the thickness increase and cost increase of a semiconductor device. SOLUTION: In this lithium battery, a power generating element with an electrolyte disposed between a positive electrode and a negative electrode is provided in one layer or in multiple layers in series inside an outer body formed of metallic foil. Current collectors formed of metallic foil are bonded to the outside of the positive electrode and negative electrode at both ends by a conductive adhesive. Further, the outer body formed by folding one sheet of metallic foil in two is provided with an aperture part for exposing a part of one current collector, and the current collector facing the aperture part is bonded to the outer body by insulating resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は実装型リチウム電池
に関し、特に発電要素を金属箔製外装体に収容し、正負
極端子を同一面から取出せる構造とした実装型リチウム
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mountable lithium battery, and more particularly to a mountable lithium battery having a structure in which a power generation element is housed in a metal foil outer package and positive and negative terminals are taken out from the same surface.

【0002】[0002]

【従来の技術】近年、ICカードやメモリーカードに代
表される半導体装置の電源として、エネルギー密度や厚
みの観点からコイン型や偏平型と称される薄形のリチウ
ム電池が開発されている。
2. Description of the Related Art In recent years, as a power source for a semiconductor device represented by an IC card or a memory card, a thin lithium battery called a coin type or a flat type has been developed in view of energy density and thickness.

【0003】しかしながら、従来の薄形リチウム電池に
おいては、外装体が正極と負極に分かれており、互いに
対向した面から、双方の電極を取出す構成であり、その
ため、半導体装置に実装した場合、配線が複雑となり、
その結果、半導体装置の厚みが増加し、さらにコストが
アップしていた。
However, in a conventional thin lithium battery, an outer package is divided into a positive electrode and a negative electrode, and both electrodes are taken out from surfaces facing each other. Becomes complicated,
As a result, the thickness of the semiconductor device has increased and the cost has further increased.

【0004】上記のような半導体装置によれば、ICチ
ップを組み込んだ構成であり、電池はこのICチップの
主電源あるいはメモリーバックアップ電源として使用さ
れる。したがって、これら電池とICチップとを直接接
合することができれば、配線が簡略化でき、半導体装置
の厚みの増加やコストアップを抑えることができる。こ
の場合、電池には同一面から両端子を取出せる電池構造
がよい。
According to the above-described semiconductor device, an IC chip is incorporated, and a battery is used as a main power supply or a memory backup power supply for the IC chip. Therefore, if these batteries and the IC chip can be directly joined, wiring can be simplified, and increase in thickness and cost of the semiconductor device can be suppressed. In this case, the battery preferably has a battery structure that allows both terminals to be taken out from the same surface.

【0005】特開平1−140553号において、同一
面から正負極両端子が取出す電池構造が提案されてい
る。
Japanese Patent Application Laid-Open No. 1-140553 has proposed a battery structure in which both positive and negative terminals are taken out from the same surface.

【0006】図2に同公報にて提示された封止性の高い
密閉構造を有する偏平型電源素子であり、同一面から正
負極両端子を取出させる電池構造の概略図である。
FIG. 2 is a schematic view of a flat type power supply element having a hermetically sealed structure disclosed in the same publication and having both positive and negative terminals taken out from the same surface.

【0007】偏平型電源素子のケースとして、金属箔か
らなる第1のケース半体1および第2のケース半体2を
備え、ケースの周縁部3において溶接されることで封止
される。第1のケース半体1には開口9が形成され、こ
の開口9に臨むように、金属箔からなる電極板7が配置
されている。さらに電極板7と第1のケース半体1は樹
脂からなる絶縁層8によって互いに絶縁され、かつ封止
された状態となっている。このようにして密閉された収
納部には第1の電極4と第2の電極5との間にセパレー
タ6を配設してなる発電要素が収納されている。
[0007] As a case of a flat type power supply element, a first case half 1 and a second case half 2 made of metal foil are provided, and the case is sealed by welding at a peripheral portion 3 of the case. An opening 9 is formed in the first case half 1, and an electrode plate 7 made of a metal foil is arranged so as to face the opening 9. Further, the electrode plate 7 and the first case half 1 are insulated from each other by an insulating layer 8 made of resin and are in a sealed state. A power generation element in which the separator 6 is disposed between the first electrode 4 and the second electrode 5 is stored in the storage section sealed in this manner.

【0008】以上のとおり、第1のケース半体1に開口
9を設けることで、同一面から両端子を取出し、これに
よってICチップと直接接合することができる。
As described above, by providing the opening 9 in the first case half 1, both terminals can be taken out from the same surface, and thereby can be directly joined to the IC chip.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記構
成の偏平型電源素子(実装型リチウム電池)を半導体装
置に実装し、耐久性試験をおこなうと、その薄型構造に
起因し電池が曲がりやすくなっており、そして、ICチ
ップに対し直に力がかかり、ICチップが破損するとい
う課題がある。
However, when the flat power supply element (mounting type lithium battery) having the above configuration is mounted on a semiconductor device and subjected to a durability test, the battery is easily bent due to its thin structure. There is a problem that a force is directly applied to the IC chip and the IC chip is damaged.

【0010】かかる課題を解消するために、ICチップ
を保護すべくICチップと重ねるように補強板が設け、
ICチップに直に力がかかることを防ぐ技術が提案され
ている。
In order to solve this problem, a reinforcing plate is provided so as to overlap the IC chip to protect the IC chip,
Techniques have been proposed for preventing direct application of force to an IC chip.

【0011】図3は、このような補強板を用いて、偏平
型電源素子(実装型リチウム電池)を半導体装置に実装
した断面構成を示す。
FIG. 3 shows a cross-sectional configuration in which a flat type power supply element (mounted lithium battery) is mounted on a semiconductor device using such a reinforcing plate.

【0012】この半導体装置30において、31は実装
型リチウム電池であり、実装型リチウム電池31の上に
ICチップ32を設け、実装型リチウム電池31の下側
に補強板33を配している。
In the semiconductor device 30, reference numeral 31 denotes a mountable lithium battery. An IC chip 32 is provided on the mountable lithium battery 31, and a reinforcing plate 33 is provided below the mountable lithium battery 31.

【0013】しかしながら、上記構成の半導体装置30
によれば、補強板33を用いるにしても、半導体装置3
0の所定の厚み(例えば、ICカードなら0.76mm)に収ま
らなくなり、現実には支障をきたしている。
However, the semiconductor device 30 having the above configuration
According to the above, even when the reinforcing plate 33 is used, the semiconductor device 3
It cannot fit within a predetermined thickness of 0 (for example, 0.76 mm for an IC card), which is actually a hindrance.

【0014】ちなみに、現状の半導体装置においては、
実装型リチウム電池31およびICチップ32との組合
せと、と補強板33とは別々に離して収納し、ICチッ
プ32と実装型リチウム電池31とを配線で接続する構
造である。
Incidentally, in the current semiconductor device,
In this structure, the combination of the mountable lithium battery 31 and the IC chip 32 and the reinforcing plate 33 are separately housed separately, and the IC chip 32 and the mountable lithium battery 31 are connected by wiring.

【0015】以上のとおり、補強板33を用いること
で、半導体装置30の厚みが大幅に増加し、近年の薄型
および小型化の市場ニーズにあっていない。しかも、部
品点数が増加することで、コストがアップしていた。
As described above, the use of the reinforcing plate 33 significantly increases the thickness of the semiconductor device 30 and does not meet the market needs for a thinner and smaller device in recent years. In addition, the cost has increased due to the increase in the number of parts.

【0016】本発明者は上記事情に鑑みて鋭意研究を重
ねた結果、上記のような補強板に代えて、正極および負
極のそれぞれの外側に金属箔からなる集電体を導電性接
着剤により接着させるという構成と、外装体を二つ折り
に成した構成とを組合せることで、半導体装置の厚みを
小さくしながらも、その曲げを防止できることを見出し
た。
The inventor of the present invention has conducted intensive studies in view of the above circumstances. As a result, instead of the reinforcing plate as described above, a current collector made of a metal foil was provided outside each of the positive electrode and the negative electrode with a conductive adhesive. It has been found that, by combining the configuration of bonding and the configuration of folding the exterior body in two, the bending of the semiconductor device can be prevented while the thickness of the semiconductor device is reduced.

【0017】したがって本発明は上記知見に鑑みて完成
されたものであり、その目的は半導体装置の厚みを減少
させながら、その信頼性を高めた低コスト化の実装型リ
チウム電池を提供することにある。
Accordingly, the present invention has been completed in view of the above findings, and an object of the present invention is to provide a low-cost mounted lithium battery in which the thickness of a semiconductor device is reduced and the reliability thereof is improved. is there.

【0018】[0018]

【課題を解決するための手段】本発明の実装型リチウム
電池は、金属箔からなる外装体の内側に正極と負極との
間に電解質を配設してなる発電要素を配設した電池構造
であって、正極および負極のそれぞれの外側に金属箔か
らなる集電体が導電性接着剤により接着され、さらに集
電体を露出すべく金属箔に開口部が設けられた前記外装
体を二つ折りに成し、一方の外装部分を絶縁性樹脂を介
して当該集電体上に接着せしめたことを特徴とする。
The mounting type lithium battery of the present invention has a battery structure in which a power generation element having an electrolyte disposed between a positive electrode and a negative electrode is provided inside an outer package made of metal foil. Then, a current collector made of a metal foil is bonded to the outside of each of the positive electrode and the negative electrode with a conductive adhesive, and furthermore, the outer package body provided with an opening in the metal foil to expose the current collector is folded in two. Wherein one of the exterior parts is bonded to the current collector via an insulating resin.

【0019】[0019]

【発明の実施の形態】以下、本発明の実装型リチウム電
池の実施形態を図面に基づいて説明する。図1は本発明
の実装型リチウム電池の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a mounted lithium battery according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a mounted lithium battery according to the present invention.

【0020】10は外装体、11は折り返し部、12は
接合部、13は正極、14は負極、15は電解質、16
は正極集電体、17は負極集電体、18は導電性接着
剤、19は絶縁性樹脂、20は開口部である。ここで、
正極13と負極14と電解質15を合せて発電要素と呼
ぶ場合がある。
10 is an exterior body, 11 is a folded portion, 12 is a joint, 13 is a positive electrode, 14 is a negative electrode, 15 is an electrolyte, 16
Is a positive electrode current collector, 17 is a negative electrode current collector, 18 is a conductive adhesive, 19 is an insulating resin, and 20 is an opening. here,
The positive electrode 13, the negative electrode 14, and the electrolyte 15 may be collectively referred to as a power generating element.

【0021】図1に示した本発明に係る実装型リチウム
電池は、先ずシート状に形成された正極13と同じくシ
ート状に形成された負極14にそれぞれ正極集電体16
と負極集電体17とを導電性接着剤18a、18bを用
いて接着した。
In the mounting type lithium battery according to the present invention shown in FIG. 1, a positive electrode 13 formed in a sheet shape and a negative electrode 14 formed in the same sheet
And the negative electrode current collector 17 were bonded using conductive adhesives 18a and 18b.

【0022】次にゲル電解質溶液を含浸させた不織布を
前記正極13と負極14で挟みゲル電解質溶液を固化す
ることで正極13と負極14との間に電解質15を配設
した発電要素を作製した。
Next, a non-woven fabric impregnated with a gel electrolyte solution was sandwiched between the positive electrode 13 and the negative electrode 14, and the gel electrolyte solution was solidified to produce a power generating element having an electrolyte 15 disposed between the positive electrode 13 and the negative electrode 14. .

【0023】この集電体を接着した発電要素を外装体1
0の負極側に導電性接着剤18cを用いて接着し、さら
に発電要素との対峙部を凹状に加工した開口部20を有
する正極側の外装体10を折返し部11で二つ折りにし
て、前記一方の外装部分を発電要素に被せ、絶縁性樹脂
19で正極集電体16と接着した後、三辺の接合部12
を順次レーザー溶接することで作製される。
The power generation element to which the current collector is adhered is used as an exterior body 1
The positive electrode side exterior body 10 having an opening 20 in which a portion facing the power generation element is processed into a concave shape is adhered to the negative electrode side of the negative electrode 0 using a conductive adhesive 18c, and is folded in two at the folded portion 11, After covering one exterior part on the power generation element and bonding it to the positive electrode current collector 16 with the insulating resin 19, the three-sided joint 12
Are sequentially laser-welded.

【0024】外装体10に用いる金属箔は、特に限定さ
れるものではないが、ステンレス、アルミニウム、ニッ
ケル、銅、コバール、鉄、チタンあるいはアルミニウム
合金のいずれかであれば、工業的に生産されており、入
手のし易さやコストの面から有利である。また、このよ
うな外装体10については、製造方法や純度には特に限
定されない。
The metal foil used for the exterior body 10 is not particularly limited, but may be any of stainless steel, aluminum, nickel, copper, kovar, iron, titanium, and aluminum alloy, and may be industrially produced. This is advantageous in terms of availability and cost. Further, the manufacturing method and purity of such an exterior body 10 are not particularly limited.

【0025】かかる金属箔の厚みは、電池のエネルギー
密度の観点から薄いものを用いるのが望ましいが、ピン
ホールの有無や外装材としての強度の面から適当な厚み
が選択されるべきである。例えば、アルミニウムの場合
30μm以上とすることが望ましい。
It is desirable to use a thin metal foil from the viewpoint of the energy density of the battery. However, an appropriate thickness should be selected from the viewpoint of the presence or absence of pinholes and the strength of the exterior material. For example, in the case of aluminum, the thickness is desirably 30 μm or more.

【0026】外装体10の集電体との対峙部の一方もし
くは両方を凹状に成形してもよい。前記対峙部を凹状に
加工することで接合部12で外装体10に隙間が空くこ
とがなく、溶接不良や樹脂による接着不良を低減するこ
とができる。
One or both of the facing portions of the exterior body 10 facing the current collector may be formed in a concave shape. By forming the facing portion into a concave shape, a gap is not formed in the exterior body 10 at the joint portion 12, so that welding failure and bonding failure due to resin can be reduced.

【0027】前記対峙部を電池組立て前に予め凹状に加
工することで、溶接の場合であれば接合部12で外装体
10同士の間に隙間が空くことがなくなり、溶接不良を
低減することができる。また、樹脂接着の場合であれ
ば、予め樹脂の厚みを考慮した隙間を形成できることか
ら接着時に樹脂が必要以上に潰れて流れたり、外装が無
理に歪み接合部の樹脂に剥がれ方向の応力が掛かった
り、接着不良を引き起こしたりすることを少なくでき
る。
By machining the facing portion into a concave shape before assembling the battery, in the case of welding, no gap is formed between the exterior bodies 10 at the joint portion 12 in the case of welding, so that poor welding can be reduced. it can. In addition, in the case of resin bonding, since a gap can be formed in consideration of the thickness of the resin in advance, the resin may be crushed more than necessary at the time of bonding and may flow, or the exterior may be forcibly strained, and the resin in the peeling direction may be stressed in the peeling direction. And the occurrence of poor adhesion can be reduced.

【0028】この凹状の形成方法には既存の従来技術を
用いることができる。例えば、成形金型によるプレス加
工が一般的である。形状は、発電要素収容部から見て凹
状であればよく、深さや寸法は特に限定されないが、集
電体を含めた発電要素の厚みや上述の封止方法の違いに
よる外装体10同士に必要な隙間を考慮して発電要素と
外装体が面で接触できる寸法、形状にするとよい。
An existing conventional technique can be used for this concave forming method. For example, press working with a molding die is common. The shape may be concave as viewed from the power generation element housing portion, and the depth and dimensions are not particularly limited, but are necessary for the exterior bodies 10 due to differences in the thickness of the power generation element including the current collector and the above-described sealing method. The size and shape may be such that the power generating element and the exterior body can come into contact with each other in a plane, taking into account a sufficient gap.

【0029】また、成形方法によっては成形する際に図
1に示されるように外装体10の凹状の発電要素収納部
を台形としたり、外装体10を加工した際の屈曲部や集
電体の四隅が隣接する部分において曲面となしてもよ
く、成形方法に適した任意の設計とすればよい。
In addition, depending on the molding method, the concave power generation element housing portion of the exterior body 10 may be formed into a trapezoidal shape as shown in FIG. 1 during molding, or a bent portion or a current collector may be formed when the exterior body 10 is processed. The four corners may be curved at adjacent portions, and any design suitable for the molding method may be used.

【0030】外装体10の開口部20はチップとの接続
に利用されるもので、チップから出ている正負極端子の
間隔や、大きさ、また接続方法に応じた任意の大きさ、
面積にすればよい。
The opening 20 of the exterior body 10 is used for connection with the chip, and has an arbitrary size according to the interval and size of the positive and negative terminals coming out of the chip, and the connection method.
What is necessary is just to make an area.

【0031】ただし、水分は開口部20の樹脂断面を通
って実装型リチウム電池内へ侵入することから、水分の
侵入を抑制するためにできるだけ開口部20の樹脂断面
積は小さくすることが望ましい。そのため、開口部20
の形状は樹脂断面積を最も小さくできる円形が好適とい
える。しかしながら、開口部20の形状は特に限定され
るものではなく、他の加工条件や電池デザインなどを考
慮した任意の形状であっても差し支えない。
However, since water penetrates into the mounted lithium battery through the resin cross section of the opening 20, it is desirable that the resin cross section of the opening 20 be as small as possible to suppress the penetration of water. Therefore, the opening 20
It can be said that a preferable shape is a circle which can minimize the resin cross-sectional area. However, the shape of the opening 20 is not particularly limited, and may be an arbitrary shape in consideration of other processing conditions, battery design, and the like.

【0032】開口部20の形成方法には既存の従来技術
を用いることができる。例えば、成形金型による打抜き
やレーザーなどによる切抜きである。
As a method of forming the opening 20, an existing conventional technique can be used. For example, punching using a molding die or cutting using a laser is used.

【0033】発電要素の構成部材である正極13、負極
14、電解質15の構成部材、つまり活物質や導電剤、
結着材、あるいは電解質などの構成材料や組成は限定さ
れるものではなく、従来のリチウム電池で使用可能なす
べての材料とその組み合わせが使用できる。また、発電
要素の作製方法も従来のリチウム電池で行われている手
法が全て適用できるほか、活物質を焼き固めた新たな焼
結体電極も適用可能である。
The constituent members of the positive electrode 13, the negative electrode 14, and the electrolyte 15, which are constituent members of the power generating element, that is, an active material, a conductive agent,
The constituent materials and compositions such as the binder and the electrolyte are not limited, and all materials usable in conventional lithium batteries and combinations thereof can be used. In addition, all the methods used in the conventional lithium battery can be applied to the method of manufacturing the power generation element, and a new sintered body electrode obtained by sintering the active material is also applicable.

【0034】また、正極集電体16ならびに負極集電体
17には外装体10と同様の金属箔を用いることができ
る。金属箔の厚みは、電池のエネルギー密度の観点から
薄いものを用いるのが望ましいが、電池に補強板として
の機能を付与する観点から材質ごとに適当な厚みが選択
される。例えば、アルミニウムの場合20μm以上とす
ることが望ましい。なお、集電体の材質の選定はそれぞ
れの電極の動作電圧範囲などを考慮して選択されればよ
く、必ずしも同じ材質、厚みである必要はない。
The positive electrode current collector 16 and the negative electrode current collector 17 can be made of the same metal foil as that of the outer package 10. It is desirable to use a thin metal foil from the viewpoint of the energy density of the battery, but an appropriate thickness is selected for each material from the viewpoint of providing the battery with a function as a reinforcing plate. For example, in the case of aluminum, the thickness is preferably 20 μm or more. Note that the material of the current collector may be selected in consideration of the operating voltage range of each electrode and the like, and does not necessarily have to be the same material and thickness.

【0035】発電要素を直列に多層積層して用いる場合
には各発電要素間に金属箔を配置し、さらに発電要素と
金属箔の固定と積層体の強度向上を目的として金属箔と
発電要素の電極とを導電性接着剤で接着した。
When the power generating elements are used in a multi-layer stack in series, a metal foil is arranged between the power generating elements, and the metal foil and the power generating element are fixed for the purpose of fixing the power generating elements and the metal foil and improving the strength of the laminate. The electrodes were bonded with a conductive adhesive.

【0036】正極13と正極集電体16あるいは負極1
4と負極集電体17などの接着に用いられる導電性接着
剤18には、金、銀、アルミニウムなどの金属粉やカー
ボンを分散させた市販の導電性接着剤を用いることがで
きる。特に、接着形態が面接着のため溶剤の揮発が難し
いので(株)スリーボンド社製3315Eのように塗
布、乾燥後、加熱加圧接着することにより接着できるタ
イプが望ましい。
The positive electrode 13 and the positive electrode current collector 16 or the negative electrode 1
As the conductive adhesive 18 used to bond the negative electrode 4 to the negative electrode current collector 17, a commercially available conductive adhesive in which metal powder such as gold, silver, and aluminum or carbon is dispersed can be used. In particular, since the solvent is difficult to volatilize due to surface bonding, it is preferable to use a type such as 3315E manufactured by Three Bond Co., Ltd., which can be applied by applying, drying and then applying heat and pressure.

【0037】正極集電体16と外装体10を接着する絶
縁性樹脂19には、変性ポリエチレンや変性ポリプロピ
レンからなる絶縁性熱融着樹脂を用いるのが好適であ
る。これら熱融着性樹脂であれば接着時に溶剤が揮発し
実装型リチウム電池内に溶剤が残留することもなく、ま
た、外部からの短時間の加圧加熱で接着できることから
生産性にも優れている。
As the insulating resin 19 for bonding the positive electrode current collector 16 and the package 10, it is preferable to use an insulating heat-sealing resin made of modified polyethylene or modified polypropylene. With these heat-fusible resins, the solvent does not volatilize during bonding and the solvent does not remain in the mounted lithium battery, and it is also excellent in productivity because it can be bonded by short-time pressurized heating from the outside. I have.

【0038】発電要素を収容した外装体10の周縁部3
辺(接合部12)の接着には、レーザー溶接や抵抗溶接
などの溶接法、熱融着性樹脂や樹脂製接着剤を用いた接
着法など既存の接合方法を用いることができる。接合部
12については、折返し部11で正極側と負極側の外装
体10の導通が確保されているため特に導通を確保する
必要はない。
[0038] Peripheral portion 3 of exterior body 10 accommodating a power generating element
An existing joining method such as a welding method such as laser welding or resistance welding, or an adhesion method using a heat-fusible resin or a resin adhesive can be used for bonding the side (joining portion 12). Regarding the joint portion 12, since conduction between the positive electrode side and the negative electrode side exterior body 10 is ensured at the folded portion 11, it is not particularly necessary to ensure conduction.

【0039】かくして本発明の実装型リチウム電池にお
いては、正極集電体16ならびに負極集電体17を導電
性接着剤18によって接着し、その上で、さらに外装体
10を二つ折りに成し、一方の外装部分を絶縁性樹脂1
9を介して正極集電体16上に接着させたことで、半導
体装置に搭載しても、従来のように補強板を使用しない
ことから、その厚みを小さくしながらも、その曲げを防
止でき、その結果、信頼性を高めることができた。
Thus, in the mounting type lithium battery of the present invention, the positive electrode current collector 16 and the negative electrode current collector 17 are bonded by the conductive adhesive 18, and then the outer package 10 is folded in two. One exterior part is made of insulating resin 1
By bonding to the positive electrode current collector 16 through the intermediary line 9, the reinforcing plate is not used even when mounted on a semiconductor device as in the related art, so that the bending can be prevented while reducing the thickness. As a result, the reliability was improved.

【0040】なお、本発明は上記の実施形態例に限ら
ず、本発明の要旨を逸脱しない範囲内で種々の変更や改
良等は何等差し支えない。例えば、上述の実施形態例で
は開口部20と対峙する電極を正極13としたが、これ
に代えて、開口部20と対峙する電極を負極14として
もよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements may be made without departing from the spirit of the present invention. For example, although the electrode facing the opening 20 is the positive electrode 13 in the above-described embodiment, the electrode facing the opening 20 may be the negative electrode 14 instead.

【0041】[0041]

【実施例】正極活物質にLiMn2O4を、負極活物質に
Li4Ti5O12を用いることで、本発明に係るリチウム
電池を以下に示すようにして作製した。
EXAMPLE A lithium battery according to the present invention was produced as follows by using LiMn2 O4 for the positive electrode active material and Li4 Ti5 O12 for the negative electrode active material.

【0042】LiMn2O4とLi4Ti5O12のそれぞれ
と低融点ガラス、ここでは10Li2O−25B2O3−
15SiO2−50ZnOとを重量比80:20で乾式
混合し混合粉とした。この混合粉100に対して成形助
剤のポリビニルブチラールが重量比で10となるように
加え、さらにトルエンを加えてスラリーを調製した。
Each of LiMn2O4 and Li4Ti5O12 and a low-melting glass, here 10Li2O-25B2O3-
Dry mixed with 15SiO2-50ZnO at a weight ratio of 80:20 to obtain a mixed powder. To this mixed powder 100, polyvinyl butyral as a molding aid was added in a weight ratio of 10 and toluene was further added to prepare a slurry.

【0043】このスラリーをポリエチレンテレフタレー
ト(PET)フィルム上に塗布した後に乾燥させてシー
ト状に成形したものをロールプレスにより加圧圧縮成形
して、正極は厚さ0.2mm、負極は厚さ0.2mmの
シートとした。それぞれのシートを金型で打ち抜き20
mm角のシート状の正極および負極成形体を得た。
This slurry was applied on a polyethylene terephthalate (PET) film, dried and formed into a sheet. The resulting sheet was press-compressed by a roll press, and the positive electrode was 0.2 mm thick and the negative electrode was 0 mm thick. .2 mm sheet. Each sheet is punched with a die 20
A sheet-shaped positive electrode and negative electrode molded body having a square shape of mm were obtained.

【0044】これら成形体を大気中、550℃で加熱す
ることで18mm角、厚さ0.15mmの正極13と1
8mm角、厚さ0.15mmの負極14を作製した。
By heating these compacts at 550 ° C. in the air, positive electrodes 13 and 1 each having a size of 18 mm square and 0.15 mm thick were heated.
A negative electrode 14 having a size of 8 mm square and a thickness of 0.15 mm was produced.

【0045】ここで、正極13と負極14にそれぞれ厚
さ20μmのチタン箔からなる同寸の集電体を(株)ス
リーボンド社製導電性接着剤3315Eを用いて接着し
た。
Here, current collectors of the same size, each made of a titanium foil having a thickness of 20 μm, were bonded to the positive electrode 13 and the negative electrode 14 using a conductive adhesive 3315E manufactured by Three Bond Co., Ltd.

【0046】電解質15に用いるゲル電解質を次の方法
で作製した。先ず、プロピレンカーボネートにLiBF
4を1mol/lになるように溶解して電解液を調製
し、そこへ電解液:ポリアクリロニトリルが重量比で3
0:70になるようにポリアクリルニトリルを加え、加
熱しながら十分撹拌してゲル電解質溶液とした。このゲ
ル電解質溶液を20mm角に裁断した不織布に含浸さ
せ、正極13と負極14で挟んで冷却させることにより
ゲル電解質を形成し、正極13と負極14との間に電解
質15を介した発電要素を作製した。
A gel electrolyte used for the electrolyte 15 was produced by the following method. First, LiBF was added to propylene carbonate.
4 was dissolved at a concentration of 1 mol / l to prepare an electrolytic solution. The electrolytic solution: polyacrylonitrile was added therein in a weight ratio of 3%.
Polyacrylonitrile was added so that the ratio became 0:70, and the mixture was sufficiently stirred while heating to obtain a gel electrolyte solution. This gel electrolyte solution is impregnated into a non-woven fabric cut into a square of 20 mm, and cooled by sandwiching between a positive electrode 13 and a negative electrode 14 to form a gel electrolyte. Produced.

【0047】外装体10には厚さ50μmのステンレス
箔を縦50mm、横25mmに裁断したものを用いた。
開口部20には、プレスによる打抜きで直径5mmの穴
を開けた。また、開口部20を有する正極集電体16と
対峙する面をプレス成形により凹状に加工した。
As the outer package 10, a 50 μm-thick stainless steel foil cut into a length of 50 mm and a width of 25 mm was used.
A hole having a diameter of 5 mm was formed in the opening 20 by punching with a press. The surface facing the positive electrode current collector 16 having the opening 20 was processed into a concave shape by press molding.

【0048】このように成形した外装体10の負極側平
面と負極集電体17とを導電性接着剤18cを用いて接
着した。次に折返し部11で外装体10を二つ折りにし
発電要素に被せ開口部20を有する正極側平面と正極集
電体16を熱融着性変性ポリプロピレンからなる絶縁性
樹脂で接着した。
The negative electrode-side flat surface of the thus formed exterior body 10 and the negative electrode current collector 17 were bonded to each other using a conductive adhesive 18c. Next, the outer package 10 was folded in two at the folded portion 11 and placed on the power generating element, and the positive electrode side surface having the opening 20 and the positive electrode current collector 16 were bonded with an insulating resin made of heat-fusible modified polypropylene.

【0049】最後に周縁部三辺からなる接合部12をレ
ーザー溶接して図1に示した本発明にかかる実装型リチ
ウム電池を完成した。
Finally, the joint portion 12 consisting of three peripheral edges was laser-welded to complete the mounted lithium battery according to the present invention shown in FIG.

【0050】比較例として図2に示した基本構造を有す
る実装型リチウム電池を次の方法により作製した。
As a comparative example, a mounted lithium battery having the basic structure shown in FIG. 2 was manufactured by the following method.

【0051】実施例と同様にして正極4と負極5を作製
した。この正極4と負極5との間にゲル電解質溶液を含
浸した不織布を挟んで冷却し、ゲル電解質溶液を固化し
て発電要素とした。
A positive electrode 4 and a negative electrode 5 were produced in the same manner as in the example. The non-woven fabric impregnated with the gel electrolyte solution was sandwiched between the positive electrode 4 and the negative electrode 5 and cooled, and the gel electrolyte solution was solidified to form a power generating element.

【0052】第1の半体ケース1ならびに第2の半体ケ
ース2には厚さ50μmのステンレス箔を用い、いずれ
のケースも発電要素収納部を凹状に加工した。第1の半
体ケース1には直径5mmの開口9を実施例と同様にし
て設けた。端子板7には厚さ30μmのステンレス箔を
用いた。第2の半体ケース2と端子板7を実施例1と同
じ導電性接着剤を用いて発電要素に接着した。次に端子
板7の外側の面を同じく実施例で用いた熱融着性変性ポ
リプロピレンからなる絶縁性樹脂8を用いて第1の半体
ケース1に接着した。
The first half case 1 and the second half case 2 were made of stainless steel foil having a thickness of 50 μm, and in each case, the power generation element housing portion was processed into a concave shape. An opening 9 having a diameter of 5 mm was provided in the first half case 1 in the same manner as in the example. A 30 μm thick stainless steel foil was used for the terminal plate 7. The second half case 2 and the terminal plate 7 were bonded to the power generating element using the same conductive adhesive as in Example 1. Next, the outer surface of the terminal plate 7 was adhered to the first half case 1 using the insulating resin 8 made of the heat-fusible modified polypropylene similarly used in the example.

【0053】第1および第2のケース半体1および2の
周縁部3をレーザー溶接して封止して比較例の実装型リ
チウム電池を完成した。 (評価)上記実施例で作製した実装型リチウム電池によ
れば、発電要素の両端に集電体が接着され、さらに一枚
の金属箔からなる外装体10を用いているため、半導体
装置に搭載しても、曲がりにくくなった。
The peripheral portions 3 of the first and second case halves 1 and 2 were sealed by laser welding to complete a mounted lithium battery of a comparative example. (Evaluation) According to the mounted lithium battery manufactured in the above embodiment, the current collectors are adhered to both ends of the power generation element, and the exterior body 10 made of one sheet of metal foil is used. Even so, it became difficult to bend.

【0054】そこで、本発明者は塩化ビニル製のICカ
ードに実装型リチウム電池とICチップを実装し曲げ耐
久試験を行い、チップ破損の有無を確認した。
The inventor of the present invention mounted a lithium battery and an IC chip on an IC card made of vinyl chloride and performed a bending durability test to confirm whether or not the chip was damaged.

【0055】実施例および比較例で作製した実装型リチ
ウム電池を塩化ビニル製のICカード基材縦86mm、
横54mm、厚さ0.76mmに実装し、縦方向から力
を加えICカードをたわませては戻す操作を20回繰り
返し、ICチップの破損の有無を調べた。なお、試験に
は実施例および比較例と同様にして作製した実装型リチ
ウム電池それぞれ5個を用いた。
The mounted lithium batteries produced in Examples and Comparative Examples were made of a vinyl chloride IC card base material having a length of 86 mm.
The mounting was performed 54 mm in width and 0.76 mm in thickness, and the operation of applying a force in the vertical direction to bend and return the IC card was repeated 20 times, and the presence or absence of damage to the IC chip was examined. In the test, five mounted lithium batteries manufactured in the same manner as in the example and the comparative example were used.

【0056】上述の曲げ耐久試験を実施例と比較例それ
ぞれ5個の電池に対して行った結果、比較例の実装型リ
チウム電池では全てICチップの破損が確認された。こ
れに対して、実施例の実装型リチウム電池を用いた場合
にはICチップの破損は確認されなかった。
As a result of performing the above-mentioned bending durability test on each of the five batteries in each of the example and the comparative example, it was confirmed that all the mounted lithium batteries of the comparative example were damaged in the IC chip. On the other hand, when the mounted lithium battery of the example was used, no breakage of the IC chip was confirmed.

【0057】この結果の差は発電要素に対して集電体が
しっかりと接着され、かつ外装体が1枚の金属箔二つ折
りにして形成されているためであると考えられる。
It is considered that the difference between the results is due to the fact that the current collector is firmly adhered to the power generating element, and the exterior body is formed by folding one metal foil in two.

【0058】このように本発明にかかる実装型リチウム
電池の構造においては、実装型リチウム電池の機械的強
度を飛躍的に向上させるものである。
As described above, in the structure of the mountable lithium battery according to the present invention, the mechanical strength of the mountable lithium battery is dramatically improved.

【0059】なお、本発明においては、発電要素を直列
に多層具備した実装型リチウム電池でも本発明の構造を
採れば、同様の効果が得られることは明らかである。
In the present invention, it is apparent that the same effect can be obtained by adopting the structure of the present invention even in a mounted lithium battery having a plurality of power generating elements in series.

【0060】[0060]

【発明の効果】以上の通り、本発明の実装型リチウム電
池によれば、金属箔からなる外装体の内側に正極と負極
との間に電解質を配設してなる発電要素を配設した電池
構造において、正極および負極のそれぞれの外側に金属
箔からなる集電体が導電性接着剤により接着され、さら
に集電体を露出すべく金属箔に開口部が設けられた外装
体を二つ折りに成し、一方の外装部分を絶縁性樹脂を介
して当該集電体上に接着せしめたことで、半導体装置の
厚みを小さくしながらも、その曲げを防止でき、これに
よって信頼性を高めた低コスト化の実装型リチウム電池
が提供できた。
As described above, according to the mountable lithium battery of the present invention, a battery in which a power generating element having an electrolyte disposed between a positive electrode and a negative electrode is provided inside a package made of metal foil. In the structure, a current collector made of a metal foil is adhered to the outside of each of the positive electrode and the negative electrode with a conductive adhesive, and furthermore, the exterior body provided with an opening in the metal foil to expose the current collector is folded in two. By bonding one of the exterior parts to the current collector via an insulating resin, the bending of the semiconductor device can be prevented while reducing the thickness of the semiconductor device, thereby improving reliability. A cost-effective mounted lithium battery was provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実装型リチウム電池の断面図である。FIG. 1 is a sectional view of a mounted lithium battery according to the present invention.

【図2】従来の実装型リチウム電池の断面図である。FIG. 2 is a cross-sectional view of a conventional mounted lithium battery.

【図3】従来の半導体装置の断面図である。FIG. 3 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1…第1の半体ケース、2…第2の半体ケース、3…周
縁部、4…第1の電極、5…第2の電極、6…セパレー
タ、7…端子板、8…絶縁性樹脂、9…開口10…外装
体、11…折り返し部、12…接合部、13…正極、1
4…負極、15は…電解質、16…正極集電体、17…
負極集電体、18…導電性接着剤、19…絶縁性樹脂、
20…開口部
DESCRIPTION OF SYMBOLS 1 ... 1st half case, 2 ... 2nd half case, 3 ... Peripheral part, 4 ... 1st electrode, 5 ... 2nd electrode, 6 ... Separator, 7 ... Terminal plate, 8 ... Insulation Resin, 9 ... Opening 10 ... Outer body, 11 ... Folded part, 12 ... Joint part, 13 ... Positive electrode, 1
4 ... negative electrode, 15 ... electrolyte, 16 ... positive electrode current collector, 17 ...
Negative electrode current collector, 18: conductive adhesive, 19: insulating resin,
20 ... Opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属箔からなる外装体の内側に正極と負極
との間に電解質を配設してなる発電要素を配設した実装
型リチウム電池であって、正極および負極のそれぞれの
外側に金属箔からなる集電体が導電性接着剤により接着
され、さらに集電体を露出すべく金属箔に開口部が設け
られた前記外装体を二つ折りに成し、一方の外装部分を
絶縁性樹脂を介して当該集電体上に接着せしめたことを
特徴とする実装型リチウム電池。
1. A mounted lithium battery having a power generating element in which an electrolyte is disposed between a positive electrode and a negative electrode inside an exterior body made of a metal foil, wherein the power generating element is disposed outside each of the positive electrode and the negative electrode. A current collector made of a metal foil is adhered by a conductive adhesive, and the outer body provided with an opening in the metal foil to expose the current collector is folded in two, and one of the outer parts is insulated. A mounted lithium battery which is adhered on the current collector via a resin.
JP2000219592A 2000-07-19 2000-07-19 Mounting type lithium battery Pending JP2002042885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219592A JP2002042885A (en) 2000-07-19 2000-07-19 Mounting type lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219592A JP2002042885A (en) 2000-07-19 2000-07-19 Mounting type lithium battery

Publications (1)

Publication Number Publication Date
JP2002042885A true JP2002042885A (en) 2002-02-08

Family

ID=18714346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219592A Pending JP2002042885A (en) 2000-07-19 2000-07-19 Mounting type lithium battery

Country Status (1)

Country Link
JP (1) JP2002042885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181531A (en) * 2011-06-24 2011-09-15 Panasonic Corp Energy device and method of manufacturing the same
JP2013191365A (en) * 2012-03-13 2013-09-26 Toyota Industries Corp Power storage device and vehicle
CN107946650A (en) * 2016-10-13 2018-04-20 辉能科技股份有限公司 Battery structure
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181531A (en) * 2011-06-24 2011-09-15 Panasonic Corp Energy device and method of manufacturing the same
JP2013191365A (en) * 2012-03-13 2013-09-26 Toyota Industries Corp Power storage device and vehicle
CN107946650A (en) * 2016-10-13 2018-04-20 辉能科技股份有限公司 Battery structure
CN107946650B (en) * 2016-10-13 2020-12-04 辉能科技股份有限公司 Battery structure
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery
JP7003762B2 (en) 2018-03-19 2022-01-21 トヨタ自動車株式会社 All solid state battery

Similar Documents

Publication Publication Date Title
JP4828458B2 (en) Secondary battery with improved sealing safety
JP4819399B2 (en) Thin battery
JP3334683B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US8481199B2 (en) Sealed battery with a film casing
JPH10302756A (en) Thin battery
US11271274B2 (en) Secondary battery
CN107154312B (en) Electrochemical device and method for manufacturing electrochemical device
JP2004515879A (en) Lithium ion battery and / or lithium ion polymer battery with shielded leads
JP2011076838A (en) Laminate type battery
JP2006269288A (en) Thin battery
JP5229440B2 (en) Electrochemical devices
JP3628899B2 (en) Stacked battery
JPH0963550A (en) Battery
JP3686242B2 (en) Battery stack electrode connection method and battery
JP2000208110A (en) Thin battery
JP2002042885A (en) Mounting type lithium battery
JP7453740B2 (en) Power storage device
JP2002334692A (en) Battery
JP4702969B2 (en) Thin battery manufacturing method
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
JP2000353498A (en) Manufacture of thin battery
JP2002203538A (en) Mounting type lithium battery
JP4078489B2 (en) Battery manufacturing method
JP2002313311A (en) Lithium secondary battery
JP2020173923A (en) Secondary battery and manufacturing method thereof